首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple, straightforward, cartographic modelling technique is presented for measuring relations between environmental characteristics and rare species distribution patterns. This approach is corroborated by digitizing rare bird distribution data for Tanzania and statistically analyzing these patterns in relation to geographic and environmental variables. Of the available natural resource data for Africa, only the vegetation and soils data appeared accurate enough to represent regional natural resource distribution patterns. Available data for Tanzania at the regional scale is not currently precise or comprehensive enough to analyze ongoing dynamic ecological processes.Statistical relations, associated with a study quadrangle within Tanzania, are documented for these parameters. Final confirmation of the accuracy of predictions about rare species diversity patterns will ensue from future field observations. When confirmed, this methodology can be used for setting conservation priorities in biologically little known regions of the world.  相似文献   

2.
Grazing by large herbivores is a major determinant of vegetation dynamics in many semi-natural ecosystems, including ghe replacement of heather moorland by rough grassland in the British uplands. Herbivore foraging is influenced by vegetation patterns and, in turn, their grazing drives vegetation dynamics. Although vegetation impacts are local, spatially heterogeneous local impacts can have different conseqences as would the same impact distributed uniformly. We constructed a simulation model of the spatial effects of grazing by sheep on the vegetation dynamics of heather moorland, a vegetation community of international conservation importance in the UK. The model comprised three sub-models to predict (1) annual average heather utilisation, (2) spatial variation in heather utilisation (higher near the edge of grass patches) and (3) competition between heather and grass. Here we compare the predicted heather utilisation and vegetation dynamics of the spatial model, relative to those of a non-spatial model. The spatial model resulted in a reduced loss of heather cover for a given sheep stocking rate. The model demonstrtaes how spatial interactions between large herbivores and their forage drive vegetation dynamics, leading to changes in community structure and composition. Indeed, omitting spatial effects in grazing models may lead to inaccurate predictions. We have shown that ecosystem modelling, based around an iterative dialogue between developers and experienced researchers, has the potential to make a substantial contribution towards the conservation and management of vulnerable landscapes. Combining modelling with experimental studies will facilitate progress towards understanding long-term vegetation/herbivore dynamics.  相似文献   

3.
Palmer  S. C. F.  Gordon  I. J.  Hester  A. J.  Pakeman  R. J. 《Landscape Ecology》2004,19(8):817-827
Grazing by large herbivores is a major determinant of vegetation dynamics in many semi-natural ecosystems, including the replacement of heather moorland by rough grassland in the British uplands. Herbivore foraging is influenced by vegetation patterns and, in turn, their grazing drives vegetation dynamics. Although vegetation impacts are local, spatially heterogeneous local impacts can have different consequences as would the same impacts distributed uniformly. We constructed a simulation model of the spatial effects of grazing by sheep on the vegetation dynamics of heather moorland, a vegetation community of international conservation importance in the UK. The model comprised three sub-models to predict (1) annual average heather utilisation, (2) spatial variation in heather utilisation (higher near the edge of grass patches) and (3) competition between heather and grass. Here we compare the predicted heather utilisation and vegetation dynamics of the spatial model, relative to those of a non-spatial model. The spatial model resulted in a reduced loss of heather cover for a given sheep stocking rate. The model demonstrates how spatial interactions between large herbivores and their forage drive vegetation dynamics, leading to changes in community structure and composition. Indeed, omitting spatial effects in grazing models may lead to inaccurate predictions. We have shown that ecosystem modelling, based around an iterative dialogue between developers and experienced researchers, has the potential to make a substantial contribution towards the conservation and management of vulnerable landscapes. Combining modelling with experimental studies will facilitate progress towards understanding long-term vegetation/herbivore dynamics.  相似文献   

4.
Grazing by large herbivores is a major determinant of vegetation dynamics in many semi-natural ecosystems, including the replacement of heather moorland by rough grassland in the British uplands. Herbivore foraging is influenced by vegetation patterns and, in turn, their grazing drives vegetation dynamics. Although vegetation impacts are local, spatially heterogeneous local impacts can have different consequences as would the same impacts distributed uniformly. We constructed a simulation model of the spatial effects of grazing by sheep on the vegetation dynamics of heather moorland, a vegetation community of international conservation importance in the UK. The model comprised three sub-models to predict (1) annual average heather utilisation, (2) spatial variation in heather utilisation (higher near the edge of grass patches) and (3) competition between heather and grass. Here we compare the predicted heather utilisation and vegetation dynamics of the spatial model, relative to those of a non-spatial model. The spatial model resulted in a reduced loss of heather cover for a given sheep stocking rate. The model demonstrates how spatial interactions between large herbivores and their forage drive vegetation dynamics, leading to changes in community structure and composition. Indeed, omitting spatial effects in grazing models may lead to inaccurate predictions. We have shown that ecosystem modelling, based around an iterative dialogue between developers and experienced researchers, has the potential to make a substantial contribution towards the conservation and management of vulnerable landscapes. Combining modelling with experimental studies will facilitate progress towards understanding long-term vegetation/herbivore dynamics.  相似文献   

5.
Knowledge on environmental variability and how it is affected by disturbances is crucial for understanding patterns of biodiversity and determining adequate conservation strategies. The aim of this study is to assess environmental variability in patches undergoing post-fire vegetation recovery, identifying trends of change and their relevant drivers. We particularly evaluate: the value of three spectral indices derived from Landsat satellite data [Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI) and Wetness Component of the Tasseled Cap Transformation (TCW)] for describing secondary succession; the effectiveness of three metrics (diversity, evenness and richness) as indicators of patch variability; and how thematic resolution can affect the perception of environmental variability patterns. While the system was previously characterised as highly resilient from estimations of vegetation cover, here we noted that more time is required to fully recover pre-fire environmental variability. Using mean diversity as indicator of patch variability, we found similar patterns of temporal change for the three spectral indices (NBR, NDVI and TCW). Analogous conclusions could be drawn for richness and evenness. Patch variability, measured as diversity, showed consistent patterns across thematic resolutions, although values increased with the number of spectral classes. However, when the variance of diversity was plotted against thematic resolution, different scale dependencies were detected for those three spectral indices, yielding a dissimilar perception of patch variability. In general terms, NDVI was the best performing spectral index to assess patterns of vegetation recovery, while TCW was the worst. Finally, burned patches were classified into three classes with similar trends of change in environmental variability, which were strongly related to fire severity, elevation and vegetation type.  相似文献   

6.
Large herbivores can impose spatial patterns on otherwise homogeneous vegetation, but how these patterns change through time is poorly understood. Domestic livestock pastures are model systems for studying how foraging behavior influences the development of coupled grazing and vegetation patterns. We sampled forage production and utilization by cattle along distance-from-water gradients to provide a snapshot of grazing and vegetation patterns, and then evaluated the ability of simulation models to qualitatively reproduce these patterns. In the field, forage production increased with distance from water, as expected, but utilization peaked at intermediate distances from water in two of three study areas. Likewise, simulations based on a variety of foraging strategies produced gradients in forage production and, after forage availability near water declined sufficiently, peaks in utilization at intermediate distances. Distance-from-water gradients thus represent cumulative but not necessarily present day gradients in grazing intensity. The model with a foraging strategy based on time minimization produced slightly more realistic patterns in forage abundance than a model based on energy maximization, although results were sensitive to the value of the threshold for rejecting sites of low forage biomass. However, all models produced implausible thresholds in grazing and forage distribution, suggesting that factors besides resource distribution influence herbivore distributions. Moreover, different foraging rules produced similar vegetation gradients, especially on point water source landscapes, illustrating the difficulty of inferring foraging processes from vegetation patterns.  相似文献   

7.
Riparian vegetation is distinct from adjacent upland terrestrial vegetation and its distribution is affected by various environmental controls operating at the longitudinal scale (along the river) or transverse scale (perpendicular to the river). Although several studies have shown how the relative importance of transverse or longitudinal influences varies with the scale of observation, few have examined how the influences of the two scales vary with the level of ecological organization. We modeled vegetation-environment relationships at three hierarchically nested levels of ecological organization: species, plant community, and vegetation type. Our hierarchically structured analyses differentiated the spatial extent of riparian zones from adjacent upland vegetation, the distribution of plant community types within the riparian zone, and the distribution of plant species within community types. Longitudinal gradients associated with climate and elevation exerted stronger effects at the species level than at the community level. Transverse gradients related to lateral surface water flux and groundwater availability distinguished riparian and upland vegetation types, although longitudinal gradients of variation better predicted species composition within either riparian or upland communities. We concur with other studies of riparian landscape ecology that the relative predictive power of environmental controls for modeling patterns of biodiversity is confounded with the spatial extent of the study area and sampling scheme. A hierarchical approach to spatial modeling of vegetation-environment relationships will yield substantial insights on riparian landscape patterns.  相似文献   

8.
Wetland and pond hydric vegetation is impacted across the rural, peri-urban, and urban zones by anthropogenic activities such as agricultural production, industrial manufacturing, and urban development. Previous studies have assessed urban and rural wetland vegetation, but have rarely explored the peri-urban zone of development. Therefore, to investigate the impacts of urbanization on hydric vegetation, thirty pond sites (10 rural, 10 peri-urban, and 10 urban) were randomly selected within each of the three zones. The vegetation community at each site was assessed using a quadrat method to compare the vegetation composition. In addition, floristic quality based on the conservatism value of each plant species was used to assess wetland vegetation. Results show plant communities of rural sites differed from both urban and peri-urban sites due partly to urbanization reducing the cover of obligate wetland species. Peri-urban sites contained the highest species richness, due to the increase in introduced plants associated with urbanization. Urban sites contained the lowest species richness, some of which is due to the use of rock riprap surrounding the edges of most sites. The plant conservatism values of vegetation were not different for rural and peri-urban sites, but were significantly lower in urban sites. Information from this study is useful to wetland professionals, environmental managers, and urban planners to predict hydric vegetation responses within peri-urban areas in the Prairie Pothole Region.  相似文献   

9.
Current methods of vegetation analysis often assume species response to environmental gradients is homogeneously monotonic and unimodal. Such an approach can lead to unsatisfactory results, particularly when vegetation pattern is governed by compensatory relationships that yield similar outcomes for various environmental settings. In this paper we investigate the advantages of using classification tree models (CART) to test specific hypotheses of environmental variables effecting dominant vegetation pattern in the Piedmont. This method is free of distributional assumptions and is useful for data structures that contain non-linear relationships and higher-order interactions. We also compare the predictive accuracy of CART models with a parametric generalized linear model (GLM) to determine the relative strength of each predictive approach. For each method, hardwood and pine vegetation is modeled using explanatory topographic and edaphic variables selected based on historic reconstructions of patterns of land use. These include soil quality, potential soil moisture, topographic position, and slope angle. Predictive accuracy was assessed on independent validation data sets. The CART models produced the more accurate predictions, while also emphasizing alternative environmental settings for each vegetation type. For example, relic hardwood stands were found on steep slopes, highly plastic soils, or hydric bottomlands – alternatives not well captured by the homogeneous GLM. Our results illustrate the potential utility of this flexible modeling approach in capturing the heterogeneous patterns typical of many ecological datasets.  相似文献   

10.
Liu  Amy J.  Cameron  Guy N. 《Landscape Ecology》2001,16(7):581-595
High productivity and accessibility have made coastal wetlands attractive sites for human settlements. This study analyzed the patterns of wetland landscapes in Galveston Bay, Texas, USA. The first objective of the study was to describe the relationships between the fractal dimension of wetland boundaries and those factors which affect the wetland landscapes (e.g., land use, type of vegetation, size, location, and level of human disturbance). The second objective was to construct a historical database to contrast wetland areas which had experienced different levels of disturbance between 1956 and 1989. The fractal dimension, a measure of how much of the geographical space is filled by boundaries, was measured by the perimeter-area method. The fractal dimension of wetlands was significantly affected by land use, type of vegetation, size, and level of anthropogenic disturbance. In addition, increasing the size of buffers around roads did not significantly affect the fractal dimension of wetlands. Landscape indices, such as fractal dimension, dominance, and diversity, were used to characterize spatial heterogeneity in the historical database. Lake Stephenson, an area of low anthropogenic disturbance, experienced no changes in wetland composition and abundance over time. Anahuac, an area of medium disturbance, experienced changes in both wetland composition and abundance. Texas City, an area of high disturbance, experienced a change in wetland composition. These differences can be associated with the type and level of disturbance present; however, more evidence is needed to determine whether certain landscape patterns have stable, intrinsic properties which allow persistence in the face of disturbance. These results will be informative to resource managers determining how wetlands can be managed as natural resources and nature reserves.  相似文献   

11.
Spider communities are sensitive to a wide range of environmental factors and are potential ecological indicators which may be effective in the assessment and monitoring of restored ecosystems. One restoration technique of disused limestone quarry faces, landform replication, attempts to create landforms and ecosystems similar to those found on natural dalesides. Vegetation surveys indicate that communities developing on landform replications are more closely allied to natural dalesides than are those of naturally recolonised disused quarries. Assessment of the spider communities of three landform replication sites, a natural limestone daleside and seven naturally recolonised disused limestone quarries, using DECORANA and TWINSPAN, produced differing patterns of sites than those observed through the assessment of the vegetation communities. DECORANA assessment based on vascular plant species composition highlights the similarities between daleside and reclaimed site communities. The sensitivity of spider communities to vegetation structure and extent of bare ground highlights differences between sites and provides evidence of important differences in vegetation community development particularly in relation to cover and structure. Implications for the assessment of reclamation and restoration techniques are discussed.  相似文献   

12.
In densifying cities, small green spaces such as pocket parks are likely to become more important as settings for restoration. Well-designed small parks may serve restoration well, but earlier research on restorative environments does not provide detailed information about the specific components of the physical environment that support restoration. In this study we assessed the extent to which hardscape, grass, lower ground vegetation, flowering plants, bushes, trees, water, and size predicted the judged possibility for restoration in small urban green spaces. We took individual parks as the units of analysis. The parks were sampled from Scandinavian cities, and each park was represented by a single photo. Each photo was quantified in terms of the different objective park components and also rated on psychological variables related to restoration. The ratings on the psychological variables being away, fascination, likelihood of restoration, and preference were provided by groups of people familiar with such parks. The variables most predictive of the likelihood of restoration were the percentage of ground surface covered by grass, the amount of trees and bushes visible from the given viewing point, and apparent park size. Formal mediation analyses indicated distinctive patterns of full and partial mediation of the relations between environmental components and restoration likelihood by being away and fascination. Our results provide guidance for the design of small yet restorative urban parks.  相似文献   

13.
Spatial patterns of fire occurrence in Catalonia,NE, Spain   总被引:2,自引:0,他引:2  
In this paper, we analyse spatial patterns of fire occurrence in Catalonia (NE Spain) during 1975–98. Fire scar maps, discriminated by means of 30–60 m resolution remote sensing imagery, have been used as a source of fire occurrence. We employ several visual or analytical approaches to interpret fire occurrence in this region, such as those of Minnich and Chou (1997), Ricotta et al. (2001) or Krummel et al. (1987). Crucial spatial patterns such as fire size distribution, fire frequency distribution, spots and residual vegetation islands are documented. In addition, several geographical layers were overlaid with burned area maps in order to determine interactions between fire occurrence and environmental parameters such as altitude, slope, solar radiation, and burned land cover. Assuming that fire occurrence is well determined by such a posteriori empirical factors we detect areas most prone to fire in this region and aim to enhance the local forest management and conservation plans.  相似文献   

14.
15.
Mapping urban vegetation types is important for urban planning and assessing environmental justice. Nowadays, despite data cubes projects are providing Analysis Ready Data to facilitate time-series analysis, we did not found studies employing these data for improving urban vegetation mapping. By relying solely on open data and software, this work proposes and evaluates the integration of time-series data cubes in a hybrid image classification method to map the intra-urban space, differentiating Tree cover and Herb-shrub. The urban area of Goiânia, Goiás, Brazil, is the study area. The hybrid method combined object-based classification of a pan-sharpened CBERS-4A WPM image (spatial resolution of 2 m) with the pixel-based classification of Sentinel-2 MSI time-series data cubes (10 m). Both approaches used the Random Forest algorithm. Objects from the CBERS-4A segmentation composed the spatial unit of analysis and the class assignment depended on the Sentinel-2 time-series urban land cover probabilities. Based on both Maps probabilities, Shannon entropy was calculated to attribute the final urban land cover to the objects. Urban land cover probabilities presented similar spatial distribution patterns for both classification approaches. Regarding the thematic maps, the Herb-shrub cover area was 35% higher in Sentinel-2 time-series classification than in GEOBIA classification, but Tree cover was 21% lower. In general, 75% of the study area was equally classified by the initial approaches. However, for 9% of the remaining area, the hybrid classification improved vegetation classes accuracies by 35%, contributing to the vegetation covers identification. Thus, this study contributes to methodological procedures for urban land cover study and demonstrates that hybrid maps based on open data are effective to reduce classification mistakes, allowing more accurate monitoring, planning, and designing of different urban vegetation types. Future research efforts should focus on scale compatibility between data of different spatial resolutions and expand the use of data cubes to integrate time-series information into the GEOBIA classification.  相似文献   

16.
In Central Europe vast wetland areas have been converted into agricultural land over the past few centuries. Long-term spatially explicit reconstructions of wetland cover changes at regional scale are rare but such information is vital for setting appropriate wetland conservation and restoration goals. In this study wetland cover change over the past 150 years was analyzed for the Canton Zurich (Switzerland) using information from historical and current topographical maps. Mapping instructions changed significantly over time, i.e., wetlands were mapped more conservatively on older maps. Therefore a technique was developed to account for changes in mapping instructions and to reconstruct a series of comparable maps spanning 1850–2000. Wetland cover dramatically decreased from 13,759 ha in 1850 (more than 8% of the total study area) to 1,233 ha in 2000 (less than 1%). Largest loss is observed for the first half of the twentieth century when more than 50% of the total wetland loss occurred. In 1850, almost all wetland patches were connected in two large networks defined by a 500 m buffer around all wetland patches to account for typical dispersal distances of wetland animals. Despite extensive wetland loss, this networks remained largely intact until 1950, but then collapsed into many medium and small networks consisting of only few wetland patches. In addition to the direct loss of wetland habitats increased habitat fragmentation is limiting metapopulation dynamics and hindering genetic exchange between populations. Amphibians and other wetland animals are particularly prone to habitat fragmentation because of their limited migration abilities. This may lead to time-delayed extinction in the future because current species occurrence might rather reflect historical than current wetland cover and habitat configuration. Future restoration efforts should focus on reestablishing connectivity between remaining smaller wetland networks.  相似文献   

17.
Changes in the spatiotemporal pattern of vegetation alter the structure and function of landscapes, consequently affecting biodiversity and ecological processes. Distinguishing human-induced vegetation changes from those driven by environmental variations is critically important for ecological understanding and management of landscapes. The main objectives of this study were to detect human-induced vegetation changes and evaluate the impacts of land use policies in the Xilingol grassland region of Inner Mongolia, using the NDVI-based residual trend (RESTREND) method. Our results show that human activity (livestock grazing) was the primary driver for the observed vegetation changes during the period of 1981?C2006. Specifically, vegetation became increasingly degraded from the early 1980s when the land use policy??the Household Production Responsibility System??led to soaring stocking rates for about two decades. Since 2000, new institutional arrangements for grassland restoration and conservation helped curb and even reverse the increasing trend in stocking rates, resulting in large-scale vegetation improvements in the region. These results suggest that most of the degraded grasslands in the Xilingol region can recover through ecologically sound land use policies or institutional arrangements that keep stocking rates under control. Our study has also demonstrated that the RESTREND method is a useful tool to help identify human-induced vegetation changes in arid and semiarid landscapes where plant cover and production are highly coupled with precipitation. To effectively use the method, however, one needs to carefully deal with the problems of heterogeneity and scale in space and time, both of which may lead to erroneous results and misleading interpretations.  相似文献   

18.
The near-to-nature urban forestry concept and practices are widely recognized for urban greening, urban ecosystem restoration, urban greenspace management for biodiversity conservation and ecosystem services provision. However, the regeneration and succession of urban vegetation are rarely studied due to the complex settings of the urban environment. To this end, we conducted a large-scale field investigation in the metropolitan area of Beijing, China to explore the spatial variations in plant species composition and diversity in soil seed banks, and their similarity to the aboveground vegetation to assess the potential of urban plant regeneration. Overall, 657 vegetation and soil sampling plots from 219 grids, measuring 2 km × 2 km each, were investigated within two perpendicular 10 km wide transects running across the urban center in north-south and east-west directions within the 6th Ring Road of the city. We recorded a total of 102 plant species in soil seed banks, including 13 tree species, 10 shrub species, and 79 herb species. We found that the soil seed bank species diversity and its similarity to that of the aboveground vegetation communities decreased significantly with the urbanization intensity. Higher urbanization intensity is typically associated with increased human management and a reduction in Greenspace Area (GSA). Soil seed bank species richness increased significantly when GSA exceeded 45 % and the similarity of species composition and diversity between soil seed banks and aboveground vegetation communities was the highest in forest parks. This suggests that habitats under forest park management are more conducive to plant regeneration. Soil seed bank species diversity first increased and then decreased significantly with increased distance to the city center, whereas the species similarity between the soil seed banks and the aboveground vegetation communities showed little change with the ring roads going out. The results of this study have important implications for further understanding the potential for urban vegetation regeneration and sustainability, which have significant implications for urban biodiversity conservation and restoration.  相似文献   

19.
Models describing relationships between landscape features and species distribution patterns often display inter-study inconsistencies. Identifying factors contributing to these inconsistencies is a vital step in clarifying the ecological importance of landscape features and synthesizing an effective knowledge base for use in conservation contexts. We examined the influence of several spatial, temporal, and life history assumptions on the outcomes of distribution versus landscape models (DLMs) relating wetland bird communities at 29 Massachusetts (USA) sites to independent urbanization, wetland, forest, and agricultural landscape gradients. We considered a bird specialization index as well as obligate and facultative species richness as response variables. Landscape gradients were quantified at 10 landscape extents (0–1000 m in 100 m increments) and three time periods (1971, 1985, 2005). Univariate models indicated that our specialization index showed: (1) the strongest response to landscape gradients at small extents (200 m); (2) a negative, threshold response to urbanization was superior to a linear fit; and (3) no evidence of time-lagged effects of landscape change. Interestingly, the form of our model (i.e. linear versus threshold) influenced the extent at which strongest effects were detected. Multivariate models relating the specialization index as well as obligate and facultative species richness to landscape gradients showed evidence of annual variability (i.e. composition, parameter estimates, and variability explained) that did not depend upon an organism’s degree of specialization. Our results provide evidence that violations of common assumptions (e.g. selection of appropriate extent, lack of time-lagged effects, etc.) can impact the outcome of DLMs, which could lead to inter-study inconsistencies.  相似文献   

20.
As the world becomes more urbanized, urban cemeteries may become increasingly valuable for biodiversity conservation as cemeteries are ubiquitous elements of the green infrastructure in cities worldwide. By implementing a multi-taxon approach at different spatial extents, we analyzed habitat functions of a large urban cemetery in Berlin (Weiÿensee Jewish Cemetery) and explored related environmental variables. This cemetery is an outstanding cultural heritage site but it also stands for old urban cemeteries that have progressed to urban woodland, an ecosystem type that exists in many regional and religious contexts. The cemetery provided a habitat for 604 species; species of conservation concern comprised 1.6⿿100% of total species among different groups of taxa (in decreasing order: bats, birds, lichens, bryophytes, carabids, vascular plants, spiders). Species richness and species composition at the plot level were significantly related to differences in management intensity and resulting vegetation structures but differed among taxonomic groups. In vascular plants, carabids and spiders, the species composition varied significantly with habitat age, and there was a set of characteristic species for different age classes in each species group. Our results thus support the use of differentiated management approaches to maintain habitat heterogeneity by allowing wilderness development in some parts of a cemetery while keeping others more open. Since these aims can be combined with efforts to preserve outstanding grave architectures and allow access to visitors, our study indicates ways of reconciling conflicting aims of heritage preservation and biodiversity conservation, a promising perspective for biodiversity conservation in culturally shaped urban landscapes. We conclude that cemeteries provide important cultural ecosystem services within the urban green infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号