首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton, a natural fibre that consists of cellulose, is highly popular because it is sweat-absorbing and comfortable to wear. However, cotton fabrics provide an excellent environment for microorganisms to grow, owing to their ability to retain moisture. Therefore, numerous chemicals have been used to enhance anti-microbial activity of cotton textiles. This paper reports results of use of silver oxide (Ag2O) or zinc oxide (ZnO) as a catalyst in the antimicrobial formulation (halogenated phenoxy compound (Microfresh, MF)) and a binder (Microban, MB) for improved treatment of cotton fabrics and minimisation of side effects of the treatment. In addition, from the morphological study, plasma technology was employed to roughen the surface of the materials to improve loading of metal oxides on the surface. Moreover, the characteristic infra-red bands related to plasma-treated cotton produced results different from untreated fabric, implying plasma treatment can improve hydrophilicity of the fabric. Mechanical strength of the specimens was also increased by plasma treatment. Meanwhile, the research showed that the control fabric slightly inhibited the growth of S. aureus because of the bleach residues on fabric surface. On the other hand, anti-bacterial activity of MF-MB-treated specimen, especially in the presence of metal oxide catalyst, was enhanced, providing a slightly larger zone of inhibition. Moreover, plasma gas contains reactive oxygen species that can enter the cell, eventually causing its death. The hydrophilic nature of carbonyl groups present in oxygen plasma pre-treated specimens also increased the anti-microbial activity after treatment with MF-MB.  相似文献   

2.
Bi2WO6 particles were prepared and then coated on the polyester fabric. Surface morphology, crystal structure, and chemical structure of the Bi2WO6 particle coated polyester fabric were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Photocatalytic activity was evaluated by the degradation of methylene blue (MB) under ultraviolet light irradiation. Influences of the different concentrations of Bi2WO6 on the deposit weight and the photocatalytic activity of the Bi2WO6 particle coated polyester fabric were investigated. In addition, UV protection of the Bi2WO6 particle coated polyester fabric was examined. The results show that Bi2WO6 particles are uniformly coated on the surface of the polyester fabric. The Bi2WO6 particles coated on the polyester fabric are irregular and are orthorhombic. In addition, the Bi2WO6 particle coated polyester fabric exhibits excellent photocatalytic activity and UV protection. The average degradation efficiency of MB in the presence of the Bi2WO6 particle on the polyester fabric coated with 10 g/l Bi2WO6 reaches 98.6 % after being illuminated for 7 h. Therefore, the Bi2WO6 particle coated polyester fabric shows excellent photocatalytic stability for dyes degradation.  相似文献   

3.
The aim of this study was to determine the in-plane shear properties of polyester fabric by the pull-out method and analytical relations were developed to calculate the shearing properties. After the yarn in the fabric was pulled from the top ravel region before the start of the crimp extension stage, it was found that fabric shear strength and rigidity increased when the number of pulled ends increased. In addition, when the fabric width and length increased, fabric shear strength and rigidity increased. On the other hand, the shear strength and rigidity values in untreated fabric were high compared to that of treated fabric due to the fabric treatments by softening agent. It was observed that fabric sample dimensions and the number of pull-out ends as well as the fabric treatments influenced fabric shear strength and rigidity. Also, the shear jamming angles were found to be based on the number of pulled ends. Fabric local shearing properties could be identified by pulling the yarn ends in various regions of the fabric. This could be important for the handling of the fabric during formation. The results generated from this study showed that polyester fabric shear could be measured by the yarn pull-out test.  相似文献   

4.
This paper focuses on the assessment of the relation among constructional properties, fractional reflectances and cover factors of fabrics woven from polyester yarns. A novel equation for the calculation of the relation between fractional reflectance and fabric cover factor was proposed and the usage of the equation was assessed by reflectance measurements. 48 polyester fabrics having different constructional parameters were used and the fabrics differed from each other by their cover factors. The warp yarn type and count, warp density and warp yarn twist were the same but weft yarn count, weft yarn fiber count and weft density were different for the fabrics in the experimental sub-groups. The reflectance measurements were conducted on the pretreated but undyed fabric samples as well as on the individual yarn systems of the same fabrics. Fabrics with the same cover factors exhibited different fractional reflectances. Reflectances were found to be dependent on the cover factor as well as on yarn fiber fineness, yarn count, yarn density and fabric weave. The changes in crimp of the yarns according to different construction parameters also governed the changes in fractional reflectances of fabric surfaces. The proposed equation was tested according to different fabric construction parameters and it was concluded that fiber fineness and weave pattern were among the most important parameters which govern the total light reflectances from the fabric surfaces, although they are not incorporated in the calculation of the fabric cover factors. The proposed equation was used to explain the effects of these components on the reflectance behavior of the fabric surfaces and on fabric cover.  相似文献   

5.
In this work, dopamine hydrochloride, an environmental friendly compound, was applied on polyester fabric through conventional simple impregnation method in alkaline solution (pH=8.5) at room temperature. In situ spontaneous oxidative polymerization of dopamine form polydopamine (PDA) along with aminolysis of polyester fabric surface. Also, a range of colored polyester fabric were successfully achieved by formation of polydopamine adhesive coating layer at different concentration of dopamine hydrochloride (0.001-4 g/l). Fourier transform infrared spectroscopy and field emission scanning electron microscopy showed deposition of polydopmaine on the polyester fabric surface. The modified colored polyester fabric showed reasonable durability against washing, rubbing and light. The treated polyester fabric with 2 g/l dopamine hydrochloride as optimum concentration indicated not only lower spreading time for water droplet and electrical resistance with higher tensile strength but also very good bactericidal activity against Staphylococcus aureus and Escherichia coli.  相似文献   

6.
Current research was carried out on hydrophilic wool fibers at three different humidity conditions through atmospheric pressure plasma jet (APPJ). Samples were taken to evaluate surface microscopic morphology, surface roughness, directional friction effect (DFE), and surface chemical composition. The scanning electron microscope (SEM) and fiber friction coefficient test (FFT) results show that wetting pretreatment has significant effect on surface etching and DFE, but very limited effect on surface roughness. Allwörden reaction and X-ray photoelectron spectroscopy (XPS) results reveal that extra moisture changes C, O, N, S contents and their related characteristic functional groups, therefore increases etching degree on wool fiber surface scales. It was concluded that APPJ treatment is effective in processing wool fiber with high moisture contents.  相似文献   

7.
To improve adhesion and wear durability at the interface between copper (Cu) film and polyester fabric, the Cu-coated polyester fabric was treated by two commercial solutions of polyester-polyurethane (PP) and aqueous acrylate (AC) as finishing process respectively. Both finishing agents with 5 %, 10 %, 15 %, 20 %, 25 %, 30 %, 35 % and 40 % concentrations were coated on the Cu-coated fabrics by a padding method in this study. The surface morphologies of the coated polyester fabric before and after finishing were characterized by scanning electron microscopy (SEM). The adhesion of Cu-coated film before and after the finishing treatments was measured with scotch tape method; the durability was evaluated by colorfastness to washing, crocking and perspiration. Additionally, Ultraviolet (UV) shielding, water repellency and CIE L*a*b of the Cu-coated polyester fabric before and after the finishing treatments were determined. The Cu-coated polyester fabric has a high adhesion property of the 5 level, colorfastness to washing, wet crocking and perspiration of the Cu-coated fabric were obviously enhanced to level 5, level 4-5 and level 3-4. Meanwhile, The Cu-coated polyester fabric kept an excellent UV protection with UPF value over 68 after finishing treatment with PP and AC. The results demonstrate the finishing treatment with the PP presented effectively in durability performance than the AC for the Cu-coated polyester fabric.  相似文献   

8.
Five temporarily solubilized reactive disperse dyes were synthesized and characterized. They were applied to polyester/cotton blend fabric using one-bath dyeing method without dispersing agent. The dye that has azonaphthalene chromophore seemed to not only be exhausted on polyester but also react with cotton. But other dyes were selectively dyed on polyester and showed limited uptake on cotton. Good levelling as well as moderate to good colour fastness was obtained with the dyes on P/C blend fabric.  相似文献   

9.
The aim of this study is to examine the efficacy of the coconut fiber on the sound absorption and thermal insulation performance towards the composite nonwoven fabrics. The 2D polyester fiber and 12D fire retardant three-dimensional hollow crimp polyester fiber are individually mixed with 4D low-melting point polyester fiber (4DLMf) to produce 2D polyester nonwoven fabric (2D-PETF) and 12D polyester nonwoven fabric (12D-PETF) respectively. Subsequently, the coconut fiber (CF) is then laminated with the 2D-PETF and 12D-PETF to fabricate two types of PET/CF composite boards through the multiple needle-punching techniques. Accordingly, the sound absorption, thermal insulation, Limiting Oxygen Index and relative mechanical properties of the PET/CF composite boards are evaluated properly. The experimental results reveal that both types of PET/CF composite boards possess excellent thermal insulation performance and fire resistance property. Also, for both types of PET/CF composite boards, the average sound absorption coefficient increases with the increased amount of CF.  相似文献   

10.
The influence of water vapor plasma on the adsorption of UV absorber during the reactive dyeing of bleached and mercerized cotton fabric was examined. Exhaust dyeing of untreated and plasma-treated cotton was performed using a reactive dye Cibarcon Deep Red S-B and a commercial UV absorber Tinofast CEL. Blank dyeing was performed as a control experiment. Fourier transform infrared spectroscopy (FTIR) was used to identify the presence of the UV absorber on the cotton fabric, whereas scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to analyze surface changes of untreated and plasma-treated dyed samples. The CIELAB color values and ultraviolet protection factor (UPF) of the samples were determined spectrophotometrically. Wash and light fastness of samples was performed also. The results reveal that the UPF of cotton increases after UV absorber treatment and that plasma treatment increases the adsorption of UV absorber during dyeing process, especially at higher dye concentrations. The enhanced adsorption of UV absorber onto plasma-treated cotton is the result of the increased concentration of oxygen containing functional groups on the cotton surface after plasma treatment, confirmed by XPS. The UPF of plasma-treated cotton samples is decreased after washing and increased after exposure to xenon light.  相似文献   

11.
Low temperature plasma (LTP) treatment using oxygen gas was applied to a wool fabric. The LTP treated wool fabric was tested with several methods: ASTM D5035-1995, ASTM D1424-1996, AATCC Test Method 99-2000, AATCC Test Method 61-2001 1A, AATCC Test Method 15-2002 and AATCC Test Method 8-2001 and the results were compared with the industrial requirements (ASTM D3780-02 and ASTM D4155-01). The results revealed that the LTP treated wool fabric could fulfil the industrial requirements. The results of the investigation were discussed thoroughly in this paper.  相似文献   

12.
Plasma treatment is a kind of environmentally friendly surface modification technology, which has been widely used to modify various materials in many industries. Plasma treatment improves the fiber-matrix adhesion largely by roughening the surface of fibers to increase mechanical interlocking between the fiber and the matrix. For this aim, the effect of atmospheric air plasma treatment on jute fabrics has been discussed in this study. The plasma treatment has been employed at different powers and time intervals. The effects of plasma treatment on fiber properties were revealed by wickability, surface roughness, fiber tensile test and pull-out tests. The effect of plasma treatment on functional groups of jute fibers was observed by attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR). Scanning electron microscopy (SEM) images showed the etching effect of plasma treatment on the surface. It can be concluded that plasma treatment is an effective method to improve the surface and mechanical properties of jute fabrics to be used for composite materials.  相似文献   

13.
Electrospinning is an efficient method to produce polymer fibers with a diameter range from nanometers to a few microns using an electrically driven jet. Electrospun nanofiber nonwoven fabrics can be applied into different areas with higher air volume fraction, especially applied into textile materials with good warmth retention property. In this article, the air volume fraction in nonwoven mats made of electrospun nanofibers was verified by studying fiber volume fraction in the mats. Then the relationship between fiber volume fraction and fiber diameter was derived, and the fiber volume fraction is in direct ratio to the square of fiber radius. By experimental verification, to get electrospun PAN nanofiber nonwoven mats with high air volume fraction about 99 %, it can fix the polymer concentration on 8 %. The voltage fixed on 20 kV, the tip-to-collector distance on 15 cm. The experiment is in accordance with the theory excellently.  相似文献   

14.
15.
The aim of this paper is to study the possibility and effectiveness of applying LTP treatment to enhance the performance of pre-treatment paste containing sodium alginate so as to improve the properties of the ink-jet printed cotton fabric. Experimental results revealed that the LTP pre-treatment in couple with the ink-jet printing technique could improve the final printed properties of cotton fabric.  相似文献   

16.
A porous complex structured woven fabric was manufactured to maximize the moisture transition ability of the prepared fabric by increasing the absorptive property of the fabric through surface modification using plasma, which is a dry modification method. Porous single and complex structured woven fabrics were produced by applying pattern, porosity, and plasma technology, including fabric patterning based on the sheath/core complex structure, the formation of porosity by removing the weft thread or warp thread, and hydrophilic surface treatment using plasma and the improvement in water absorption of different fabrics by the porous and plasma treatment was investigated. Therefore, two different types of fabrics were prepared. One is the porous single structured FAB-SINGLE fabric which was taken out in the direction of the Polyester (PET) warp thread of a general single structure to form a porous. Another is FAB-COMPLEX fabrics that the water-soluble polylactic acid (PLA) yarns with a 1.7 to 2.0 times longer absorption distance than that of PET yarns were inserted into the weft threads, and the PLA yarns were dissolved in a solvent to form the porous complex fabric. And then the physical properties and water absorption of the two types of fabric were compared after the plasma treatment. The results showed that when the FAB-SINGLE fabric, which has porosity induced by the removal of the warp threads in a certain gap, was plasma treated for 5 min, the contact angle was decreased to the extent that a measurement of the contact angle was impossible, whereas the fabric that had not undergone a plasma treatment had a contact angle of 123.6 o. The contact angle of the FABCOMPLEX with porosity caused by the dissolution of the PLA yarns was reduced from 76.8 o to 0 o after 3 minutes of a lowtemperature plasma treatment, indicating that the hydrophilic property was increased. In addition, the water absorption measurements showed that the absorption height was increased from 2.3 cm of the fabric sample that had not been treated with plasma to the highest absorption height of 8.3 cm, suggesting that the water absorption also increased with the improvements in moisture transition ability by the plasma treatment. The physical tensile strength of the fabrics was not changed by the plasma treatment, despite the changes on the fabric surface, suggesting that the combination of double complex structures and the plasma treatment helped improve the water absorption.  相似文献   

17.
The main goal of present study was the fabrication of cotton fabric with special functions, including electrical conductivity, magnetic, antibacterial, and ultraviolet (UV) blocking. In this regard, the cotton fabric was primarily coated with graphene oxide and then reduction of graphene oxide and synthesis of magnetite nanoparticles accomplished in one step. The alkaline hydrolysis of magnetite precursors and reduction of graphene oxide was simultaneously performed using sodium hydroxide to produce reduced graphene oxide/Fe3O4 nanocomposite on the fabric surface. The prepared cotton fabrics were characterized with field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The treated fabrics with reduced graphene oxide/Fe3O4 nanocomposite displayed a low electrical resistivity i.e. 80 kΩ/sq. Furthermore, the coated fabrics showed reasonable magnetic properties due to the presence of magnetite nanoparticles on the surface of cotton fabrics. Moreover, this process imparted proper antibacterial properties and UV blocking activity to cotton samples.  相似文献   

18.
Nowadays, the use of nonwovens as absorbent products is increasing. One of the most important methods for the nonwoven production is spunlace. This research evaluates the effect of spunlace nonwoven structures in wicking, water retention, water vapor permeability and porosity structural parameter of nonwoven. Carded webs from polyester fibers and viscous fibers of four different basis weights (35, 40, 45, and 50 g/m2) were hydroentangled using three different water jet pressures (50, 60, and 70 bar). To study the effect of these variables on the structure of nonwovens and absorbency related properties, sample’s characteristics such as thickness and mass density were measured. An electrical resistance technique was used to study the liquid penetration into nonwovens. The results showed that with increasing water jet pressure, mass density increased and other parameters like thickness, water retention, water vapor permeability and capillary pore size decreased. Also, it was observed with increasing basis weight, the sample thickness increased. On the other hand, with increasing weight, the amount of water retention, water vapor permeability and porosity structural parameter of nonwoven were reduced. The wicking characteristic of nonwovens using the least jet pressure and weight was the best of all the samples.  相似文献   

19.
The presented research deals with modifying the chemical structure of the bioscoured cotton fabric by acrylonitrile, acrylonitrile/acetone, and acrylonitrile/ethanol mixture. The modified cellulose was tested for weight gain, shrinkage, and wicking height and characterized by X-ray diffraction (XRD), thermal analysis (TG/DTA), elemental analysis, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The weight gain and shrinkage % show increased value for modified fabrics. The wicking height increases with addition of solvent. The crystallinity and thermal studies show a significant change. FTIR analysis confirms the modification by the occurrence of -C??N stretching and -CONH2 stretching. The SEM morphology of modified fabric shows uniform swelling of fibers with better smoothness. The AFM topography reveals that the addition of solvent affects the particle size. Clear surface morphology of modified fabric reveals that this processing method can be used for preparation of medical textiles with more swelling.  相似文献   

20.
The aim of this study was to understand the failure mechanism of two dimensional dry fabric structure considering yarn sets and interlacements. For this purpose, data generated on air-entangled textured polyester woven fabric under the simple tensile load and analyzed by developed regression model. The regression model showed that warp and weft directional tensile strengths of satin fabric were higher than those of plain and rib fabrics in unravel sample. This might be related to the number of interlacements of the fabrics. There was not a considerable difference between warp directional tensile strength of ravel and unravel satin fabrics, whereas weft directional tensile strength of ravel satin fabric decreased rapidly with respect to its unravel form. The satin fabric showed the highest warp directional tensile strength among the others. The lowest weft directional tensile strength was received from ribs fabric. In semi-ravel sample, all fabrics showed low warp and weft directional tensile strength values except in plain fabric. Warp directional tensile elongation of plain fabric was the highest in unravel sample. Satin fabric showed the highest warp directional tensile elongation in the ravel sample. Warp directional tensile elongations of all the fabrics in the semi-ravel sample became low. Weft directional tensile elongation of satin fabric was the highest in unravel sample. In addition, satin and plain fabrics showed the highest weft directional tensile elongations in the ravel sample. Weft directional tensile elongations of all the fabrics in the semi-ravel sample became low except in ribs fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号