共查询到18条相似文献,搜索用时 156 毫秒
1.
C/N对蓝藻好氧堆肥腐熟及无害化进程的影响 总被引:3,自引:3,他引:3
为探索和优化脱水蓝藻藻泥好氧堆肥无害化处理工艺参数,利用堆肥反应器,研究了C/N分别为5(T1)、15(T2)和25(T3)的处理对蓝藻藻泥腐熟进程及微囊藻毒素(MC)降解速率的影响.结果表明,堆肥过程中各处理间的pH、总碳量及其形态、总氮量及其形态、总磷含量、总钾含量、种子发芽指数差异显著.与蓝藻自然堆置相比,添加辅料增加堆体C/N可提高蓝藻的腐熟速度.堆肥35d后,T2和T3处理的堆肥成品均已满足有机肥行业标准,种子发芽指数均高于80%;但MC-LR和MC-RR仍有较大的降解潜力,从无害化的角度考虑,蓝藻高温堆肥时间不应少于50d.C/N过高增加了氮素的损失,如何进一步降低氮素的损失,提高堆肥过程中MC的降解将是今后蓝藻堆肥研究的重点. 相似文献
2.
蓝藻堆肥中养分及微囊藻毒素含量变化 总被引:2,自引:0,他引:2
为探索和优化开放环境中脱水藻泥堆肥化处理工艺,以滇池打捞的蓝藻藻泥为原料,采用室外堆肥方法,研究米糠、麦麸、酒糟作为填充剂对蓝藻堆体的养分含量、发芽指数和微囊藻毒素(MCs)含量的影响,并对这些因子之间的相关性进行了分析。结果表明:堆肥结束后,碳素损失率为23.2%~36.2%,氮素损失率为40.7%~56.9%,总磷、总钾和灰分含量均增加;堆肥结束后,各处理的总养分含量(N+P2O5+K2O)均能满足有机肥料标准,堆肥50 d后各处理发芽指数都超过80%,MC-RR低于检测底限10μg/kg,MC-LR的降解率也达到90%以上。综合各类指标,麦麸作为填充剂的效果最好。堆肥过程中MC-RR含量和MC-LR含量间有极显著的相关性,微囊藻毒素含量与堆体有机碳和总氮含量呈显著正相关,而与总磷、总钾、总养分含量以及灰分呈显著负相关。 相似文献
3.
高效液相色谱法测定蓝藻发酵液及堆肥中微囊藻毒素含量 总被引:1,自引:0,他引:1
建立了高效液相色谱测定蓝藻发酵液和蓝藻堆肥中微囊藻毒素(MC-RR、MC-LR)含量的方法.样品中的MC-RR和MC-LR用5%乙酸溶液提取,离心分离后经过SPE小柱净化、富集,在C18柱上采用梯度洗脱,流动相为甲醇+0.05 mol/L磷酸二氢钾,利用二极管阵列检测器在238 nm进行检测.MC-RR、MC-LR的检测限为0.03 μg/ml,定量限为0.10 μg/ml.在50~200 μg/kg的添加范围内,MC-RR的回收率为78.0%~90.5%,MC-LR的回收率为82.0%~92.8%. 相似文献
4.
水分对蓝藻堆肥效果的影响 总被引:3,自引:0,他引:3
为探索和优化脱水藻泥大规模堆制处理工艺,以室外堆肥为平台,研究55%、65%和75%含水率条件对蓝藻堆腐过程中理化性质的影响。结果表明:堆制过程中pH值及养分含量在3个水分处理间无显著差异;含水率55%的处理中氮素损失大于高含水率的处理,堆体达到腐熟的速度更快,其种子发芽指数显著高于其他处理。堆制结束后3个水分处理的总养分含量分别为5.12%、4.90%和4.56%,有机质含量分别为34.64%、37.70%和38.80%,均已达到有机肥行业标准。含水率为55%的处理堆制后藻毒素残留最少。 相似文献
5.
为了研究油菜秸秆与蓝藻无害化处理及资源化利用技术,开展了油菜秸秆与蓝藻混合及堆肥盆栽玉米的实验。设置了4组不同比例的油菜秸秆与蓝藻混合高温好氧堆肥处理,根据堆肥腐熟水平和肥效,筛选出油菜秸秆:蓝藻为3:2的处理,将其堆肥盆栽玉米,与施复合肥和不施肥处理比较分析玉米生长及品质指标。结果表明,油菜秸秆和蓝藻按不同比例混合堆肥过程中p H均维持在7~9,符合好氧堆肥对p H的要求,35 d后堆肥GI(germination index)在80%以上,达到完全腐熟标准。油菜秸秆与蓝藻按照3:2混合堆肥腐熟后,C/N从22.9降低为18.4,肥效(N+P2O5+K2O)为6.73%,优于其他各组。盆栽实验结果表明施堆肥和复合肥处理在玉米大喇叭口期株高与叶面积显著高于不施肥处理(P0.05),在玉米收获后株高、穗粗、穗粒数和百粒重、粗脂肪和粗蛋白含量均显著高于不施肥处理(P0.05),但堆肥处理与复合肥处理玉米生长、品质指标没有显著差异。油菜秸秆与蓝藻按照3:2比例混合好氧堆肥,35 d后完全腐熟,在肥效与安全性方面可以替代普通复合肥。 相似文献
6.
7.
为探究蓝藻好氧堆肥过程中较佳的氮素损失控制措施,以蓝藻为主要原料,菌渣、稻壳为调理剂,4种不同组合的镁盐和磷盐[Mg(OH)2+H3PO4(MP)、Mg(OH)2+KH2PO4(MKP)、MgSO4+H3PO4(MSP)、MgSO4+KH2PO4(MSKP)]为添加剂进行好氧堆肥试验,对不同处理下的氮素损失控制效果进行研究。结果表明:MP、MKP、MSP和MSKP处理组的NH3排放量相较于空白对照组分别降低了48.98%、45.95%、76.91%和38.65%; TN含量相较于初始值分别增加了66.31%、54.42%、30.15%和46.50%;氮素固定率分别为44.26%、41.36%、71.09%和33.54%。X射线衍射(XRD)分析结果证实不同处理组堆肥产品中均有鸟粪石(MgNH4PO4·6H2O)的存在。堆肥42 d后,除MSP处理组外,各组均已达到腐熟状态,且符合NY 525—2012标准。综合来看,MKP处理的氮素固定率略低于MP处理,但具有更高的微囊藻毒素降解率与总养分含量,是蓝藻堆肥工程化应用中理想的保氮方式。 相似文献
8.
不同碳氮比对牛粪好氧堆肥腐熟过程的影响 总被引:7,自引:0,他引:7
【目的】探究有效处理畜禽粪便与秸秆废弃物的方法,建立以牛粪有机肥为原料的高效堆肥工艺.【方法】以牛粪和玉米秸秆为原料,设置C/N为15、20、25、30、35的5个处理组,研究不同碳氮比原料对好氧堆肥过程中堆温、pH、矿质态氮含量、总养分含量、种子发芽指数等指标的影响.【结果】C/N为30的处理组升温最快,且60℃以上高温维持时间最长;各处理组的铵态氮含量均随堆肥逐渐下降,硝态氮含量逐渐上升;至堆肥结束时,C/N为30的处理组铵态氮含量下降了24.26%,铵态氮损失最少;C/N_(15)~C/N_(35)各处理组总有机碳含量随堆肥的腐熟不断下降,至堆肥结束分别降解了25.93%、35.22%、43.22%、43.58%、47.88%.堆肥结束时,各处理的C/N值分别为13.4、13.4、13.2、15.0和15.3,总养分含量均有所增加,且C/N为25时增幅最大,为45.79%;种子发芽指数(GI)随C/N的增加而增高,堆肥结束时C/N为15和20的处理组基本腐熟,其余处理已完全腐熟.【结论】在实际生产中,牛粪与秸秆C/N在25~30之间有利于堆体腐熟和养分保持. 相似文献
9.
以蓝藻为原料的厌氧发酵生物转化效率差,产气量低,恰当的预处理工艺可以调整蓝藻特性,提升厌氧发酵的产气效率。本文研究碱法热处理耦联的预处理工艺对蓝藻降解效果的影响,采用旋转组合设计法,以蓝藻藻浆SCODcr为响应值,研究预处理3个主要参数变化对蓝藻细胞的分解效果。结果表明,三次多项式数学模型可以很好的拟合联合预处理工艺参数对蓝藻藻浆SCODcr的影响,模型的R2为0.983 9。验证试验表明:当NaOH处理浓度为3%、78℃处理5.6 h时,蓝藻藻浆SCODcr为5 446 mg·L-1,是采用1% NaOH、40℃处理3 h,蓝藻藻浆SCODcr值(2 570 mg·L-1)的2.12倍。厌氧发酵结果表明,经优化处理后的蓝藻藻浆产气率较对照提高了4.72倍,达425.4 mL·g-1 VS。同时,研究发现经预处理的蓝藻厌氧发酵后,烘干的藻粉中不含MC-RR,MC-YR含量仅为0.58×10-2 μg·kg-1,可安全地用于制备复合有机肥。 相似文献
10.
一种新型生态制剂对蓝藻细胞的絮凝及藻毒素的降解 总被引:1,自引:0,他引:1
[目的]考察生态制剂蓝藻净对蓝藻的絮凝作用、对微囊藻毒素的降解效果及其对水质的影响。[方法]向含有蓝藻的湖水中加入不同比例的生态制剂蓝藻净,检测蓝藻的沉淀量、微囊藻毒素的降解效果及影响水质的各项指标。[结果]湖水中加入1%~10%的蓝藻净后,24 h内80%以上的蓝藻沉淀,其中加入5%的效果最好。加入5%与10%的蓝藻净都能降解微囊藻毒素,其中加入10%蓝藻净的3d内可降解完水中和蓝藻细胞中的微囊藻毒素。加入1%葡萄糖的处理,3 d内可降解完水中和蓝藻细胞中的微囊藻毒素。加入5%蓝藻净后,水的色度、浊度、铵态氮、亚硝酸态氮、硝酸态氮、COD、凯氏N、总N都有了明显的改善。[结论]蓝藻净可以用于清除暴发的蓝藻,降解微囊藻毒素及净化水质。 相似文献
11.
12.
为研究添加生物炭对放牧绒山羊羊粪堆肥腐熟过程的影响,以羊粪和玉米秸秆为堆肥原料,生物炭为添加剂,进行好氧堆肥试验,对照组(CK)不作处理,处理组1、2、3(T1、T2、T3)分别添加堆体干重的5%、10%和15%生物炭,分析生物炭对堆肥基本理化性质、腐熟度、臭气和木质纤维素组成的影响。结果表明:1)添加生物炭可以显著提高堆肥最高温(64.8 ℃)和延长高温期持续时间,并提高堆肥结束时的pH(P<0.01),降低电导率。2)堆肥结束时CK、T1、T2和T3的总氮含量分别为19.69、19.92、21.30和20.30 g/kg,种子发芽指数分别为149%、154%、189%和186%。与CK相比,T2和T3显著提高堆肥结束时总氮含量(P<0.05),降低堆肥氮素损失33.53%和23.71%,并显著提高堆肥种子发芽指数27%和 25%(P<0.05)。3)与CK相比,T1、T2和T3可分别减少NH3累积排放量25.25%、40.50%和28.89%,减少H2S 累积排放量26.33%、29.50%和30.09%。4)堆肥结束时4个组的纤维素、半纤维素和木质素降解率分别为48.76%~56.29%、37.60%~48.13%和6.65%~14.20%。处理组纤维素降解率(T1(52.90%)、T2(53.81%)和T3(56.29%))均高于CK(48.76%)(P<0.05),提高8.48%~15.44%;T2(48.13%)和T3(47.8%)的半纤维素降解率显著高于CK(38.43%)(P<0.05),分别提高24.37%和25.22%;T2的木质素降解率(14.2%)显著高于T1(11.20%)和T3(10.37%)(P<0.05),又极显著高于CK(6.65%)(P<0.01),处理组木质素降解率较CK提高56.08%~113.04%。综上,在本研究条件下,在羊粪堆肥中添加生物炭可有效减少放牧条件下羊粪堆肥中氮素损失和臭气排放,促进木质纤维素降解,提高堆肥种子发芽指数和腐熟度,提升堆肥产品品质,因此推荐生物炭添加量为干重10%。 相似文献
13.
14.
外源添加磷石膏对堆肥碳组分及腐殖质品质的影响 总被引:3,自引:2,他引:3
为探究磷石膏的高效资源化利用方式,本文以鸡粪和玉米秸秆为原料,按照有机物料质量(以干物质计),添加磷石膏0%(对照)、磷石膏10%(PG10%)和磷石膏20%(PG20%)3个处理,研究外源添加磷石膏对堆肥碳组分及腐殖质品质的影响。结果表明:至堆肥结束时,CK、PG10%和PG20%处理均可腐熟,均可达到堆肥无害化标准。PG10%处理可延长堆肥高温持续时间(2 d)。与对照相比,PG10%和PG20%处理均显著降低了堆肥总有机碳、水溶性有机碳、腐殖质碳含量、胡敏酸碳含量和富里酸碳含量。PG10%处理的堆肥总有机碳、水溶性有机碳、腐殖质碳含量、胡敏酸碳含量和富里酸碳含量均显著高于PG20%处理,增幅分别为4.50%、51.79%、14.52%、16.99%和8.22%。与对照相比,PG10%处理的堆肥腐殖化指数、腐殖化率、胡敏酸百分含量和胡富比分别增加了3.44%、1.08%、2.36%和8.70%。因此,适量磷石膏添加(10%)可促进堆肥腐殖化进程,提高腐殖质品质。 相似文献
15.
文章就鸡粪便好氧发酵全程异养亚硝化细菌进行了分离和计数、对各温段的氨态氮和硝态氮量进行了检测。结果表明,鸡粪便好氧发酵过程中异养亚硝化细菌数量与硝态氮量的变化有明显的相关性,并且是硝化作用的主要完成者;它们的数量均随着温度升高而降低,最适硝化作用温度在35℃左右,表现出中温菌的特性;发酵全程几乎都有硝化作用,但硝态氮积累的主要时期是降温阶段,因此适当延长降温期将有利于提高堆肥发酵的硝态氮含量。 相似文献
16.
为解决生活污泥资源化利用中好氧堆肥的水分过高问题,采用添加保水剂的方法对堆体的初始水分进行调节。试验将生活污泥和木屑按C/N为16∶1混合后,通过添加不同量的保水剂,设置成理论初始含水率分别为46%、54%、56%、58%和68%的5个处理。在堆肥过程中,对堆体温度、p H值、EC值、有机质、总氮、铵态氮、硝态氮以及产物的腐熟度指数(GI)等指标进行了测定。实验结果表明:通过添加保水剂调节污泥堆肥的起始水分含量对促进堆肥的好氧发酵过程是完全可行的;适宜的起始堆体含水率有利于发酵过程温度的升高和养分的转化,也有利于产品各项理化指标和养分指标的实现;根据原料和辅料的碳氮比确定混合配比后,可依据拟采用的保水剂在污泥中的吸水倍率,通过理论计算得到将混合原料起始含水率调整到适宜值时所需添加的保水剂量。根据本试验结果得出,在利用保水剂调节污泥堆肥起始水分时,将理论初始含水率设定在54%左右是较为合适的。 相似文献
17.
有机固体废物超高温好氧发酵技术及其工程应用 总被引:3,自引:0,他引:3
有机固体废物已成为我国生态环境和农业面源污染的重要源头,解决废物资源化高效利用问题成为研究的热点与关键.虽然传统高温堆肥作为废物资源化处理技术已经成熟,但是存在发酵周期长、发酵温度低、无害化不彻底等缺陷,严重制约其工厂化推广应用.本文推出一种有机废物资源化利用新技术:超高温好氧发酵技术.介绍了其基本原理、工艺流程、发酵参数以及在废物资源化利用方面的优势.该技术通过添加嗜热菌剂使发酵温度比传统高温堆肥高出20~30℃,能够显著缩短发酵周期、强化无害化效果.因此,该技术有望成为一项具有广泛应用前景和市场需求的废物资源化新技术. 相似文献
18.
以西瓜皮为原料,采用自然堆肥和人工堆肥,全面考察堆肥过程中与腐熟度有关的理化指标和生物学指标的变化,同时采用白菜种子发芽指数(GI)评价堆肥的腐熟度。结果表明:在堆肥熟化期内,堆肥堆体先升温后下降,55℃以上高温持续时间达5 d;pH值先减小后增大;含水率和C/N持续下降,C/N在30 d时达到16左右;总氮和总磷含量大体呈上升趋势;种子发芽指数指标先下降后不断升高。在自然堆肥过程中,GI与C/N呈极显著负相关,相关系数为-0.977;在人工堆肥过程中,GI与含水率和C/N呈极显著负相关,相关系数分别为-0.967和-0.933,而与总磷和总氮呈极显著正相关,相关系数分别为0.888和0.876。 相似文献