首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 66 毫秒
1.
在沈阳农业大学综合试验场内构建小试装置模拟盘锦双台河口天然湿地,用50,175,300mg/L浓度的造纸废水进行灌溉,研究造纸废水灌溉对土壤硝态氮含量的影响,为盐碱化湿地修复提供可参考的废水灌溉方式。结果表明,在3种浓度造纸废水灌溉下,0-40cm土壤剖面硝态氮含量随深度增加呈"S"形变化趋势,造纸废水与清水相比能增加土壤硝态氮含量。经双因素方差分析和多重比较,在发芽期灌溉浓度为50mg/L废水时土壤硝态氮与初始值相比增加最大。在发芽期灌溉废水大大增加了收获芦苇后土壤中的硝态氮含量,宜使用50mg/L浓度废水灌溉。  相似文献   

2.
灌溉施肥对壤质潮土硝态氮淋溶的影响   总被引:65,自引:6,他引:65  
在衡水市邓庄乡壤质潮上上进行了以灌水为主处理、氮用量为副处理,各五水平的定位试验。结果表明,氮肥用量是硝态氮淋溶损失的决定因素,冬小麦施氮150kghm-2不发生淋溶,施氮225~300kghm-2则硝态氮的淋溶增强。小麦播前基施氮肥量过高会使冬季发生硝态氮的淋溶。小麦拔节期和灌浆期灌溉一般不会引起硝态氮的淋溶损失;尽管一次灌水1350m3hm-2硝态氮的淋失量不高,但土壤剖面中的硝态氮含量显著比低灌水量的低。为降低硝态氮的损失,应控制一次灌水量不超过1050m3hm-2。雨季降水导致大量硝态氮淋溶损失,防治雨季土壤硝态氮的淋溶损失至关重要。  相似文献   

3.
灌溉量对冬小麦产量和土壤硝态氮含量的影响   总被引:4,自引:0,他引:4  
研究了池栽条件下灌溉量对冬小麦籽粒产量和土壤硝态氮含量的影响。结果表明:与对照相比,灌溉增加了籽粒产量,显著提高蛋白质含量和蛋白质产量。试验还表明:灌溉处理0~80cm土层的土壤硝态氮含量显著低于对照,而在80~200cm土层的土壤硝态氮含量显著高于对照。在成熟期,两次灌溉总量为180m(m每次灌90mm)的处理W6硝态氮含量在160~200cm显著高于其他处理,向深层运移幅度最大。本试验中,两次灌溉总量为90m(m每次灌45mm)的处理W3的籽粒产量、蛋白质含量、蛋白质产量和收获指数均较高,且土壤硝态氮损失少,为最佳灌溉量。  相似文献   

4.
施氮对潮土土壤及地下水硝态氮含量的影响   总被引:22,自引:1,他引:22  
黄绍敏  宝德俊 《农业环境保护》2000,19(4):228-229,241
采用3年田间小区肥料定位试验,研究了氮量对1m土体硝态氮含量的影响;结果表明,每汞施氮量小于225kg/hm^2时,1m土层中各测定时期硝态氮含量变化不大,在11.4~41.3kg/hm^@之间,当施氮量增加到375kg/hm^2时,1m土层的硝态氮含量增加1.5~7.4掊;0~20cm、80~100cm土层硝态氮在每季施氮量大于225kg/hm^2时急剧啬地地下水产生污染。  相似文献   

5.
【目的】本研究利用田间小区试验,研究牛场肥水灌溉对冬小麦产量、 氮利用效率及土壤硝态氮的影响,以期为提高灌溉肥水中氮利用效率,降低养殖肥水灌溉的氮损失提供理论依据。【方法】通过田间小区定位试验,以华北平原典型冬小麦种植系统为研究对象,定量研究牛场肥水灌溉对冬小麦产量、 氮素积累、 氮效率及土壤硝态氮的影响。试验共设5个处理,分别为: 不施肥、 小麦各生育期进行清水灌溉(CK); 在冬小麦生育期内进行2次牛场肥水灌溉(越冬期和灌浆期,肥水灌溉带入氮量为160 kg/hm2),其他生育期清水灌溉(T1); 在冬小麦生育期内进行3次牛场肥水灌溉(越冬期、 拔节期、 灌浆期,肥水灌溉带入氮量为240 kg/hm2),其他生育期清水灌溉(T2); 在冬小麦生育期进行4次牛场肥水灌溉(越冬期、 拔节期、 抽穗期和灌浆期,肥水灌溉带入氮量为320 kg/hm2),不进行清水灌溉(T3); 农民习惯施肥,冬小麦播种时施复合肥(15-21-6)375 kg/hm2、 拔节期追肥尿素600 kg/hm2(氮投入量为332 kg/hm2),全生育期灌溉清水(CF)。每个处理重复3次,冬小麦全生育期灌水4次,灌水定额为830 m3/hm2,灌水量用超声波流量计计量。【结果】牛场肥水灌溉对冬小麦产量和氮的影响主要有以下几个方面: 1)连续三年冬小麦产量均随牛场肥水灌溉次数的增加表现为先增加后降低的趋势,肥水灌溉带入氮为240 kg/hm2(灌溉3次)时,冬小麦产量最高。2)牛场肥水灌溉显著增加冬小麦植株地上部氮积累量。2011年和2012年肥水灌溉的三个处理之间及与习惯施肥处理之间差异不显著,2013年T2和T3处理植株氮吸收量显著高于T1处理和习惯施肥处理。3)冬小麦肥水氮利用率和农学效率随肥水灌溉带入氮量的增加而降低。三年均以T1最高,分别为48.57%和37.15 kg/kg。4)每季冬小麦收获后,随着灌溉带入氮量的增加,0100 cm土层NO-3-N积累量增加。肥水灌溉带入氮为320 kg/hm2时,0100 cm剖面NO-3-N积累量显著高于肥水灌溉带入氮为160~240 kg/hm2处理。【结论】牛场肥水灌溉显著增加冬小麦产量,随肥水灌溉带入氮的增加冬小麦产量呈先增加后降低的趋势。冬小麦肥水氮表观利用率和农学效率均随肥水灌溉带入氮量的增加而降低,肥水灌溉带入氮为320 kg/hm2,80100 cm土层有大量NO-3-N累积,且有向下淋溶的趋势。本试验条件下,综合产量、 冬小麦植株氮积累量及氮效率等方面考虑,牛场肥水灌溉冬小麦适宜氮带入量为160~240 kg/hm2。  相似文献   

6.
潮土硝态氮移动规律及对环境的影响   总被引:7,自引:0,他引:7  
  相似文献   

7.
通过天津杨柳青镇田间小区试验,研究了猪场废水原水、厌氧出水和仿生态塘与地下水稀释(1:5)灌溉以及厌氧出水高、中、低定额灌溉对潮土0~20cm和20~40cm土层的土壤脲酶、转化酶和过氧化氢酶活性及土壤有机碳和全氮的影响。结果表明,猪场废水灌溉显著增加土壤有机碳和全氮含量;中量厌氧水灌溉增强土壤脲酶、转化酶和过氧化氢酶活性,过高或过低量厌氧水灌溉降低土壤酶活性;原水、厌氧出水和仿生态塘水稀释灌溉对土壤酶活性也有显著影响;与对照(正常施肥和灌溉)相比,仿生态塘水稀释灌溉促进土壤脲酶活性;所有的稀释灌溉处理对土壤转化酶和过氧化氢酶活性均有抑制趋势,但其中仿生态塘水稀释灌溉处理的降幅较小。建议适宜的猪场养殖废水厌氧出水灌水定额为500m^3·hm^-2,适宜的稀释灌溉处理为仿生态塘水与地下水1:5的稀释比例。  相似文献   

8.
选用3个菠菜品种,设置N.0.1和0.3.g/kg2个施氮水平进行盆栽试验。在不同时期采样测定叶片内、外源硝酸还原酶活性、硝态氮代谢/贮存库大小,以及加入外源硝态氮培养后叶片硝酸还原酶活性的变化,探讨菠菜叶片的硝态氮还原与叶柄硝态氮含量的关系。结果表明,叶片内源硝酸还原酶活性、内源/外源硝酸还原酶活性比值、叶片的硝态氮代谢库大小及代谢/贮存库比值与叶柄硝态氮含量呈相反趋势。加入外源硝态氮培养后叶片硝酸还原酶活性的增加程度与叶柄硝态氮含量相一致。叶片内源硝酸还原酶活性高低及其发挥程度,叶片硝态氮代谢库大小及硝态氮在代谢、贮存库中的分配是造成品种间叶柄硝态氮含量高低差异的重要原因。  相似文献   

9.
通过田间小区试验,研究了猪场废水处理工艺中3个阶段出水(原水、厌氧水和仿生态塘水)与地下水1∶5混水和厌氧水不同灌溉量灌溉对土壤中交换性盐基离子含量的影响。结果表明,厌氧水不同灌溉量对土壤中交换性钾含量影响显著,与对照相比,厌氧水高量灌溉、中量灌溉、低量灌溉分别使0~20cm和20~40cm土层中交换性钾含量提高了291.76%、152.70%、83.11%和116.10%、74.29%、49.85%;对交换性钠、钙、镁含量有一定影响,但处理间未达到显著水平。不同阶段出水混水灌溉对交换性钾、钠、钙、镁的含量处理间未达到显著水平,但土壤中交换性钾和钠含量在0~20cm和20~40cm和处理间呈现了相反的变化趋势,验证了竞争吸附点位理论。  相似文献   

10.
猪场废水灌溉对潮土磷素肥力的影响   总被引:3,自引:0,他引:3  
在北方缺水地区利用猪场废水对冬小麦进行小区灌溉试验,分析不同水质及水量灌溉处理土壤剖面全磷和速效磷的时空分布特征.结果表明:不同水质灌溉处理土壤全磷和速效磷在土层中的分布特征相似,均随深度增加含量逐渐减少;厌氧水不同灌溉量处理土壤全磷和速效磷含量与灌水量呈正比关系;收获后,各处理土壤耕层(0-40cm)磷素累积量均有所增加,磷素活化系数明显增大,大部分在7%~9%之间,高量厌氧水灌溉处理达到10.4%.采用未经处理的猪场废水多次灌溉后,过量磷素向下层土壤淋溶现象明显;高量厌氧水灌溉土壤耕层累积大量速效磷,易随地表径流污染周围水体.这两种类型的猪场废水不适于作为磷源进行农田灌溉.  相似文献   

11.
畦灌与施肥时机对土壤硝态氮分布和冬小麦产量的影响   总被引:1,自引:4,他引:1  
为探究不同畦田规格与施肥时机对土壤NO3--N分布规律及对冬小麦产量的影响,优化选择具有较高灌水施肥均匀度和储氮效率及产量的最佳灌溉施肥模式,于2017-2018年在冬小麦季选取畦宽、畦长和施肥时机3个试验因素,传统撒施灌溉作为对照,通过正交试验设计设置12个处理。结果表明:1)与灌水前相比,灌水后各处理土壤不同层次NO3--N浓度均增加,且随着土层深度的增加NO3--N浓度逐渐降低。在液施处理下NO3--N在有效根系层的累积较撒施处理高出0.27%~27.97%。2)畦宽、畦长和施肥时机显著影响NO3--N的分布。在返青期,畦长对灌水施肥均匀度的贡献率最高,为91.64%;施肥时机对储氮效率的贡献率最高,为44.22%。在扬花期,畦长对灌水施肥均匀度的贡献率最高,为92.67%;畦宽对储氮效率的贡献率最高,为53.6%。在60 m畦长条件下可以获得较高的灌水施肥均匀度。3)畦宽、畦长和施肥时机对作物产量的贡献率分别为37.2%、37.3%和23.9%,畦宽3.2 m、畦长60 m和全程液施的处理下达到了最高产量,为7 869.2 kg/hm2。因此,液施可以提高土壤NO3--N分布均匀性,有利于NO3--N在小麦根系层的累积,减少氮素的淋溶损失;综合对土壤NO3--N分布均匀性、积累及作物产量来看,畦宽3.2 m、畦长60 m和全程液施的处理为该研究处理下最优模式。  相似文献   

12.
碳含量对再生水灌溉土壤氮素迁移转化规律的影响   总被引:3,自引:1,他引:2  
为深入了解碳含量对再生水灌溉系统中氮素迁移转化的影响,该研究进行了碳含量影响下的再生水灌溉系统氮素迁移转化规律试验。利用不同碳含量的再生水灌溉种植在土柱中的黑麦草,测定各试验周期内灌溉水、土壤溶液和排水中不同形态氮的含量,分析不同生育期作物干物质产量和氮含量。结果表明,随灌溉水进入系统的氮素约有34%可被作物吸收利用,62%可通过反硝化作用去除或调节土壤氮库中的氮量,随水分下渗到根系层以下并随排水排出系统的氮量仅占灌溉水中氮量的3%~4%。从作物长势、干物质量和氮的利用量看,高碳处理优于低碳处理。试验条件下,再生水中碳含量较高时有利于氮素的转化、作物吸收利用以及氮的反硝化作用。研究结果对于以灌溉利用为目的的污水处理,具有一定的指导意义。  相似文献   

13.
潮土长期施用生物炭提高小麦产量及氮素利用率   总被引:6,自引:1,他引:6  
该文于2011年起在黄淮海典型潮土区建立的秸秆炭化还田定位试验的基础上,系统观测了2011至2017年时间段秸秆生物炭连续施用下小麦生长及氮吸收情况,分析了产量构成因素,地上干物质及氮累积,关键生育期叶面积指数(LAI)、叶绿素相对含量(SPAD值)和群体数量等与小麦增产的关系,并监测了长期生物炭施用下土壤有机碳(SOC)与全氮(TN)含量的变化。该试验采用小麦/玉米周年轮作,设每季0、2.25、6.75和11.25 t/hm2四个秸秆生物炭处理(分别表示为BC0(对照)、BC2.25(低)、BC6.75(中)和BC11.25(高))。结果表明,与BC0相比,BC2.25仅在2015/2016季提高小麦产量,对其他5季无明显效果;BC6.75则在2014/2015、2015/2016和2016/2017的后3季显著提高小麦产量;而BC11.25提高了2014/2015和2015/2016季小麦产量。尽管生物炭处理对各季小麦产量影响各异,但6季各处理平均产量数据显示低、中、高量生物炭处理均可提高小麦产量7.0%~8.5%、生物量5.2%~10.8%和氮肥偏生产力6.8%~8.6%,且3个处理间并无差异;中、高量生物炭处理还可提高小麦秸秆产量11.4%~12.6%、穗数10.1%~11.2%、籽粒氮积累量9.4%~11.2%、秸秆氮积累量17.4%~23.8%、地上部氮积累量13.3%~20.9%。生物炭施用在促进小麦生长和氮吸收利用的作用方面与其增加小麦生育期LAI和SPAD值一致,具体表现为低、中、高量生物炭处理均可明显增加2015/2016和2016/2017两季小麦主要生育期群体数量以及增加两季拔节期、抽穗期SPAD值和LAI值。3个生物炭处理对提高2011/2012土壤SOC含量和2011—2014年土壤TN含量无明显效果,中、高量生物炭处理可增加2012—2017年土壤SOC含量32.6%~215.6%和2014—2017年土壤TN含量20.0%~36.8%。研究表明,合理施用生物炭能够促进黄淮区潮土农田冬小麦籽粒产量和氮肥偏生产力以及促进小麦生长和地上部氮素吸收,进而起到提高土壤肥力和增加土壤固碳的作用。  相似文献   

14.
通过田间裂区试验研究了不同施氮量(N 0、150、210和270 kg/hm2)和灌水量(900、1200、和1500 m3/hm2)对夏玉米土壤硝态氮分布累积、氮素平衡以及氮肥利用率的影响。结果表明,夏玉米收获期各处理土壤硝态氮在表层(0—20 cm)含量最高,在0—200 cm剖面均呈现先减少后增加再减少的变化趋势;土壤剖面NO3--N累积量随施氮量的增加而增加,且施氮处理硝态氮积累量显著高于不施氮处理。作物吸氮量、氮素表观损失量均与施氮量和总氮输入量呈显著相关,氮素输入量每增加1 kg,作物吸氮量仅增加0.301 kg,而表观损失量增加0.546 kg,是作物吸氮量的1.8倍左右。随施氮量的增加土壤剖面中NO3--N的损失量逐渐减少。夏玉米子粒吸氮量和收获指数随施氮量的增加有增加的趋势;氮肥回收效率和氮肥农学效率均以处理W1500N150最高,分别为46.15%和12.98kg/kg;氮肥生理效率以处理W1200N150最大,为34.49 kg/kg。本试验条件下,以水氮处理W1500N150的土壤硝态氮残留量、表观损失量较低,夏玉米氮肥回收效率和农学效率较高。  相似文献   

15.
为了提高氮肥和水分利用效率,该文在甘肃河西灌区试验地点,采用田间小区试验,研究了不同氮水平(0、225、450 kg/hm2)和灌水量(750、1125、1500 m 3/hm2)对小麦/玉米间作土壤硝态氮累积和水氮利用效率的影响。结果表明,不同氮肥和灌水量对小麦带土壤硝态氮含量和累积量影响较小,对玉米带影响显著。随氮肥用量增加,玉米带土壤硝态氮含量和累积量增加,随灌水量和氮肥用量增加,0~60 cm土壤硝态氮相对累积量增加,60~140 cm土层降低。氮肥当季利用率、氮肥生产率、氮肥产投比都是以225 kg/hm2氮水平较高,但不同灌水量差别不大。WUE(水分利用效率)以W750N225最高,W1500N0最低,随灌水量增加WUE降低。  相似文献   

16.
灌水定额对波涌灌溉土壤中硝态氮浓度的影响   总被引:1,自引:0,他引:1  
为深入研究波涌灌灌水定额对地下水硝态氮运移的影响,通过肥液(硝酸钾溶液)室内入渗试验,模拟研究了地下水位埋深150 cm条件下,灌水定额对肥液间歇入渗地下水水质的影响规律。结果表明:不同灌水定额地下水中硝态氮浓度具有相似的变化规律,地下水位埋深越浅,地下水中硝态氮浓度的增加量越大,即浅层地下水易受硝态氮的污染;灌水结束时,进入地下水中的硝态氮量最大;在同一灌水定额条件下,地下水中硝态氮的浓度总体上随时间增加呈增大趋势;灌水定额越大,随下渗水分淋溶进入地下水中的硝态氮越多,对地下水造成的污染越严重。  相似文献   

17.
滴灌模式对农田土壤水氮空间分布及冬小麦产量的影响   总被引:13,自引:3,他引:13  
大田作物最优滴灌模式的研究是滴灌技术深入推广应用过程中的重要研究内容,通过田间试验,选取地表滴灌和地下滴灌两种滴灌类型,研究其在4种不同灌溉制度下农田水、氮空间分布规律以及冬小麦产量的差异。试验结果表明,在土壤水分控制范围相同时,不同滴灌类型下冬小麦生育期内所需的灌水总量和灌水频率不存在显著差异;在施肥量和灌水定额基本相同时,地下滴灌较地表滴灌促使硝态氮向深层土壤运移的几率更大。但总体而言,不同滴灌类型相同灌溉制度下,硝态氮运移规律基本相似;同种滴灌类型不同滴灌制度下的各处理冬小麦产量存在显著差异。而且,在充分灌时,不同滴灌模式下的冬小麦产量差异性不显著;非充分灌时,滴灌模式对冬小麦产量存在显著影响。  相似文献   

18.
水氮耦合供应对温室番茄果实硝酸盐累积的影响   总被引:1,自引:0,他引:1  
采用2水平灌水量(W1:4541.0、W2:2270.6 m3/hm2)×3水平氮肥追施量(N1:747.4、N2:373.7及N3:0 kg/hm2),研究了不同灌溉、施氮量对日光温室番茄果实硝酸盐累积的影响。结果表明,番茄果实硝酸盐含量随果实成熟度的提高而降低、随结果部位的提高而提高。水氮耦合供应可以显著影响番茄果实中硝酸盐含量。在施氮量相同的情况下,果实硝酸盐含量随着灌水量的增加而降低;而在灌水量相同的情况下,果实硝酸盐含量随施氮量的增加而增加。  相似文献   

19.
基于土壤氮素平衡的旱地冬小麦监控施氮   总被引:6,自引:3,他引:6  
提高作物产量,平衡土壤氮素携出,培肥土壤,避免过多肥料氮残留造成淋溶,是旱地作物施氮的主要目标。本研究通过1 m土层硝态氮监控,从土壤氮素的输入和携出平衡计算氮肥用量,并在陕西永寿不同肥力水平的地块上连续2年布置田间试验进行验证。结果表明,与习惯施肥相比,监控施肥的氮肥用量减少41.2%,籽粒平均增产17.0%,氮肥偏生产力平均增加188.3%,产投比平均提高28.9%。监控施肥处理在收获期1 m土层硝态氮残留量平均为37.0 kg/hm2,较习惯施肥(112.1 kg/hm2)降低66.9%。经过降雨集中的夏季休闲期后,监控施肥处理1 m土层的硝态氮平均增加15.4 kg/hm2,习惯施肥则减少27.4 kg/hm2。这说明通过对1 m土层硝态氮的监控,依据土壤养分平衡,计算旱地小麦氮肥用量,可以提高产量,有效减少氮肥投入,降低成本,增加农户收入,提高氮肥效率,减少旱地土壤硝态氮残留和淋溶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号