首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
As a consequence of intensive mining of the western Erzgebirge since medieval times, floodplain soils of the Mulde river contain large concentrations of arsenic (As) (>50 mg kg−1). Arsenic in soil is often bound to poorly crystalline Fe and Mn (hydr)oxides, which may dissolve under reducing conditions. Part of the As may also exist in primary minerals, predominately sulphides, or in secondary minerals formed upon weathering. In order to better understand the impact of seasonal flooding, we surveyed As‐bearing mineral phases, especially of iron (Fe) (hydr)oxides. Because Fe (hydr)oxides are clay‐sized, soil samples were fractionated into six particle‐size fractions. The fractions were digested with aqua regia for determination of total element concentrations, extracted with hydroxylammonium chloride (NH3OHCl; selective for Mn (hydr)oxides and NH4 oxalate), and analysed by X‐ray diffraction and scanning electron microscopy. The largely similar distribution of As and lead (Pb) suggested the potential co‐existence of the two elements in primary or secondary mineral phases. However, neither As–Pb minerals nor any other As mineral were detected. Association with Mn oxides was negligible. The predominant As‐bearing phases were poorly crystalline Fe (hydr)oxides, which also incorporated large amounts of Pb and were affected by redox dynamics.  相似文献   

2.

Purpose

The primary purpose of this study was to determine how flooding and draining cycles affect the redox chemistry of metal (hydr)oxides and organic matter in paddy soils and how the pH influences these processes. Our secondary purpose was to determine to what extent a geochemical thermodynamic equilibrium model can be used to predict the solubility of Mn and Fe during flooding and draining cycles in paddy soils.

Material and methods

We performed a carefully designed column experiment with two paddy soils with similar soil properties but contrasting pH. We monitored the redox potential (Eh) continuously and took soil solution samples regularly at four depths along the soil profile during two successive flooding and drainage cycles. To determine dominant mineral phases of Mn and Fe under equilibrium conditions, stability diagrams of Mn and Fe were constructed as a function of Eh and pH. Geochemical equilibrium model calculations were performed to identify Mn and Fe solubility-controlling minerals and to compare predicted total dissolved concentrations with their measured values.

Results and discussion

Flooding led to strong Eh gradients in the columns of both soils. In the acidic soil, pH increased with decreasing Eh and vice versa, whereas pH in the alkaline soil was buffered by CaCO3. In the acidic soil, Mn and Fe solubility increased during flooding due to reductive dissolution of their (hydr)oxides and decreased during drainage because of re-oxidation. In the alkaline soil, Mn and Fe solubility did not increase during flooding due to Mn(II) and Fe(II) precipitation as MnCO3, FeCO3, and FeS. The predicted levels of soluble Mn and Fe in the acidic soil were much higher than their measured values, but predictions and measurements were rather similar in the alkaline soil. This difference is likely due to kinetically limited reductive dissolution of Mn and Fe (hydr)oxides in the acidic soil. During flooding, the solubility of dissolved organic matter increased in both soils, probably because of reductive dissolution of Fe (hydr)oxides and the observed increase in pH.

Conclusions

Under alternating flooding and draining conditions, the pH greatly affected Mn and Fe solubility via influencing either reductive dissolution or carbonate formation. Comparison between measurements and geochemical equilibrium model predictions revealed that reductive dissolution of Mn and Fe (hydr)oxides was kinetically limited in the acidic soil. Therefore, when applying such models to systems with changing redox conditions, such rate-limiting reactions should be parameterized and implemented to enable more accurate predictions of Mn and Fe solubility.  相似文献   

3.
Application of iron (Fe) -rich amendments to soils has been proposed as a means of decreasing phosphorus (P) losses from soils. However, anoxic conditions following soil saturation are known to increase Fe and P solubility in soils, thus cancelling out the potential benefits. Our aim was to evaluate the effects of continuous oxic, continuous anoxic and alternating anoxic/oxic conditions on P exchangeability and Fe forms in soil amended with Ca(OH)2 and FeSO4. We incubated amended and unamended soils under these conditions for 8 weeks and measured Fe forms and P exchangeability. Under oxic conditions, addition of Ca(OH)2 and FeSO4 resulted in a strong decrease in P exchangeability and an increase in oxalate-extractable Fe. Mössbauer analyses suggested that an unidentified Fe oxide (D1oxide) with a strong sorbing capacity for P was precipitated. Under continuously anoxic conditions, P exchangeability and oxalate-extractable Fe increased with or without the amendments. Mössbauer analyses suggested that there was a partial dissolution of the D1oxide phase, precipitation of another unidentified Fe oxide (S3) and a reduction of structural Fe3+ in phyllosilicate, thereby increasing soil negative charge. These transformations resulted in a strong increase in rapidly exchangeable P. Alternating anoxic and oxic periods induced the dissolution and precipitation of iron oxides and the increase and decrease in P exchangeability. Implications of the results for limiting P losses from grassland soils are discussed.  相似文献   

4.
Potential acid sulfate soils (PASS) are drained for agriculture, resulting in the formation of active acid sulfate soils (AASS), which gradually evolve into post-active acid sulfate soils (PAASS). Various redox concentrations (precipitates, costings, and mottles) occur in these soils as a result of pedogenic processes including biological activity and effects of land management. Although several studies have determined the mineralogy and geochemistry of ASS, the mineralogy and geochemistry of redox concentrations occurring in a sequence of ASS through PASS to PAASS have not been investigated. This study examined the mineralogy and geochemistry of redox concentrations and matrices within 5 PASS, 8 AASS, and 5 PAASS in Thailand. The labile minerals were predominantly controlled by oxidation status and management inputs. The unoxidized layers of PASS, AASS, and PAASS contained pyrite and mackinawite. The oxidation of Fe sulfides caused acidification and accumulation of yellow redox concentrations of jarosite and Fe (hydr)oxides at shallow depths. As the soils became well developed, they were recognized as PAASS, and the jarosite and goethite transformed to hematite. As ASS were drained, Co, Mn, Ni, and Zn moved downward and were associated with Fe sulfides and Mn oxides in the unoxided layer. Concentrations of As, Cu, Cr, Fe, and V did not change with depth because these elements became associated with jarosite and Fe (hydr)oxides in yellow and red redox concentrations, as well as the root zone, in the partly oxidized layer of AASS and PAASS. Arsenic was associated with pyrite under reducing conditions.  相似文献   

5.
We have examined the charge characteristics, with special emphasis on the role of free Fe and organic matter, of humid tropical soils from Bambouto Mountains, Western Cameroon. The soils, which are formed from tuff, basalt and trachyte, are dominated by kaolinite and sesquioxides. The amounts of Fe oxides in them increase somewhat with depth. Open 2:1 phyllosilicates are present in trace amounts. The point of zero charge of the variable charge components, pH0, is around 4 in the topsoil (0–20 cm) and around 6 at 100–150 cm depth. In the subsoils, pH0 exceeds soil pH presumably because of large quantities of Fe oxides. Deferration increases both soil pH and pH0, but diminishes the anion exchange capacity. Oxides and oxyhydrates of Fe have positive surface charge, so their removal from the soils would result in overall loss of positive charge. Increases in soil pH would bring about an increase in the cation exchange capacity of the soils. Hence, management practices that reduce soil acidity should reduce loss of essential basic cations via leaching.  相似文献   

6.
Coniferous forest soils often consume less of the greenhouse gas methane (CH4) than deciduous forest soils. The reasons for this phenomenon have not been resolved. It might be caused by differences in the diffusive flux of CH4 through the organic layer, pH or different concentrations of potentially inhibitory compounds. Soil samples were investigated from three adjacent European beech ( Fagus sylvatica ) and Norway spruce ( Picea abies ) stands in Germany. Maximal CH4 oxidation velocities (Vmax(app)) and Michaelis Menten constants (KM(app)), retrieved from intact soil cores at constant CH4 concentrations, temperature and matric potential, were twice as great in beech as in spruce soils. Also atmospheric CH4 oxidation rates measured in homogenized soil samples displayed the same trend. Greatest atmospheric CH4 oxidation rates were detected in the Oa horizon or in the upper 5 cm of the mineral soil. In contrast to the beech soils, the Oa horizon of the spruce soils consumed no CH4. A differential effect due to divergent diffusive flux through the litter layer was not found. pH and ammonium concentration were similar in samples from both forest soil types. Ethylene accumulation in all soils was negligible under oxic conditions. These collective results suggest that the different atmospheric CH4 uptake by beech and spruce soils is caused by different CH4 oxidizing capacities of methanotrophic communities in the Oa horizon and top mineral soil.  相似文献   

7.
Background   Soils and sediments in certain mining regions of Brazil contain an unusually large amount of arsenic (As), which raises concerns that mining could promote increased As mobility, and thereby increase the risks of contaminating water supplies. Objectives   The purpose of this study was to identify the most important factors governing As mobility in sediments and soils near three gold-mining sites in the State of Minas Gerais, Brazil. Methods   Surface and sub-surface soil samples were collected at those sites and characterized by chemical and mineralogical analyses. Oxalate (Feo) and citrate-bicarbonate-dithionite (Fed) iron contents were determined by atomic absorption spectroscopy (AAS). Arsenic mobilization was measured after incubating the samples in a 2.5 mM CaCl2 solution under anaerobic conditions for 1, 28, 56, 84, or 112 days. The solution concentrations of As, Fe, and Mn were then measured by inductively coupled plasma-mass spectrometry (ICP-MS) and AAS, respectively. Results and Discussion   Results indicated that As mobilization is largely independent of both the total As and the Feo/Fed ratio of the solid phase. Soluble As is roughly controlled by the Fe (hydr)oxide content of the soil, but a closer examination of the data revealed the importance of other highly weathered clay minerals and organic matter. Large amounts of organic matter and a low iron oxide content should favor As leaching from soils and sediments. Under reducing conditions, As is mobilized by the reductive dissolution of Fe and/or Mn oxides. However, released As may be readsorbed depending on the sorptive properties of the soil. Gibbsite is particularly effective in adsorbing or readsorbing As, as is the remaining unreduced fraction of the iron (hydr)oxides. Conclusion and Outlook   In general, low soluble As is related to the presence of gibbsite, a large amount of iron oxides, and a lack of organic matter in the solid phase. This has environmental significance because gibbsite is thermodynamically more stable than Fe oxides under anaerobic conditions, such as those found in waterlogged soils and lake sediments.  相似文献   

8.
A pot culture experiment was conducted to investigate the effects of amorphous iron-(hydr)oxide (Am-FeOH) amendments on arsenic (As) availability and its uptake by rice ( Oryza sativa L. cv. BR28) irrigated with As-contaminated water. A rhizobag system was established using 3.5 L plastic pots, each containing one central compartment for plant growth, a middle compartment and an outside compartment. Three levels of laboratory-synthesized Am-FeOH (0, 0.1 and 0.5% w/w) were used to amend samples of the As-free sandy loam paddy soil placed into each compartment of the rhizobag system. The soils were submerged with a solution containing 5 mg L−1 As(V). Two-week-old rice seedlings were planted in the central compartments and cultured for 9 weeks under greenhouse conditions. The addition of 0.1% Am-FeOH to the soil irrigated with As-contaminated water improved plant growth, reduced the As concentration in the plants and enhanced Fe-plaque formation on the root surfaces. Analysis of soil solution samples collected during the experiment revealed higher pH levels and lower redox potentials in the soils amended with Am-FeOH at the onset of soil submergence, but later the soil solution collected from the 0.1% Am-FeOH treatment was slightly acidic and more oxidized than the solution from the 0% treatment. This indicated active functioning of the roots in the soil treated with 0.1% Am-FeOH. The concentrations of As(III) in the soil solution collected from the central compartment were significantly reduced by the Am-FeOH amendments, whereas in the soil treated with 0% Fe, As(III) accumulated in the rhizosphere, particularly during the late-cultivation period. The improvement in plant growth and reduction in As uptake by plants growing in the Am-FeOH treated soil could be attributed to the reduction of available As in the soil solution, mainly as a result of the binding of As to the Fe-plaque on the root surfaces.  相似文献   

9.
Zhu  Meng  Hu  Xuefeng  Tu  Chen  Luo  Yongming  Yang  Ruyi  Zhou  Shoubiao  Cheng  Nannan  Rylott  Elizabeth L. 《Journal of Soils and Sediments》2020,20(2):763-774
Purpose

The mobility of arsenic (As) in soils is fundamentally affected by the clay mineral fraction and its composition. Diphenylarsinic acid (DPAA) is an organoarsenic contaminant derived from chemical warfare agents. Understanding how DPAA interacts with soil clay mineral fractions will enhance understanding of the mobility and transformation of DPAA in the soil-water environment. The objective of this study was to investigate the speciation and sorption structure of DPAA in the clay mineral fractions.

Materials and methods

Twelve soils were collected from nine Chinese cities which known as chemical weapons burial sites and artificially contaminated with DPAA. A sequential extraction procedure (SEP) was employed to elucidate the speciation of DPAA in the clay mineral fractions of soils. Pearson’s correlation analysis was used to derive the relationship between DPAA sorption and the selected physicochemical properties of the clay mineral fractions. Extended X-ray absorption fine structure (EXAFS) LIII-edge As was measured using the beamline BL14W1 at Shanghai Synchrotron Radiation Facility (SSRF) to identify the coordination environment of DPAA in clay mineral fractions.

Results and discussion

The SEP results showed that DPAA predominantly existed as specifically fraction (18.3–52.8%). A considerable amount of DPAA was also released from non-specifically fraction (8.2–46.7%) and the dissolution of amorphous, poorly crystalline, and well-crystallized Fe/Al (hydr)oxides (20.1–46.2%). A combination of Pearson’s correlation analysis and SEP study demonstrated that amorphous and poorly crystalline Fe (hydr)oxides contributed most to DPAA sorption in the clay mineral fractions of soils. The EXAFS results further demonstrated that DPAA formed inner-sphere complexes on Fe (hydr)oxides, with As-Fe distances of 3.18–3.25 Å. It is likely that the steric hindrance caused by phenyl substitution and hence the instability of DPAA/Fe complexes explain why a substantial amount of DPAA presented as weakly bound forms.

Conclusions

DPAA in clay mineral fractions predominantly existed as specifically, amorphous, poorly crystalline, and crystallized Fe/Al (hydr)oxides associated fractions. Amorphous/poorly crystalline Fe rather than total Fe contributed more to DPAA sorption and DPAA formed inner-sphere complexes on Fe (hydr)oxides.

  相似文献   

10.
P-Zn interactions can affect fertilizer use and produce Zn deficiencies with certain crops. Phosphorus-Zn sorption-desorption reactions were studied in topsoil and subsoil samples from three Quebec soils. Soils were equilibrated with P solutions, then with Zn solutions, and finally with solutions containing no P or Zn. The first equilibration evaluated P sorption (Ps), the second evaluated Zn sorption (Zns) after P sorption (Ps), and the third evaluated Zn desorption (ZnD) as related to added P. Subsequently, Zn fractions were extracted sequentially with KNO3 (Zn kno 3), NaOH (ZnNaOH) solutions and concentrated HN03+ H202(ZnHNO,).
One mmole sorbed P resulted in increases of 0.5 to 1.0 meq (mean = 0.72) increases in cation exchange capacity (CEC). Increased Zns with added P was equivalent to 4 to 5% of the increase in CEC induced by Ps in the Uplands (sand) and St. Bernard (loam) soils, and 0.4 to 0.9% in the Dalhousie (clay) soils, while one meq increase in CEC resulted in 1.5-3.5% decrease in ZnD. There existed positive correlations between Ps and extractable soil Fe materials. Phosphate sorption enhanced associations between Zns, ZnD or Zn fractions and soil organic or crystalline Fe contents, confirming that P addition increased specific sorption of Zn on Fe components. Other mechanisms including precipitation, P-induced negative charge and 'bridge' effects are also discussed.  相似文献   

11.
The regime of observations revealed that the Eh dynamics in soddy-podzolic and alluvial soils in the Middle Cis-Urals region depends not only on the rate of iron (hydr)oxides reduction but also on the rate of opposite reactions in the gleyed horizons. Both processes depend on the temperature. The Eh value decreases on heating in automorphic soils, when the reduction of Fe(III)-(hydr)oxide particles accelerates. On the contrary, in gley soils, the Eh decreases on cooling, probably, because of the reactions opposing the reduction of Fe(III)-(hydr)oxide particles, including Fe(II) fixation on the surface of mineral particles. Fe(III)-(hydr)oxides are, for the most part, preserved in gleyed soils of the Cis-Urals; the content of (Fe2O3)dit reaches 3.3% with iron minerals being usually represented by goethite. The increase in moistening influences the soil parameters (i.e., the redoxpotential rH and the content of conventional red pigment Hemconv) in an intricate manner. Both direct and reverse branches on the curve of the Hemconv-rH dependence point to the equilibrium and nonequilibrium conditions in the soil. The reverse branch probably stands for the initial phase of gleying in strongly humified soils, where, despite extra electrons in the solution, the brown pigment in the form of Fe(III)-(hydr)oxides is preserved.  相似文献   

12.
The status of cobalt (Co) in savanna soils of Nigeria is largely unknown, and a long-term experiment including inorganic fertilizer (NPK) and farmyard manure (FYM) and uncultivated land provided information on the way management affected the dynamics of Co in the soil. Total Co increased with increasing depth, whereas readily extractable Co decreased. The mean concentration of Co (5.6–7.9 mg kg−1) was close to the mean value of 8 mg kg−1 reported for soils worldwide, whereas the concentration of extractable Co was less than that reported in most soils. Regression analysis indicated that total Fe predicted up to 78% of the soil Co. The potentially available Co correlated strongly with pedogenic or reducible Mn oxides extracted with dithionite–citrate–bicarbonate. Mass balance calculations showed that fertilization with either NPK or FYM caused losses of between 0.8 and 1.1 g Co m−2 after 50 years of cultivation against the uncultivated site as a reference. However, Co increased by 1.8 g m−2 in the soil receiving FYM + NPK, suggesting that the Co of the soil was best maintained under this management probably because of incidental additions of Co in the manures. Furthermore, the positive Co balance in the FYM + NPK plot was partly enhanced by its larger contents of clay, Fe and pedogenic Mn oxides than in either the FYM or NPK plots. Clay, Fe and pedogenic oxides served as Co sinks in this particular savanna soil.  相似文献   

13.
Dissimilatory iron-reducing bacteria play a fundamental role in catalysing the redox transformations that ultimately control the mobility of As in anoxic environments, a process also controlled by the presence of competing anions. In this study, we investigated the decoupling of As from loaded Al and Fe (hydr)oxides by competing anions in the presence of iron-reducing bacteria. Hematite, goethite, ferrihydrite, gibbsite and three aluminium-substituted goethites (AlGts) were synthesised and loaded with arsenate, followed by anaerobic incubation with different phosphate or carbonate-containing media in the presence of catalytic iron-reducing bacteria. Soluble Al, As, Fe and P contents were measured in aliquots by inductively coupled plasma optical emission spectrometry following periodical sampling. Shewanella putrefaciens cells were able to utilise both non-crystalline and crystalline Fe (hydr)oxides as electron acceptors, releasing Fe and As into solution. Phosphate and carbonate affected the Fe bioreduction, probably due to the precipitation of metastable mineral phases and also to phosphate-induced stabilisation on the hydroxide surfaces. Phosphate precipitation acted as a sink for As, thus limiting its mobilisation. The highest fraction of desorbed As by phosphate was observed for gibbsite, followed by AlGts. Similarly, gibbsite showed significant amounts of arsenate displaced by carbonate. In spite of its low crystallinity, ferrihydrite was the most efficient compound in retaining arsenate, possibly due to As co-precipitation. This study provides new insight into the management of As-contaminated soils and sediments containing Al-goethites and gibbsite, where the Fe activity may be too low to co-precipitate As-bearing vivianite. Thus, the dynamics of As(V) in flooded soils are significant in agriculture and environmental management.  相似文献   

14.
Carbon, Al and Fe (Cpyr, Alpyr and Fepyr) were extracted with 0.1 m Na4P2O7 from 26 A horizon samples of tropical Thai and temperate Korean soils (Ultisols, Alfisols, Oxisols and Inceptisols). The soils, except for one Thai Inceptisol, had similar total C (0.35–3.29%) and Cpyr/total C ratios (0.20–0.41). There were approximately linear relationships between total C or Cpyr and clay content; two groups of soils gave different linear relationships. A curvilinear relationship between Cpyr and (Al + Fe)pyr (milli-atom kg−1) that can be approximated by an equation: Cpyr= 53 (Alpyr+ Fepyr)1/2– 24 was also found for most Thai and Korean soils. The above relationships indicated that total C and Cpyr would be close to zero at zero clay or zero (Al + Fe)pyr. It was inferred that clay-humus interaction has a primary importance in the determination of humus content in red and yellow soils in tropical and temperate regions and that the main role of clay is to supply Al and Fe that complex and stabilize humus against microbial degradation.  相似文献   

15.
徐晋玲  赵爱霞  杨雅楠  王凤 《土壤》2023,55(5):943-953
铝同晶替代现象在铁(氢)氧化物中普遍存在,可改变铁(氢)氧化物的结构、表面特性和反应活性,影响土壤中元素的行为、形态和归趋。运用文献计量法分析了铝同晶替代铁(氢)氧化物的国内外研究现状,分别综述了铝同晶替代对铁(氢)氧化物晶体结构、表面电荷和界面过程的影响,从静电作用、比表面积、位点组成与密度、Fe/Al位点亲和性以及空位缺陷等方面阐明了铝同晶替代对铁(氢)氧化物表面活性和吸附行为的影响机制。在此基础上,提出了未来研究应着眼于构建铝替代量–结构–反应活性定量关系、深入探究铝同晶替代铁(氢)氧化物不同晶面上的界面机制,以及将研究对象与体系过渡到实际土壤等。  相似文献   

16.
Abstract. Leaching of phosphorus (P) from agricultural land is the major cause of eutrophication of surface waters in Northern Ireland. However, soil testing using the Olsen method has shown that while soil P in some catchment areas of the Province is low, surface waters within these catchments are, nonetheless, every bit as eutrophic as other local catchments where soil P is high. Soil P measurements on over 6000 samples from Northern Ireland soils (A horizon only) have indicated that Olsen-P values of improved grassland on most parent materials are linearly related to animal intensification. Exceptions are soils derived from peat, marl and basalt. For each of the latter soils, the measured Olsen-P was shown to be around 10 mg L–1 lower than expected for farms with similar intensification on other parent materials. In particular, the mean Olsen-P values of samples from basaltic soils under grass with total Fe above 62 g kg–1 and total Mg above 16 g kg–1 were significantly lower than those from basaltic soils with low total Fe (<37 g kg–1) and total Mg (<8 g kg–1). As a result of the depressed Olsen-P value, excessive quantities of P may be applied to these soils to maintain a recommended soil P index thereby enhancing the potential for nutrient enrichment of adjacent surface waters. In such cases, coworkers have shown that acid ammonium oxalate may be a better extractant than bicarbonate as an indicator of plant-available P.  相似文献   

17.
Surface and subsurface samples of three tropical soils were examined with respect to their interaction with dilute solutions of sulphuric acid of pH 3. In calcareous clayey samples with a large cation exchange capacity the H+ was replaced by an equivalent concentration of metal cations which remained in solution along with SO2-4 as counterion. In a coarse-textured neutral soil with small cation exchange capacity, there was less chemical interaction and a major proportion of the H2SO4 remained unchanged in the equilibrium solution. Another soil exhibited considerable ability to remove SO2-4 from solution and, therefore, the total ionic concentration was greatly reduced. Other samples showed behaviour which was intermediate to these three types.
The ability to adsorb SO2-4 is one of the most important factors which determines the nature of the interaction of soil with dilute sulphuric acid. This ability was shown to be affected by the content of hydrous sesquioxides and organic matter in these soils.  相似文献   

18.
Abstract. There is increasing evidence that phosphorus has been accumulating in the surface horizons of agricultural soils to the extent that some soils represent a potential diffuse source of pollution to surface waters. The relationships between equilibrium phosphorus concentration at zero sorption (EPC 0) of soil and a number of soil physicochemical variables were investigated in the surface layers of arable and grassland agricultural soils sampled from the Thame catchment, England. Soil EPC0 could be predicted from an equation including soil test (Olsen) P, soil phosphate sorption index (PSI) and organic matter content (OM) (R2=0.88; P <0.001) across a range of soil types and land use. The simple index Olsen P/PSI was found to be a good predictor of EPC0 (R2=0.77; P <0.001) and readily desorbable (0.02 m KCl extractable) P (R2=0.73; P <0.001) across a range of soil types under arable having soil organic matter contents of <10%.  相似文献   

19.
《CATENA》2001,45(3):209-228
The impact of carbo-gazeous saline spring waters, rich in Ca, Fe, As and P and chemically stable through time, on the chemistry (major and trace elements) and mineralogy of soils developed from anatexite is presented. The soils developed beyond the influence of the spring are typical of a granite pedogenesis on a granitic bedrock with Ca loss, Si, Al and K conservation. The soils influenced by the springs are enriched in Ca and Fe, respectively, precipitated as carbonates and oxides. In such soils, the presence of two Ca-enrichment peaks may be explained by the occurrence of two distinct precipitation mechanisms for the carbonates: (1) related to degassing of the carbo-gaseous waters upon emergence at the surface, and (2) in the water-unsaturated zone, related to capillary rise and evaporation processes. The precipitation of iron oxides is related to a change in the redox potential of the mineral waters, following their emergence at the surface.The simultaneous association of As+P with Fe, as evidenced by principal components analysis and in the patterns in concentrations vs. depth observed in soils, can be explained by adsorption and/or coprecipitation of As and P during iron-oxide formation, while The As and P enrichments and the carbonate formation are independent.The extent of the spring influence was studied: the soil enrichments in Ca and, particularly, Fe sharply decrease with increasing distance from the spring on a metric scale.  相似文献   

20.
Abstract. Soils in areas with high livestock density contribute to the eutrophication of aquatic ecosystems through loss of nutrients, especially phosphorus (P). In order to identify the potential for P loss from such soils we determined phosphorus extracted by water (H2O-P), by double lactate (DL-P), and P sorption capacity (PSC) and degree of P saturation (DPS) in soil samples from two counties, one with low (Harle-catchment) and the other with very high livestock density (Vechta). Both catchments are hydrologically connected with the tidal areas of the North Sea.
The mean concentrations of H2O-P (0.4mmol/kg) and DL-P (3.9 mmol/kg) were lower in the Harle-catchment than in the Vechta area (1.2 mmol/kg, 6.8mmol/kg). Although oxalate-extractable Al (Alox) and Fe (Feox) and the derived PSCs varied according to soil type and to land use, the livestock density and the resulting high concentrations of oxalate-extractable P (Pox) were shown to be the main reason for the very high DPS of up to 179% in the county of Vechta. These values exceeded DPS reported from other intensive pig feeding areas in western Europe and indicate the potential for significant P loss. Less than 40% of the variation in Pox could be explained by the routinely determined H2O-Por DL-P. Geostatistical analyses indicated that the spatial variability of Pox depended on manurial history of fields and Alox, showed still smaller-scale variability. These were the major constraints for regional assessments of P losses and eutrophication risk from agricultural soils using available soil P-test values, digital maps and geostatistical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号