首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
  • 1. Numbering no more than 100 individuals and facing many threats, the geographically isolated Eastern Taiwan Strait population of Indo‐Pacific humpback dolphins (Sousa chinensis) is in peril. The estuarine and coastal waters of central‐western Taiwan have historically provided prime habitat for these dolphins, but environmental conditions today bear little resemblance to what they were in the past.
  • 2. The humpback dolphins must share their habitat with thousands of fishing vessels and numerous factories built upon thousands of hectares of reclaimed land.
  • 3. They are exposed to chemicals and sewage released from adjacent terrestrial activities. Noise and disturbance associated with construction, vessel traffic and military activities are features of everyday life for these animals.
  • 4. Measures to slow the pace of habitat deterioration and reduce the many risks to the dolphins are urgently needed. As one practical step in this direction, this paper describes the habitat needs of these small cetaceans so that decision makers will be better equipped to define ‘priority habitat’ and implement much needed protection measures under the terms of local legislation.
  • 5. The preferred habitat of these dolphins in Taiwan consists of shallow (<30 m), near‐shore marine waters with regular freshwater inputs.
  • 6. For such a small, isolated and threatened population, ‘priority habitat’ should not be limited to areas of particularly intensive dolphin use or high dolphin density, but rather it should encompass the entire area where the animals have been observed (their current ‘habitat’), as well as additional coastal areas with similar bio‐physical features (‘suitable habitat’). Such a precautionary approach is warranted because the loss of only a few individuals could have serious population‐level consequences.
  • 7. While conventional socio‐economic analysis might suggest that implementing protection measures over an area stretching ~350 km north–south along Taiwan's west coast and ~3 km out to sea would be too ‘costly’, the loss of this charismatic species from Taiwan's waters would send a troubling message regarding our collective ability to reconcile human activities with environmental sustainability. Copyright © 2010 John Wiley & Sons, Ltd.
  相似文献   

6.
  1. The abundance, distribution and diet of the short-beaked common dolphin were investigated as part of the first detailed study on cetacean populations in the North Aegean Sea. Since 2004, the area has been proposed by national and international entities as a marine protected area for common dolphins and other cetacean species owing to its high biodiversity.
  2. Abundance and distribution were investigated between 2005 and 2013 through dedicated scientific marine transect surveys, covering 14,701 km, in sea conditions of Beaufort sea state 3 and below. The line-transect sampling method was used to estimate relative abundance, using Distance 6.0 software. Encounter rate for this species in the study area was estimated to be 0.24 groups/100 km (1.5 dolphins/100 km), with a mean group size of 6.88 (SE = 1.90).
  3. Common dolphin sightings were analysed for correlations with eight environmental variables (distance from the coast, depth, slope, median salinity, gradient of salinity, median temperature, gradient of temperature and mean current) using generalized additive modelling. Common dolphin sightings were significantly correlated to depth, temperature and salinity.
  4. Stomach-content analyses were performed on eight suitable samples from common dolphins stranded in the study area. The trophic level of the species was calculated, indicating that this species is a top predator.
  5. This research provides the first estimates for abundance and distribution and the first diet analysis for this Mediterranean Endangered dolphin species in the study area based on a year-round long-term study.
  相似文献   

7.
8.
  1. Place‐based management can be an effective conservation tool to protect cetaceans from anthropogenic pressures. The spatial use of the world's second largest population of the threatened Indo‐Pacific humpback dolphins (Sousa chinensis) is not well‐documented, which makes it challenging to designate protected areas for this population.
  2. To address this knowledge gap and to test the efficacy of an existing dolphin protected area (Zhanjiang Leizhou Bay Municipal Humpback Dolphin Nature Reserve, ZLBMHDNR), boat‐based surveys were conducted to document dolphin occurrence from 2015 to 2018, covering an area of 1221 km2 in the eastern waters off Zhanjiang, China. In total, 253 dolphin group sightings were obtained during 174 survey days.
  3. Spatial analysis showed that humpback dolphins aggregated in three core‐use areas with higher sighting density within the survey area. Furthermore, intermediate‐use and broad‐use areas were identified that could be essential for the movements of humpback dolphins among these core‐use areas.
  4. The spatial usage of humpback dolphins was compared inside and outside the ZLBMHDNR. Results suggest that the ZLBMHDNR is insufficient to encompass a significant portion of dolphin habitat. The ZLBMHDNR (21 km2) is not large enough, and thus it should be expanded for effective place‐based conservation management in this region.
  5. For developing a protected area network, important dolphin habitats identified in this study should be protected as a single management unit. Additionally, mitigation of anthropogenic pressures is needed to be taken into consideration as conservation initiatives in the study area.
  6. This study provides support for a more science‐informed protected area network, and highlights the necessity of implementing place‐based conservation and management for the world's second largest humpback dolphin population.
  相似文献   

9.
10.
11.
  • 1. The efficacy of protected areas for wildlife management is largely dependent on appropriate design. It is therefore crucial that the distribution of target species is well understood.
  • 2. The Banks Peninsula Marine Mammal Sanctuary (BPMMS) was designed to protect Hector's dolphins from bycatch in gillnets. However, the Banks Peninsula dolphin population is likely to be still declining, partly due to continued bycatch outside the boundaries of the BPMMS.
  • 3. A three year series of aerial line‐transect surveys around Banks Peninsula was carried out to investigate seasonal changes in distribution of Hector's dolphins out to 20 nautical miles (37 km) from the coast.
  • 4. Dolphin sightings were concentrated close to shore in shallow water in summer, but were more evenly distributed throughout the study area in winter. A greater proportion of dolphins were sighted outside the 4 nautical miles (7.4 km) offshore boundary of the BPMMS in winter (mean=56%) than in summer (mean=19%) (G=88.25, df=1, P<0.001).
  • 5. Partial Mantel tests revealed the effects of distance offshore and depth on dolphin occurrence while controlling for spatial autocorrelation and multicollinearity within the data. Distance offshore had the strongest and most consistent effect on dolphin presence, while depth had a strong effect in summer only.
  • 6. It is proposed that restrictions on gillnetting around Banks Peninsula must be extended in order to reduce bycatch of Hector's dolphins to a sustainable level, and that a new offshore boundary of the BPMMS would be best defined by distance from the coast. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

12.
  1. Species distribution modelling has been used to identify critical habitats for the delimitation of Marine Protected Areas. Although Marine Protected Areas may often overlap with the distribution of key marine species, illegal human activities often continue within these areas, causing negative impacts on the local biodiversity.
  2. A generalized linear model with spatial eigenvector mapping was used to investigate, for the first time, the influence of environmental variables and anthropic activities on the number of Guiana dolphin, Sotalia guianensis sightings/grid, and to determine whether a Marine Reserve, in south‐eastern Brazil, is adequate for the protection of the local population. Data were collected between May 2007 and October 2013 onboard a 7.5‐m vessel with an inboard engine.
  3. The models for the different periods (annual, dry, and rainy seasons) all indicated that depth, the distance to seafood farms and fishing grounds, and mean sea surface temperatures influenced the distribution of the dolphins within the study area. The annual and seasonal models predicted that the dolphins prefer a continuous area between Cedro and Pico Islands, a large area that lies outside the limits of the Marine Reserve.
  4. Although the habitat of Ilha Grande bay is still much less degraded than that inhabited by other nearby Guiana dolphin populations, the results of the present study indicate that anthropic activities in this area influence habitat use by the dolphins. Less than 30% of the area used by the dolphins is protected by the Tamoios Ecological Station (ESEC Tamoios).
  5. Sotalia guianensis is classified as ‘Vulnerable’ in Brazil, although the marine reserve (ESEC Tamoios) does not protect the core area used by the local dolphin population. The results of the present study provide specific locations for the creation of a new multiple‐use MPA, as suggested by the Brazilian National Action Plan for the Conservation of Small Cetaceans, or the inclusion of a special management programme for the area between Cedro and Pico islands to better protect the dolphins in the ESEC Tamoios buffer zone. The continuation of surveys to better understand the current and future impacts of human activities, and the development of a closer interaction with both the local community and local stakeholders will help to safeguard Ilha Grande Bay and the local Guiana dolphin population.
  相似文献   

13.
  1. The coast of Fujian Province is a key area for the Indo‐Pacific humpback dolphin (Sousa chinensis), but the characteristics of their preferred habitats are poorly defined.
  2. The species distribution model, MaxEnt, was used to predict suitable habitat distributions of humpback dolphins in Fujian, China. The model indicated that the distance to the coastline (63.5% contribution), chlorophyll‐a levels (20.2%) and the bathymetry (15.6%) were important predictors of humpback dolphin habitats.
  3. The model predicted 2,043.96 km2 of highly suitable habitat that was concentrated in five areas. Four are known to be within the area of the current distribution of humpback dolphins; Putian was identified as a new area with suitable habitat, however, it is unclear if dolphins are present.
  4. The predicted locations of suitable humpback dolphin habitats provided in this study should be the focus of future research and nature reserve designs.
  相似文献   

14.
  1. Marine aquaculture, and its fast-growing development, has the potential for wider environmental, ecosystem, and biodiversity impacts. This study assesses the impact of fish farming on a bottlenose dolphin (Tursiops truncatus) population within the Gulf of Ambracia (western Greece) between 2007 and 2018. Two different study areas were defined in order to investigate differences on occurrence, abundance, behaviour, and seasonal fluctuations between them: a ‘control area’, in the north-western side of the Gulf; and a ‘fish farm area’, in the south west, where the highest density of fish farm cages is found.
  2. A total of 169 daily surveys were dedicated to the control area and 74 days were dedicated to the fish farm area, yielding 104 and 37 sightings, respectively. Both the probability of detecting dolphins (U = 6,763.000, P = 0.002) and the group sizes (U = 578.000, P < 0.001) were smaller around fish farms.
  3. Seasonality analyses were restricted to 2007–2008, as this was the period with year-round effort. Results revealed that dolphins were more frequently seen around fish farms in the winter (Kruskal–Wallis test, P = 0.036).
  4. From the 40 identified individuals that were re-sighted at least 10 times during the study period, 21 used the fish farm area less than expected according to sampling effort, and 10 of them were never observed in that area (binomial test, P < 0.05).
  5. The results revealed an impact of fish farms on the distribution of bottlenose dolphins in the Gulf of Ambracia. This information should be taken into consideration when defining ecosystem-based management measures within the management plan, which is currently in preparation for this Natura 2000 site.
  相似文献   

15.
  1. During the last decade, the common dolphin (Delphinus delphis) has become the second most sighted species in Israeli coastal waters, after the common bottlenose dolphin. Documentation mostly relies on opportunistic, photo and/or video-backed second-party reports, delimited within a 10 km near-shore strip.
  2. Sightings occur year round, are confined to the southern part of the Israeli coast and typically comprise relatively large groups (mean ± SD: 21.5 ± 13.3), often with young calves.
  3. Strandings are relatively scarce, typically one per year, and have so far yielded five upper digestive tract contents for diet analysis.
  4. Cephalopods comprised 1.2% of the estimated number of prey items in the combined content. Surprisingly, by far the most abundant and prevalent prey item found (57% of pooled prey items; present and dominant in four out of five tracts) was the Balearic eel (Ariosoma balearicum), a sand burrower which is also a major dietary component of the common bottlenose dolphins.
  5. Bottlenose dolphins in Israel are known to forage in association with bottom trawlers, leading to the notion that common dolphins also make use of this foraging mode. Indeed, in addition to their association with purse seiners, they have been documented accompanying bottom trawlers, by both day and night. The slender Balearic eels are frequently found protruding from the net's eyes, presumably making easy prey for both dolphin species.
  6. Information gaps on common dolphins include range extension to the south/south-west, abundance estimation and genetic flow/isolation. Even so, its unusual diet and the fact that the closest known populations to the north/north-west are from the Aegean Sea, were major considerations in the recent designation of the ‘Coastal Shelf Waters of the South-east Levantine Sea’ as a Mediterranean Important Marine Mammal Area.
  相似文献   

16.
17.
18.
19.
20.
  • 1. Assessments of anthropogenic impacts on cetaceans are often constrained by limited data on the extent to which these species use particular areas.
  • 2. Timing porpoise detectors (T‐PODs) are autonomous data recorders for detecting cetacean echolocation clicks, potentially providing cost‐effective opportunities for monitoring cetacean occurrence.
  • 3. The performance of T‐PODs was assessed in three areas off the Scottish east coast, where the relative occurrence of bottlenose dolphins and harbour porpoises was known to differ. Land‐based observations in one area compared visual and acoustic detections of dolphins, while direct hydrophone recordings of dolphin echolocation clicks were compared with T‐POD detections during boat surveys.
  • 4. Land‐based surveys recorded 89 groups of dolphins within 900 m of the T‐POD. All groups spending >30 min in the area were detected on the T‐POD, and the probability of detection declined in relation to distance from the recording site.
  • 5. The number of dolphin clicks recorded on the independent hydrophone system was significantly related to the number detected by a T‐POD. Between pairs of T‐PODs, there was also significant correlation with the numbers of clicks recorded in each hour, both for channels set to detect bottlenose dolphins and for channels set to detect harbour porpoises.
  • 6. Year‐round deployments of paired T‐PODs detected significant geographical variation in detections for both bottlenose dolphins and harbour porpoises. This pattern reflected published data from visual surveys, where dolphins occurred most regularly within the Moray Firth Special Area of Conservation, and porpoises were sighted more regularly in offshore waters.
  • 7. T‐PODs do not detect all cetaceans in the area, and care must be taken when interpreting data from mixed species communities. Nevertheless, these results confirm that T‐PODs provide an effective method for monitoring the occurrence of bottlenose dolphins and harbour porpoises, and provide excellent potential for collecting baseline data from poorly studied areas and monitoring long‐term temporal change in key areas of interest. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号