首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We investigated the reliability of antibiotic resistance and colony morphology of clones of a Bradyrhizobium sp. (Lotus) strain for strain identification in nodulation competitiveness experiments in soil. There was no difference in nodulation competitiveness between the wild type strain and each of five mutants resistant to streptomycin and spectinomycin at the time of their isolation from antibiotic-containing media. However, these mutants were significantly less competitive when tested 4 months later. The apparent instability of the newly isolated mutants and their subsequently decreased nodulation competitiveness show that mutants must be examined carefully after being allowed time to stabilize. Two clones of the Bradyrhizobium sp. (Lotus) strain that differed in colony morphology on yeast mannitol medium did not differ in antigenic properties, whole cell protein electrophoresis profiles, mean cell generation times in yeast mannitol medium, N2-fixing ability, nodulation of Lotus pedunculatus in growth pouches, or in nodulation competitiveness. Both clones retained their colony morphology after numerous transfers on yeast mannitol agar over 3 years and after at least 6 months in soil. A limiting factor, which may restrict the use of colony morphology as a marker for strain identification in competition experiments, is the problem of detecting double-infected nodules when the small colony type comprises a relatively small portion of the total nodule population.  相似文献   

2.
The efficiency of 13 phosphate-solubilizing bacteria (PSB; four Burkholderia sp., five Enterobacter sp., and four Bradyrhizobium sp.) was assessed in a soil plate assay by evaluating soil phosphorus (P) availability. A commercial argentine strain, Pseudomonas fluorescens, was used for comparing solubilizing activity. Burkholderia sp. PER2F, Enterobacter sp. PER3G, and Bradyrhizobium sp. PER2H strains solubilized the largest quantities of P in the soil plate assay after 60 days as compared with the other strains, including the commercial one. The effect of PSB inoculation on growth and nutrient uptake of soybean plants was also studied under greenhouse conditions. Plants inoculated with Burkholderia sp. PER2F had the highest aerial height and showed an appropriate N/P ratio. However, none of the PSB increased P uptake by plants. This suggests that PSB inoculation does not necessarily improve P nutrition in soybean, nor was there any relationship between P availability in the soil plate assay and P content in the soybean shoot in the greenhouse. We concluded that the selection of efficient PSB strains as possible inoculation tools for P-deficient soils should focus on the integral interpretation of soil assays, greenhouse experiments, and field trials.  相似文献   

3.
Summary There was no correlation between the quantity of exopolysaccharide produced and acetylene reduction activity by Rhizobium spp. or by Bradyrhizobium spp. (Cajanus). The exopolysaccharide-defective mutants of Rhizobium sp. strain P 116 either failed to nodulate or showed a decrease in effectiveness. The deficiency in exopolysaccharide production was corrected by the addition of purified exopolysaccharide from the parent strain, or from Bradyrhizobium sp. strain P 149 or S24 isolated from pigeonpea (Cajanus cajan) and mungbean (Vigna radiata), respectively. However, the nodules so formed were not fully effective compared to those formed by the parent strain.  相似文献   

4.
Summary N2 fixation (acetylene reduction assay) by phylloplane microorganisms was measured in dominant and co-dominant plant species growing in a tropical rain forest. No significant acetylene reduction was recorded with intact leaf samples. Azotobacter sp., Beijerinckia sp., Derxia sp., and Klebsiella pneumoniae were isolated as phylloplane N2-fixing bacteria. Azospirillum lipoferum was only isolated from soil samples containing the roots of Poaceae. Nitrogenase activity was recorded in culture derived from the roots and rhizosphere soil samples, although low acetylene reduction activity indicates that these associations did not provide large amounts of N to the systems studied.  相似文献   

5.
We constructed lacZ fusions in Rhizobium sp. (Cicer) by random Tn5-lacZ mutagenesis. The lacZ+ fusants formed blue colonies on a Rhizobial minimal medium containing 5-bromo-4-chloro-3-indolyl--D-galactopyranoside (X-gal). Rhizobium sp. (Cicer) fusant HSL-2 was identified in nodules and soil in a mixed population on the basis of the lacZ+ phenotype. Nodule occupancy of inoculated Rhizobium sp. (Cicer) HSL-2 (lacZ+) was assessed by directly streaking the nodule sap on X-gal plates. This method revealed differences between rhizobia carrying identical antibiotic markers. The rhizobial population in soil was estimated by direct plate counts using a medium containing X-gal. Introduction of lacZ into the Rhizobium sp. thus provided a simple and direct method for identifying strains from nodules and soil.  相似文献   

6.
Arable fields of 10 organic farms from different locations in The Netherlands were sampled in three subsequent years. The soil samples were analysed for disease suppressiveness against Rhizoctonia solani AG2.2IIIB in sugar beet, Streptomyces scabies in radish and Verticillium longisporum in oilseed rape. In addition, a variety of microbial, chemical and physical soil characteristics were assessed. All data were correlated by multiple regression and multivariate analyses with the objective to find correlations between soil suppressiveness and biotic or abiotic soil characteristics. Significant differences in soil suppressiveness were found between the fields for all three diseases. Multiple regression indicated a significant correlation between suppressiveness against Rhizoctonia and the number of antagonistic Lysobacter spp., as well as with % active fungi and bacterial diversity. Grass-clover stimulated Rhizoctonia suppression as well as the presence of antagonistic Lysobacter spp. (mainly L. antibioticus and L. gummosus) in clay soils. Streptomyces suppression correlated with the number of antagonistic Streptomyces spp., % of active fungi and bacterial population size. The presence of antagonistic Streptomyces spp. correlated with a high fungal/bacterial biomass ratio. Verticillium suppression was only measured in 2004 and 2005, due to the inconsistent suppressiveness along the years. Nevertheless, a significant correlation with pH, potential nitrogen mineralization and bacterial biomass was found. Bacterial and fungal PCR-denaturing gel electrophoresis fingerprinting of bacterial and fungal communities, in general, did not significantly correlate with disease suppression. Highly significant explanatory factors of the composition of the dominating bacterial and fungal populations were % lutum, pH, C/N quotient, biomass and growth rate of bacteria. Additionally, the % of organic matter and years of organic farming were explaining significantly the composition of the bacterial population.Thus, significant correlations between several soil characteristics and suppressiveness of different soil-borne pathogens were found. For two of the three pathogens, suppression correlated with biotic soil characteristics combined with the presence of specific bacterial antagonists. Probably the soil suppressiveness measured in the organic fields is a combined effect of general and specific disease suppression.  相似文献   

7.
Summary The competitive ability of inoculated and indigenous Rhizobium/Bradyrhizobium spp. to nodulate and fix N2 in grain legumes (Glycine max, Vigna unguiculata, Phaseolus vulgaris) and fodder legumes (Vicia sativa, Medicago sativa, and Trifolium subterraneum) was studied in pots with two local soils collected from two different fields on the basis of cropping history. The native population was estimated by a most-probable-number plant infectivity test in growth pouches and culture tubes. The indigenous rhizobial/bradyrhizobial population ranged from 3 to 2×104 and 0 to 4.4×103 cells g-1 in the two soils (the first with, the second without a history of legume cropping). Inoculated G. max, P. vulgaris, and T. subterraneum plants had significantly more nodules with a greater nodule mass than uninoculated plants, but N2 fixation was increased only in G. max and P. vulgaris. A significant response to inoculation was observed in the grain legume P. vulgaris in the soil not previously used to grow legumes, even in the presence of higher indigenous population (>103 cells g-1 soil of Rhizobium leguminosarum bv phaseoli). No difference in yield was observed with the fodder legumes in response to inoculation, even with the indigenous Rhizobium sp. as low as <14 cells g-1 soil and although the number and weight of nodules were significantly increased by the inoculation in T. subterraneum. Overall recovery of the inoculated strains was 38–100%, as determined by a fluorescent antibody technique. In general, the inoculation increased N2 fixation only in 3 out of 12 legume species-soil combinations in the presence of an indigenous population of rhizobial/bradyrhizobial strains.  相似文献   

8.
Summary We examined the influence of a vesicular-arbuscular (VAM) fungus (Glomus pallidum Hall) on the competitive ability of introduced and native Bradyrhizobium strains to nodulate cowpeas [Vigna unguiculata (L) Walp]. Our experiments in non-sterilized soil revealed that in the presence of VAM fungus, introduced Bradyrhizobium spp. strains become more competitive than native rhizobia. For example, strain JRC29 occupied 59.2% of the total nodules when inoculated alone, but this figure increased to 71.2% when JRC29 was used in dual inoculations with VAM fungus. A similar pattern of enhanced competitiveness for nodule formation was observed with the two other strains in the presence of the VAM fungus. Our results suggest that the competitiveness of rhizobia can be enhanced by co-inoculating with a selected strain of a VAM fungus.  相似文献   

9.
Abstract

The response of peanut (Arachis hypogaea L.) to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus etunicatum) and Bradyrhizobiurn sp. was studied in pots by the acetylene reduction activity (ARA) and ‘A-value’ methods. The soil used was a Light-coloured Andosol and the treatments consisted of the inoculation of VAM fungi only, inoculation of Bradyrhizobium only, dual inoculation of VAM fungi and Bradyrhizobium and control, under non-sterilized and sterilized soil conditions.

In the non-sterilized soil the ARA and nitrogen fixation determined by the ‘A-value’ method increased significantly only by dual inoculation of VAM fungi and Bradyrhizobium at 100 days after planting (DAP), but no significant difference was observed at 70 DAP. In the case of dual inoculation, 75% of the nitrogen of the plant was derived from fixation whereas the plants inoculated only with Bradyrhizobium derived 68% of their nitrogen from fixation and the control plants, 64%. Amount of P in plant increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.

In the sterilized soil a highly significant increase in the ARA was observed of the dual inoculation at all the sampling times. Nitrogen fixation determined by the A-value technique and N and P contents in plant also increased significantly by dual inoculation. Results obtained by the A-value method showed that plants with dual inoculation derived 68% of their nitrogen from fixation while the plants inoculated only with Bradyrhizobium, 38%.

From our this study we conclude that nitrogen fixation as well as N and P contents in peanut increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium.  相似文献   

10.
[目的]以广西壮族自治区桂林市尧山地区的4年生桉树林、20年生桉树林和22年生马尾松林为研究对象,旨在研究由森林类型、林龄及其它因子驱动的森林土壤呼吸动态变化特征,并为桉树、马尾松人工林生态系统碳动态模拟提供基础数据。[方法]采用Li-8100土壤碳通量测量系统于2013年3—8月(春、夏两季),分别对这3种林分的土壤呼吸及其组分、土壤温度、土壤湿度进行了6个月的观测。[结果](1)3种林分的土壤总呼吸速率无显著差异。(2)4年生桉树林的自养呼吸速率显著大于20年生桉树林及22年生马尾松林。20年生桉树林的异养呼吸速率显著大于4年生桉树林及22年生马尾松林。(3)土壤温度是影响土壤呼吸及其组分的主要环境因子,3种林分土壤呼吸及其组分与土壤温度均呈显著的指数关系;(4)4年生桉树林的土壤呼吸与土壤含水量的相关性不显著,20年生桉树林的土壤呼吸与土壤含水量呈显著正相关关系,22年生马尾松林的土壤呼吸与土壤含水量呈显著负相关关系。(5)对温度敏感性系数Q10值的分析表明,4年生桉树林的温度敏感性较大,20年生桉树林和22年生马尾松林较小。  相似文献   

11.
Pentachloronitrobenzene (PCNB) is an organochlorine fungicide that is mainly used in the prevention and control of diseases in crop seedlings. Microbial removal is used as a promising method for in-situ removal of many organic pesticides and pesticide residues. A short-term field experiment (1 year) was conducted to explore the potential role of a PCNB-degrading bacterial isolate, Cupriavidus sp. YNS-85, in the remediation of a PCNB-contaminated soil on which Panax notoginseng was grown. The following three treatments were used:i) control soil amended with wheat bran but without YNS-85, ii) soil with 0.15 kg m-2 of solid bacterial inoculum (A), and iii) soil with 0.30 kg m-2 of solid bacterial inoculum (B). The removal of soil PCNB during the microbial remediation was monitored using gas chromatography. Soil catalase and fluorescein diacetate (FDA) esterase activities were determined using spectrophotometry. In addition, cultivable bacteria, fungi, and actinomycetes were counted by plating serial dilutions, and the microbial biodiversity of the soil was analyzed using BIOLOG. After 1 year of in-situ remediation, the soil PCNB concentrations decreased significantly by 50.3% and 74.2% in treatments A and B, respectively, when compared with the uninoculated control. The soil catalase activity decreased in the presence of the bacterial isolate, the FDA esterase activity decreased in treatment A, but increased in treatment B. No significant changes in plant biomass, diversity of the soil microbial community, or physicochemical properties of the soil were observed between the control and inoculated groups (P<0.05). The results indicate that Cupriavidus sp. YNS-85 is a potential candidate for the remediation of PCNB-contaminated soils under P. notoginseng.  相似文献   

12.
Gorse (Ulex europaeus) infestation occupies over 4,000 ha of agriculture and conservation lands on the southeastern slope of Mauna Kea on the Island of Hawaii. The aim of this investigation is to identify ecological features associated with this weed invasion by comparing the gorse-infested areas to the surrounding uninfested areas of this landscape. The soils within the gorse infestation are more acidic, resulting in higher levels of KCl-extractable Al and lower levels of Mehlich III-extractable Ca, Mg, Mn, and Zn. Yet, gorse accumulates higher concentrations of Ca, Zn and, Cu than the kikuyu grass (Pennesitum clandestinum), which is ubiquitous throughout the site. The Ca:Al and Mg:Al molar charge ratios of the soils are lowest within the epicenter of the gorse infestation, while the molar ratios are highest in the gorse apical stem tissues. All gorse plants are nodulated and have higher nitrogen contents than the surrounding kikuyu grass. Furthermore, the δ15N of the gorse stem tissues approaches 0‰, suggesting that nitrogen is being symbiotically fixed from the atmosphere. Characterization of the Bradyrhizobium isolated from gorse nodules shows similarities and distinctions to Bradyrhizobium isolated from the endemic legume koa (Acacia koa) within the same location. Population densities of the indigenous Bradyrhizobium are higher within the gorse rhizosphere than the kikuyu grass. Soil acidification, nutrient depletion, and symbiotic nitrogen fixation distinguish gorse-infested areas from the surrounding uninfested areas. These observations suggest that gorse has a competitive advantage over kikuyu grass under conditions of soil nutrient deficiency.  相似文献   

13.
A chlorothalonil(CTN)-degrading bacterial strain H4 was isolated in this study from a contaminated soil by continuous enrichment culture to identify its characteristics and to investigate its potential for remediation of CTN in contaminated soil. Based on the morphological, physiological and biochemical tests and 16 S r DNA sequence analysis, the strain was identified as Stenotrophomonas sp. After liquid culture for 7 d, 82.2% of CTN was removed by strain H4. The isolate could degrade CTN over a broad range of temperatures and p H values, and the optimum conditions for H4 degradation were p H 7.0 and 30℃. Reintroduction of the bacteria into artificially contaminated soil resulted in substantial removal of CTN( 50%) after incubation for 14 d. Soil samples treated by H4 showed significant increases(P 0.05) in soil dehydrogenase activity, soil polyphenol oxidase activity, average well-color development obtained by the Biolog Eco plate TM assay and Shannon-Weaver index, compared with the control. Strain H4 might be a promising candidate for application in the bioremediation of CTN-contaminated soils.  相似文献   

14.
Two field experiments were conducted to evaluate the effect of organic fertilizer application either with or without antagonistic bacteria (Bacillus subtilis SQR-5 and Paenibacillus polymyxa SQR-21) on the control of Fusarium oxysporum f. sp. Cucumerinum J. H. Owen wilt disease in cucumber. The incidence of Fusarium wilt disease was 5.3–13.5% for cucumber plants treated with bioorganic fertilizer, while it was 30.3–51% in controls (only with organic fertilizer). Higher yields and lower disease incidences were observed in the dry season when compared with the wet season for both types of organic fertilizer treatments. Biolog analysis showed a significant change in soil bacterial composition and activity after bioorganic fertilizer application. The numbers of colony-forming units of F. oxysporum f. sp. Cucumerinum J. H. Owen for bioorganic-fertilizer-treated soils were significantly decreased compared with control. Scanning electron micrographs of cucumber basal stems showed a presence of mycelia-like mini strands accompanied by an amorphous substance within the xylem vessels. This amorphous substance and mini strands were richer in calcium and phosphorus but had low carbon and oxygen than the living mycelia. Reverse-phase high-pressure liquid chromatography and mass spectroscopic analysis showed that the antagonistic bacteria produced the antifungal compounds fusaricidin A, B, C, and D with molecular weights of 883.5, 897.5, 947.5, and 961.5 Da, respectively. The application of bioorganic fertilizer has a great potential for the control of F. oxysporum wilt disease in cucumber plants.  相似文献   

15.
Earthworms, because they change soil physical and chemical properties, are efficient engineers that act on soil microbial community and activity. Thus they may drive pollutant biodegradation in soil such as atrazine mineralization. We hypothesized that earthworms modify the abundance of indigenous soil bacteria and the fate and activity of atrazine-degraders in the soil they engineer by bioturbation. Two bacterial strains were used as bioaugmentation agents: Pseudomonas sp. ADP and Chelatobacter heintzii, which have acquired the capacity to metabolize atrazine by carrying plasmidic atz A, B, C, D, E, F and atzA, B, C, trzD genes, respectively. We analyzed the interactions between earthworms (Lumbricus terrestris) and the indigenous and atrazine-degrading (indigenous and inoculated) bacterial communities by quantifying the 16S rRNA and the atzA gene sequence copies numbers, respectively, in different earthworm microsites. The kinetics of atrazine mineralization were measured to link the bacterial community changes with the degradation function. Digestion by earthworms significantly impacted the number of indigenous bacteria and atrazine mineralization in bioaugmented soils. Regarding the fate of the two atrazine-degraders tested, Pseudomonas sp. strain ADP survived better within the 10 days of experiment than C. heintzii in the bulk soil but the surviving fraction of C. heintzii was still metabolically active and able to mineralize atrazine. A positive “burrow-lining” effect on the atzA sequence copies number was observed in soil whether bioaugmented with C. heintzii or not (i.e. native indigenous atzA) thereby indicating that burrow-linings form a specific ‘hot spot’ for atrazine-degraders. The present study is the first to report the role of earthworms in selecting native catabolic key-genes in soil (indigenous atzA). This catabolic gene selection through earthworm soil bioturbation could be important in sustaining the degradation (detoxification) function of soil.  相似文献   

16.
Summary Pot and laboratory experiments were conducted to study the establishment and effectiveness of a streptomycin-sulphate-resistant (1 mg/ml of medium) pigeonpea rhizobia strain (RM7) in sterile sand and non-sterile soils. Strain RM7 increased the drymatter yield of pigeonpea plants (Cajanus cajan) by 106% over control plants under sterile conditions. However, when the rhizobia strain was introduced into 14 different non-sterile soils with a narrow abiotic variability, the comparable beneficial effect was observed only in one soil inoculated with log 6.70 cells/pot. At this inoculum rate, the percentage increase in yield over control plants varied from –1 to 140 in different soils. Rhizobium (RM7), applied at log 3.70 cells/pot (3 kg soil), showed less than 5% establishment in four soils. However, establishment varied from 8% to 72% at a higher level of inoculation (log 6.70 cells/pot). Displacement of native rhizobia and creation of new sites for nodulation by the introduced rhizobia were also affected by soil properties. The increase in shoot dry-matter yield compared with control plants was positively correlated with the percent establishment of RM7 (r = 0.60*) in these soils. Experiments showed that some biotic stresses led to poor survival, proliferation and establishment of the added alien in the soil. Therefore, any culture that is efficient in one soil may not produce similar results under all situations.  相似文献   

17.
We investigated the diversity of rhizobia isolated from different indigenous legumes in Flanders (Belgium). A total of 3810 bacterial strains were analysed originating from 43 plant species. Based on rep-PCR clustering, 16S rRNA gene and recA gene sequence analysis, these isolates belonged to Bradyrhizobium, Ensifer (Sinorhizobium), Mesorhizobium and Rhizobium. Of the genera encountered, Rhizobium was the most abundant (62%) and especially the species Rhizobiumleguminosarum, followed by Ensifer (19%), Bradyrhizobium (14%) and finally Mesorhizobium (5%). For two rep-clusters only low similarity values with other genera were found for both the 16S rRNA and recA genes, suggesting that these may represent a new genus with close relationship to Rhodopseudomonas and Bradyrhizobium. Primers for the symbiotic genes nodC and nifH were optimized and a phylogenetic sequence analysis revealed the presence of different symbiovars including genistearum, glycinearum, loti, meliloti, officinalis, trifolii and viciae. Moreover, three new nodC types were assigned to strains originating from Ononis, Robinia and Wisteria, respectively. Discriminant and MANOVA analysis confirmed the correlation of symbiosis genes with certain bacterial genera and less with the host plant. Multiple symbiovars can be present within the same host plant, suggesting the promiscuity of these plants. Moreover, the ecoregion did not contribute to the separation of the bacterial endosymbionts. Our results reveal a large diversity of rhizobia associated with indigenous legumes in Flanders. Most of the legumes harboured more than one rhizobial endosymbiont in their root nodules indicating the importance of including sufficient isolates per plant in diversity studies.  相似文献   

18.
Radish plants infested with a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani PEG-4, which is resistant to hygromycin B, were placed on the surface of a soil microcosm containing earthworms (Pheretima sp.). The earthworms ate the radish plants and scattered individual casts everywhere in the burrows. The fungal propagules were detected in the gut of the earthworms and in 26 out of 28 casts. These results suggested that the pathogen could survive passage through the alimentary canal of the earthworms and be disseminated anywhere earthworms wandered. The collected casts were incubated in a moist chamber at 28°C for 14 days, which resulted in a decline in the number of the propagules. The effects of the earthworms on the population dynamics of the pathogen were estimated. The earthworms seemed to cause a decline in total propagules of the pathogen in soil, although they expanded its distribution in soil.  相似文献   

19.
species were isolated from the rhizosphere of green gram [Vigna radiata (L.) Wilczek] and some of the rhizobacterial isolates were found to have a wide range of antifungal activity inhibiting growth of the phytopathogenic fungi Aspergillus sp., Curvularia sp., Fusarium oxysporum and Rhizoctonia solani in culture. These isolates also showed slight inhibition of the growth of a Bradyrhizobium strain (Vigna) in a spot test which was mainly a result of nutrient competition as culture supernatants of the Pseudomonas isolates did not inhibit the growth of bradyrhizobia but inhibited the growth of fungi. The rhizobacterial isolates produced siderophores in Fe-deficient succinate medium. However, the inhibition of fungal growth by different Pseudomonas isolates in Luria Bertani and King's medium B which were not limiting in Fe3+ ions suggested that, besides siderophores, other antifungal compounds (antibiotics) produced by these rhizobacteria were involved in antagonism. On coinoculation of green gram with Pseudomonas strains MRS13 and MRS16 and Bradyrhizobium sp. (Vigna) strain S24, there was a significant increase in nodule weight, plant dry weight and total plant N as compared to inoculation with Bradyrhizobium strain S24 alone, suggesting that the nodule-promoting effects of Pseudomonas sp. lead to an increase in symbiotic N fixation and plant growth. Received: 27 October 1997  相似文献   

20.
Summary Two Australian Acacia species, A. mangium and A. auriculiformis were inoculated in vitro with eight strains of Bradyrhizobium spp. and two strains of Rhizobium spp. On the two plant species, only Bradyrhizobium spp. strains formed effective N2-fixing nodules. A. mangium, which nodulates effectively with a restricted range of Bradyrhizobium spp. strains, is a specific host compared to A. auriculiformis. A. auriculiformis is assumed to be a promiscuous host because it nodulates effectively with a wide range of Bradyrhizobium spp. strains. Nodule efficiency as expressed by the ratio of N2 fixed to nodule dry weight appeared to be higher in A. auriculiformis (0.44–0.81) than in A. mangium (0.23–0.55).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号