首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chusquea ramosissima is a native monocarpic bamboo species growing in subtropical forests of northeastern Argentina, which can dominate gaps and open forests in the region, particularly after human disturbance. This bamboo species started to flower in different areas of northeastern Argentina in 2001, with the flowering peak during 2002 and 2003 and small isolated flowering events still occurring until 2010. We studied the effects of C. ramosissima flowering and die-back on microclimate, litter decomposition, nutrient availability, sapling growth, abundance and regeneration of tree canopy species. We wanted to know how environmental conditions and ecosystem processes change through time after bamboo flowering and if bamboo die-back would favor regeneration of canopy trees. Twenty 50 × 50 m plots of flowering and non-flowering bamboo were permanently marked and vegetation dynamics as well as nutrient cycling and microclimate studies were performed. C. ramosissima die-back enhanced growth and reduced mortality rate of tree saplings during the first year after flowering. Only growth of tree saplings previously established was enhanced by the flowering event and tree-species richness and saplings abundance of canopy trees did not change as expected due to bamboo flowering. The short-term effect of tree saplings growth was likely due to incident solar radiation at the forest floor which doubled in the first year after the bamboo flowering event. Increased light availability at the forest floor simultaneously promoted the growth of other understory plants such as ferns, lianas and Piper spp. that rapidly colonized gaps and intercepted a percentage of the incident solar radiation after the first year, which together with an increased litter layer due to the senescence of the bamboo, may have inhibited establishment of new tree individuals and affected tree growth. Contrary to predictions, soil water, litter decomposition and soil nutrients were not significantly affected by bamboo flowering. Thus, successful tree regeneration in gaps following bamboo flowering appears to be restricted to a very narrow window of increased light availability (i.e., 1 year) before growth of other understory plants and rapid re-colonization of bamboo. Changes in resource availability, and the opportunity for overstory regeneration after bamboo flowering events appears to depend on climatic and community characteristics of the ecosystem where the flowering event occurs and also, on the flowering patterns and their synchronicity.  相似文献   

2.
We examined the response of understory plants in mature maple-dominated forests of southern Québec, Canada, following about 30 years of high deer densities, using a deer exclosure experiment. An exclosure and a paired control of 625 m2 each were established on six sites in 1998. An exclosure and a paired control of 16 m2 were added at each of the same sites in 2003 but under a recent canopy gap to determine if light could enhance plant responses. We measured plant richness and abundance, and aboveground biomass of different plant groups for 8 years in the understory plots and for 3 years in the canopy gaps. Four herbaceous species were also monitored individually in the same plots. No significant differences between treatments were found in plots under forest cover, except for lateral obstruction at 0–50 cm height which was higher in the exclosures. Under canopy gaps, however, tree seedling and total plant abundance were higher in deer exclosures than in control plots. Trillium erectum recovered partially as individuals were taller, had larger leaves and more frequently produced a flower or a fruit in the absence of deer browsing under forest cover. To a lesser extent, Erythronium americanum and Maianthemum canadense also exhibited signs of recovery but were still at the single-leaf stage after 8 years of recovery. In general, the different plant groups exhibited little recovery following deer exclusion, possibly because of the low light levels that prevailed in the understory of undisturbed maple-dominated forests. The higher latitude of the present study could also contribute to the slow recovery rates of the different groups of plants compared to studies conducted in northeastern USA. Variability among sites and years had an effect on detection of statistically significant differences. Trends are however appearing over time, suggesting that many understory plants are recovering very slowly following deer exclusion. Our results emphasize the importance of studying large herbivore–forest interactions on different groups of plants, but also on specific species, and under different latitudes to be fully understood.  相似文献   

3.
Stand structure and the regeneration ofChamaecyparis pisifera on sites with and without well-developed soil in an old-growth coniferous forest, Akasawa Forest Reserve, central Japan, were investigated, along with their relationships to other important coniferous species. Of stems ofC. pisifera≥5 cm diameter at breast height, stems with intermediate size were absent in stands on the developed-soil site, while those with smaller size increased in stands on the undeveloped-soil site, which supported a higher density ofC. pisifera. In the stands without recent tree-fall of canopy stems on the developed-soil site, canopy stems ofC. pisifera were distributed uniformly and the understory stems, patchily. On the other hand, both canopy and understory stems ofC. pisifera in stands on the undeveloped-soil site were distributed patchily. In the understory,C. pisifera occurred as clonal patches formed by vegetative reproduction on various types of microsites including bare rocks. However, the clonal patches did not occur in a stand on the developed-soil site with dense saplings of an evergreen conifer,Thujopsis dolabrata, which can expand vegetatively with a well developed soil layer. Gap formation may induceC. pisifera to develop tree-form stems from shrubby clonal patches. On developed-soil sites,C. pisifera stands that survive a long disturbance-free period on this site need catastrophic disturbance for their regeneration, which will eliminateT. dolabrata in the understory and create bare soil for colonization ofC. pisifera from seeds. On undeveloped-soil sites,C. pisifera replaces itself continuously by effective vegetative reproduction. Ground instability and the wet condition of this site may promote the replacement.  相似文献   

4.
Thinning of young forest stands encourages development of the understory layer by increasing the levels of light and belowground resources. High-intensity thinning, with associated ground disturbance and high light levels, can lead to dominance by early seral species or by a few species of shrubs, while low-intensity thinning may not increase resource levels enough to encourage forest herbs. Changes in herb-layer abundance can be hard to detect because forest-floor herbs are often slow growing, but flowering increases rapidly in response to high resource levels. This study examined flowering of the understory herb community before and 5 years after low-intensity thinning. Flowering of 10 herb species was sampled in 62 nine-meter radius plots in six treatment units within the H.J. Andrews Experimental Forest. Thinning proved to be the most important determinant of the composition of the flowering assemblage (that is of which plants were flowering in a given plot). Old-growth species and release species (those specializing in large forest openings) showed higher numbers of flowering ramets following thinning. Release species also showed significant positive linear relationships with the plot-level degree of reduction in Douglas-fir (Pseudotsuga menziesii) basal area (BA), while old-growth species showed no significant relationships and forest generalist species showed significant negative linear relationships with reduction in BA. Plot-level reduction in BA explained little of the variation in numbers of flowering ramets per plot for most species except for the release species Hieracium albiflorum and the forest generalist Trillium ovatum. The overall lack of strong linear relationships between herb flowering and reduction in BA makes it difficult to predict optimal thinning intensities for these species. However, the results of this study suggest that even when low-intensity thinning does not significantly change herb abundance it could still influence the ecology of the understory herb community by increasing carbon allocation to sexual reproduction.  相似文献   

5.
Regeneration of beech (Fagus crenata) forests depends on the formation of canopy gaps. However, in Japan Sea-type beech forests, a dwarf bamboo (Sasa kurilensis) conspicuously occupies sunny gaps. Therefore,F. crenata seedlings must escape the severe interference ofS. kurilensis in the gaps and persist beneath a closed canopy of the beech forest. We hypothesized that the growth ofF. crenata seedlings in the understory would be favored by their being more plastic thanS. kurilensis in photosynthetic and morphological traits, which would support the matter production ofF. crenata seedlings in a wide range of light availabilities. To examine this hypothesis, the photosynthetic-light response of individual leaves and the biomass allocation in aboveground parts (i.e., the culm/foliage ratio) were surveyed at sites with contrasting light availabilities in a Japan Sea-type beech forest in central Japan. InF. crenata, photosynthetic light utilization efficiency at relatively low light was greater, and the dark respiration rate was smaller in the leaves of seedlings (10 cm in height) beneath the closed canopy than in the leaves of saplings at the sunny forest edge. The culm/foliage (C/F) ratio of theF. crenata seedlings at the shady site was small, suggesting effective matter-production beneath the beech canopy. On the other hand,S. kurilensis both in the gap and beneath the beech canopy showed low plasticity in photosynthesis and the culm/foliage ratio. Because the shoot density ofS. kurilensis was smaller beneath the beech canopy than in the gap, the light availability at the bottom of theS. kurilensis layer was greater beneath the beech canopy. These results suggest that the photosynthetic productivity of theF. crenata seedlings would be enough for the seedlings to survive in the understory with a low density ofS. kurilensis shoots beneath the closed beech canopy.  相似文献   

6.
Bamboos’ vegetative growth are frequently associated to negative effects on tree recruitment and survival and despite this process, the effects of bamboo dieback after flowering events are poorly understood due the rarity of these events. 2 years after the massive flowering of the woody bamboo Merostachys multiramea in a southern South America subtropical forest, we compared changes in environmental conditions; tree species regeneration and production of new culms in canopy gaps resulted from bamboo dieback and areas of continuous canopy allowed by sparse bamboo cover. We observed sharp differences in environment conditions mainly resulted from differences in canopy openness and a NPMANOVA revealed differences among the stands regeneration directions (species composition and density). Average density, number of culms per sapling and total height of M. multiramea did not differ between stands, although slight differences were detected with increasing values toward opened sites.  相似文献   

7.
8.
以2008年冰雪灾害对森林生态系统的破坏为背景,通过人工去除林冠层保留树干模拟森林的机械损伤,研究粤北小坑流域藜蒴栲群落林下植被的变化.结果表明:(1)试验1.5年后,去除林冠层、林下添加枯枝落叶的处理,林下灌木、草本科、种及乔木幼苗种的数量显著增加(P<0.05);去除林冠层且地表枯落物层保持不变的处理,林下草本科、种数量增加显著,乔木幼苗及灌木科、种差异不显著(P>0.05);林下添加枯枝落叶,林冠层不做处理,林下植被各生活型物种数有所减少,但差异不显著.(2)去除林冠层后,一些阳生种如野桐、山乌桕、山苍子、红紫珠、蕨状苔草、广东蛇葡萄等大量入侵并占据优势地位,林下植被盖度显著提高.(3)去除林冠层在短期内可显著增加林下植被生物多样性,添加枯落物对林下植被生物多样性影响不显著.  相似文献   

9.
We examined patterns of variation in richness, diversity, and composition of understory vascular plant communities in mixedwood boreal forests of varying composition (broadleaf, mixedwood, conifer) in Alberta, Canada, before and for 2 years following variable-retention harvesting (clearcut, 20 and 75% dispersed green tree retention, control). Broadleaf-dominated forests differed from mixedwood or conifer-dominated forests in that they had greater canopy cover, litter depth, soil nitrogen, warmer soils, as well as greater shrub cover, herb and shrub richness and diversity (plot scale). In contrast, conifer, and to a lesser extent mixedwood, forest had greater β diversity than broadleaf forest. Overall, mixedwood and conifer forests were similar to one another, both differed from broadleaf forest. Several species were found to be significant indicators of broadleaf forest but most of these also occurred in the other forest types. Understory composition was related to canopy composition and edaphic conditions. Variable-retention harvesting had little effect on understory cover, richness, or diversity but resulted in reduced richness and β diversity at a larger scale. The clearcut and 20% treatments affected composition in all forest types. Early successional species and those common in disturbed sites were indicators of harvesting while evergreen, shade-tolerant understory herbs were indicators of the control forest and 75% retention harvest. We conclude that it is important to maintain a range of variation in canopy composition of mixedwood forests in order to conserve the associated understory communities. The presence of conifers in these forests has a particularly important influence on understory communities. The threshold for a lifeboat effect of variable-retention harvesting is between 20 and 75% retention. Examination of richness and β diversity at a variety of scales can provide interesting information on effects of harvesting on spatial reorganization and homogenization of understory plant communities.  相似文献   

10.
To better understand tree regeneration trajectories and the resultant coexistence of Abies with co-dominants, Picea jezoensis var. hondoensis, Tsuga diversifolia and Betula ermanii, in an old-growth subalpine forest, we investigated spatial mortality patterns during the regeneration of Abies mariesii and A. veitchii, which are abundant in the understory reflecting their shade tolerance. Regeneration of these Abies spp. from shaded understory to canopy status is affected by other canopy co-dominants. Snags of understory Abies spp. were common, suggesting that the primary mortality agent is suppression by the overstory. Although live, small Abies trees in the understory were positively associated with a Picea canopy, the long-term survival was reduced among Abies trees close to the canopy, suggesting that shading by large Picea in the overstory negatively affects understory Abies plants. The existence of shade-intolerant canopy co-dominants such as Picea and also Tsuga, which are larger and longer lived than the shade-tolerant Abies, may play an important role in preventing the Abies spp. from competitively displacing these other tree species, which are much rarer in the understory, though common in the canopy. Moreover, in spite of the fact that Betula canopies fostered recruitment and growth of Abies saplings, Abies showed no association with Betula canopy and their survival at later-stage was rather reduced near or beneath Betula canopies at the subsequent understory small tree stage. Based on spatially significant events related to tree death, this study detected such “habitat shifts” in the trajectory of tree regeneration. Accordingly, it can be concluded that careful consideration of the regeneration habitat is required for a fuller understanding of ecological processes in spatially complex old-growth forest systems.  相似文献   

11.
Gap formation in forests can have impacts on forest ecosystems beyond the physical boundary of the canopy opening. The extent of gap influence may affect responses of many components of forest ecosystems to gap formation on stand and landscape scales. In this study, spatial extent of gap influence on understory plant communities was investigated in and around 0.1 and 0.4 ha harvested canopy gaps in four young Douglas-fir (Psuedotsuga menziesii) dominated stands in western Oregon. In larger gaps, the influence of gap creation on understory plant communities in surrounding forests was minimal. The area showing evidence of gap influence extended a maximum of 2 m beyond the edge of the canopy opening, suggesting that the area affected by gap creation did not differ greatly from the area of physical canopy removal. In smaller gaps, influence of the gap did not extend to the edge of the canopy opening. In fact, the area in which understory vegetation was influenced by gap creation was smaller than the physical canopy opening. Gap influence appears to be limited to areas where ruderal or competitor species are able to replace stress-tolerator species, likely due to elimination or reduction of these species by physical disturbance or competition. The limited gap influence extent exhibited here indicates that gap creation may not have a significant effect on understory plant communities beyond the physical canopy opening. This suggests a limited effectiveness of gaps, especially smaller gaps, as a tool for management of understory plant diversity, and perhaps biodiversity in general, on a larger scale.  相似文献   

12.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

13.
以内蒙古赤峰市阿鲁科尔沁旗沙日温都栎林自然保护区蒙古栎林为主要研究对象,研究不同林分密度对林下草本植物多样性的影响。结果表明,研究区内共有13科、14属、16种草本植物;Simpson指数、Shannon-Wiener指数、Pielou均匀度指数和物种丰富度指数均随着林分密度的增加呈先增大后减小的趋势,当林分密度为750株/hm2时,林下草本植物多样性指数达到最大值;林分密度与Shannon-Wiener多样性指数、Pielou均匀度指数、Simpson多样性指数、物种丰富度指数、树高、胸径均呈极显著负相关,与郁闭度呈极显著正相关,与枝下高不相关。综上所述,最合理的蒙古栎林密度为750株/hm2,该密度下最有利于蒙古栎林及林下草本植物生长发育。  相似文献   

14.
The large-scale conversion of old forests to tree plantations has made it increasingly important to understand how understory vegetation responds to such landscape changes. For instance, in some forest types a reduction in understory richness and cover is thought to result from the development of canopy closure in plantations, although there is a paucity of empirical data demonstrating this relationship. We used a 420-year forest chronosequence as a case study to assess the relationship between stand age, tree canopy cover and understory vascular plant richness and composition in the Siskiyou Mountains of Oregon. The chronosequence consisted of six young managed (age 7–44) and nine older unmanaged (age 90–427) stands. All stands were similar in underlying geology, slope, elevation, and aspect. We found a non-linear relationship between stand age and richness, in which richness was highest in the youngest stands, reached a low in mid-aged stands (∼55 years), then increased in the oldest stands. We also found that percent tree canopy cover was correlated with total understory cover, richness, diversity, and species composition. In general, young stands were characterized by high shrub and graminoid cover and old stands were characterized by an abundant herb layer. Our work suggests that a major component of our study landscape is currently entering the forest stage (canopy closure) characterized by low levels of vascular plant species richness and cover. We use our results to discuss the potential effects of future forest management on understory plants.  相似文献   

15.
Effects of gaps on regeneration of woody plants: a meta-analysis   总被引:1,自引:0,他引:1  
Forest gaps, openings in the canopy caused by death of one or more trees, have a profound effect on forest regeneration and drive the forest growth cycle. It is therefore necessary to understand the effects of forest gaps on regeneration for modern forest management. In order to provide a quantitative assessment of the effects of forest gaps on regen-eration of woody plants, we conducted this review of gap effects on woody plant regeneration on the basis of 527 observations from 42 indi-vidual papers, and reported the results of these data in a meta-analysis. Overall, densities of regenerated woody plants were significantly greater (359%) in forest gaps than on the closed-canopy forest floor. The regen-eration density in gaps of plantation forests was significantly greater (P<0.05) than that of natural forest because the regeneration in gaps of plan-tation forests was improved by both gap effects and experimental meas-ures. Similarly, in comparison to natural gaps, regeneration was better enhanced in artificial gaps. Regeneration density exhibited a significantly positive correlation with gap size, but a negative correlation with gap age because the gap size decreased with increasing gap age. Shade tolerance of woody plants affected regeneration density in gaps and understory. Average regeneration density of shade-tolerant species exhibited a sig-nificantly positive response to gaps but densities remained lower in total than those of intermediate and shade-intolerant species. Gap effects on regeneration decreased in response to increasing temperature and pre-cipitation because of the limiting effects of lower temperature and moisture on woody plant regeneration. In summary, forest gaps enhance woody plant regeneration, and the effects of gaps varied by forest type, gap characteristics, environmental factors and plant traits. The results of this meta-analysis are useful for better understanding the effects and roles of gaps on forest regeneration and forest management.  相似文献   

16.
对长白山阔叶红松林的林隙环境状况、林隙内物种种间关系进行了研究。结果表明:林隙与林内物种丰富度不同,乔木物种丰富度略高于林内,而灌木和草本物种丰富度则明显高于林内;林隙内物种种间关系多数呈负相关,极显著正相关(P<0.01)和显著正相关(P<0.05)种对数较少(乔、灌、草),极显著负相关(P<0.01)和显著负相关(P<0.05)种对数也较少(乔)或没有(灌、草),物种间主要表现为竞争关系;林隙中小气候状况发生了显著改变,光照强度和空气温度显著高于林内(P<0.01),空气相对湿度和地温变化规律也表现出显著变化。  相似文献   

17.
对西双版纳自然保护区内思茅松林进行计划烧除的影响情况监测。分析认为,计划烧除对思茅松林的乔木层树种不会产生明显影响,影响较大的是灌木层和草本层植物。在计划烧除过程中,灌木层和草本层植物大部分被烧死,但草本植物在烧除后3个月内已大部分重新萌发,1a后基本达到了烧除前的水平,6个月后灌木树种已基本从死亡植株的基部重新萌发出新的植株。计划烧除对思茅松林不会造成长期的影响,同时由于烧除后郁闭度减小,有利于林下植物的生长和外部植物的进入,可适当增加物种多样性,但丛生的植株对植物的生长有一定的影响。  相似文献   

18.
One of the main threats to the sustainability of community forestry in the Selva Maya is insufficient regeneration of commercial tree species. We evaluated the regeneration status of 22 commercial tree species in a managed semideciduous tropical rain forest in Southern Mexico. The study was carried out in six harvesting areas along a 16-year chronosequence. In each area, 10 transects (1000 m2) were established and all trees >50 cm height and <10 cm diameter were recorded. We evaluated the relationships between seedling and sapling abundance, and canopy cover and disturbance condition (closed forest, canopy gap, log landing, skid road, primary road and secondary road). The area occupied by closed forest canopy increased with age of harvesting area (65–91% of sampled area), while the area occupied by canopy gaps decreased (22–9%). Log landings occupied less than 1% of the sampled area. The predominant canopy cover was 75–80% in all harvesting areas, even in the most recently harvested areas. The highest densities of seedlings and saplings, of both shade tolerant and intolerant species, were found in log landing and skid trails, followed by secondary roads. Even Simarouba glauca, a shade tolerant species, displayed higher densities in sites with ≤65% of canopy cover. Our results support previous findings and indicate that the levels of disturbance caused by existing harvesting procedures may be inadequate to promote sufficient regeneration of not only light demanding desirable species but also for some of the evaluated shade tolerant species of commercial interest. Seedling and sapling densities exhibited by Swietenia macrophylla, for example, are insufficient to support current harvesting rates. The application of a spatial mixed system with patch-cuts of different sizes, a consequence of group felling, could be applied to provide the necessary conditions for the regeneration of the main commercial species.  相似文献   

19.
Understory plants could can act as indicators of temperate forest sustainability, health and conservation status due to their importance in ecosystem function. Harvesting impacts on understory plant diversity depends on their intensity. Variable retention has been proposed to mitigate the harmful effects of timber harvesting, but its effectiveness remains unknown in southern Patagonian Nothofagus pumilio forests. The objectives of this study were to: (i) define a baseline of understory plant diversity in old-growth forests along a site quality gradient and under canopy gaps; (ii) evaluate stands with three different variable retention treatments compared to old-growth forests; and (iii) assess temporal changes during 4 years after harvesting (YAH). A 61 ha N. pumilio forest was selected. Understory plant (Dicotyledonae, Monocotyledonae and Pteridophyta) richness, cover (including woody debris and bare forest floor) and aboveground dry biomass were characterized in summer for 5 years. Before harvesting, baseline samples were conducted along a site quality gradient and outside/inside canopy gaps. Analyzed treatments include a control of old-growth forest (OGF) and three different harvesting treatments with variable retention: (i) dispersed retention (DR) of 30 m2 ha−1 (20-30% retention); (ii) aggregated retention (AR) with one aggregate per hectare and clear-cuts (28% retention); and (iii) combined dispersed and aggregated retention (DAR) with one aggregate per hectare and dispersed retention of 10-15 m2 ha−1 (40-50% retention). Data analyses included parametric and permutational ANOVAs, multivariate classification and ordinations.Before harvesting, 31 plant species were found, where richness, cover and biomass were directly related to site quality. The presence of canopy gaps did not have a significant impact on the measured variables. After harvesting, 20 new species appeared from adjacent associated environments (two from N. antarctica forests and 18 from grasslands and peatlands). At the stand level, understory values were higher in AR > DR > DAR > OGF. Most (81-95%) plant richness at baseline conditions was conserved in all treatments, where inside the aggregates understory remained similar to OGF. Combination of aggregated and dispersed retention (DAR) better limited exotic species introduction and protected sensitive species, improving conservation in harvested stands. Changes in understory variables were observed after the first YAH in all treatments; greater changes were observed in the harvested areas than in aggregates. Changes stabilized at the fourth YAH. As a conclusion, the location of retention aggregates should be selected to preserve species understory diversity of more speciose and diverse habitats or particularly uncommon stands. Implementation of different kinds (patterns and levels) of retention for improvement of biodiversity conservation in harvested forests should be included in timber and forest management planning.  相似文献   

20.
Understory light is essential to the growth and survival of plants, yet the light varies temporally and spatially within forest gaps. Measurement of understory light levels using light sensors is both time and labor intensive. Sunshine duration (SD) has a strong correlation with solar radiation and has been the variable most widely used for estimating solar radiation. The power of SD-based methods for estimating solar radiation lies in its ability to quickly estimate light levels. Although several calculation methods for SD within canopy gaps are available, all the methods oversimplify canopy gaps by classifying them as cylindrical or ellipsoid and thus have a relatively low level of accuracy. In this study we developed a calculation method for SD at any given point within natural canopy gaps and we used SD to estimate solar radiation within 12 canopy gaps on Mt. Taibai in China based on the Angström-Prescott model. We then evaluated the SD-based solar radiation by the total and direct solar radiation derived from a gap light index based on hemispherical photographs (HP). Finally, we analyzed the spatial-temporal characteristics of light levels within these 12 gaps by using the solar radiation derived from SD at hundreds of simulated points in each gap. Our results showed that (1) SD-based solar radiation was not statistically different from HP-based direct solar radiation and had a strong linear correlation with HP-based total solar radiation; (2) growing-season daily mean solar radiation within the 12 gaps varied from 0.08 to 13.28 MJ m−2 day−1 with an average of 4.13 MJ m−2 day−1; (3) solar radiation had a positive correlation with the ratio of the square root of the canopy gap area to the mean canopy height. This relationship was significant but solar radiation had no correlation with the canopy gap area; (4) among most gaps solar radiation was greatest in May while potential SD was longest in June 2008. From these results we can conclude that the SD-based method for estimating solar radiation developed in this study can quickly and accurately estimate light levels at any specified point within canopy gaps. SD-based solar radiation appears to be a good choice for studies on the spatial-temporal characteristics of gap light levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号