首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 112 毫秒
1.
采用体外试验研究添加不同浓度的菊科黑沙蒿乙醇粗提物对瘤胃微生物体外发酵脂肪酸生物氢化、CLA含量及其前体物trans-11C18:1含量的影响。黑沙蒿乙醇粗提物添加的剂量分别是0(对照组)、3、30、300及3000mg/L。培养时间分别是2、6及24h。在每个采样时间点、每个添加量均设3个重复。试验结果表明,添加黑沙蒿乙醇粗提物有降低C18不饱和脂肪酸生物氢化率的趋势,有增加CLA生成前体物trans-11C18:1脂肪酸含量的趋势,有增加CLA含量的趋势。  相似文献   

2.
采用体外试验研究添加不同浓度的菊科黑沙蒿乙醇粗提物对瘤胃微生物体外发酵脂肪酸生物氢化、CLA含量及其前体物trans-11C18∶1含量的影响.黑沙蒿乙醇粗提物添加的剂量分别是0(对照组)、3、30、300及3 000 mg/L.培养时间分别是2、6及24h.在每个采样时间点、每个添加量均设3个重复.试验结果表明,添加黑沙蒿乙醇粗提物有降低C18不饱和脂肪酸生物氢化率的趋势,有增加CLA生成前体物trans-11C18∶1脂肪酸含量的趋势,有增加CLA含量的趋势.  相似文献   

3.
试验采用批次培养法研究了体外条件下添加大豆油对山羊瘤胃培养液中共轭亚油酸及氢化中间产物累积规律的影响,大豆油的添加量为0和100mg/瓶。结果表明大豆油组cis-9,trans-11CLA含量始终显著高于对照组(P〈0.05),且在培养8h时含量达到最高,为6.05mg/g干物质;大豆油组trans-10,cis-12CLA含量显著高于对照组(P〈0.05),其含量随培养时间的延长而逐渐升高;在培养16h时,大豆油组总共轭亚油酸含量达到最大,为11.61mg/g干物质;大豆油组的trans-10C18:1和trans-11C18:1含量显著高于对照组(P〈0.05),在培养过程中,二者含量始终增加。大豆油组总反式C18:1脂肪酸含量随着培养时间的延长而逐渐增加,而总顺式C18:1脂肪酸含量随着培养时间的延长而逐渐下降。  相似文献   

4.
《中国畜牧兽医》2005,32(11):27
本试验旨在研究日粮中添加植物油对高产奶牛生产性能和乳脂中共轭亚油酸(CLA)含量的影响.采用12头泌乳早期(产后30~45 d)荷斯坦奶牛进行三重4×4拉丁方设计.每期试验基础日粮相同,设4个处理组:①对照组(不加油);②添加500 g棉籽油;③添加500 g大豆油;④添加500 g玉米油;每期试验3周,其中前2周为过渡期.试验结果表明日粮中添加植物油有提高产奶量的趋势(棉籽油组产奶量达35.0 kg/d,对照组产奶量34.4 kg/d).乳脂率降低,但乳蛋白率、乳蛋白产量和乳脂产量没有影响.大豆油组乳脂中trans-11 C18∶1含量最高 (23.8 mg/g乳脂),是对照组(12.6 mg/g乳脂)的2倍.与对照组(3.5 mg/g)相比,棉籽油组、玉米油组和大豆油组乳脂中cis-9,trans-11 CLA含量分别提高到6.0、7.1和10.3 mg/g.trans-11 C18∶1与cis-9,trans-11 CLA呈显著的线型关系.添加植物油使奶牛血浆总脂肪酸含量提高2倍,不同来源植物油的试验组差异不显著.大豆油组和棉籽油组奶牛血浆中硬脂酸含量显著高于玉米油组和对照组.添加植物油组奶牛血浆中trans-11 C18∶1显著高于对照组.日粮中添加CLA有提高产奶量的趋势,可显著提高乳脂中CLA含量,大豆油是提高乳脂中CLA含量较为理想的植物油来源.  相似文献   

5.
文章旨在评估日粮添加棕榈油酸钙和包被共轭亚油酸对瘤胃氢化和长链脂肪酸从十二指肠到乳转化的影响。试验将12只体重(61.9±8.57)kg处于泌乳期的多胎次萨能奶山羊随机分为2组,每组6个重复,每个重复1只羊。两个试验组分别在基础日粮中补充50g棕榈油酸钙和包被共轭亚油酸,试验共开展42d。结果显示,两个试验组对山羊干物质、有机物、中性洗涤纤维、淀粉摄入量及养分在十二指肠流量和瘤胃表观消化率均无显著影响(P>0.05)。与棕榈油酸钙组相比,包被共轭亚油酸组有降低干物质和中性洗涤纤维消化率的趋势(P=0.08),但处理组对淀粉消化率无显著影响(P>0.05)。山羊饲喂棕榈油酸钙或包被共轭亚油酸日粮后,脂肪酸的十二指肠流量高于脂肪酸摄入量。包被共轭亚油酸增加了C18:2trans-10,cis-12和C18:2cis-9,trans-11的十二指肠流量,导致两种脂肪酸对瘤胃的氢化保护率均达到16%。C18:1cis-9、C18:2cis-9,12、C18:3cis-9,12,15的瘤胃生物氢化不受包被共轭亚油酸处理的影响(P>0.05)。综上所述,与添加棕榈油钙相比,在奶山羊中饲喂不受瘤胃生物氢化包被共轭亚油酸对干物质、有机物、中性洗涤纤维、淀粉摄入量、十二指肠流量及瘤胃表观消化率无显著影响。包被共轭亚油酸增加了十二指肠的流量和C18:2trans-10,cis-12和C18:2cis-9,trans-11的比例,使瘤胃生物氢化保护率达到15%~16%。  相似文献   

6.
选用12头荷斯坦奶牛随机分组饲喂4种日粮中的一种,采用重复4×4拉丁方设计,每期试验4周,研究饲喂鱼油(FO)、浓缩玉米酒糟可溶物(CDS)作为额外添加亚油酸或两者同时添加时对奶牛泌乳性能的影响。日粮中不添加FO和添加0.5%FO,不添加CDS和添加10?S,采用2×2因子试验设计。采用全混合日粮(TMR)自由采食,粗料和精料比例为55∶45(以干物质计),含16.2%粗蛋白质。对照组、FO组、CDS组和FOCDS组粗脂肪分别为2.86%、3.22%、4.77%和5.02%。FO组、CDS组及两者同时添加的日粮分别与不添加FO组和不添加CDS的日粮组相比,对干物质采食量、饲料转化率、体增重和体况评分无显著影响。各日粮组乳蛋白产量(33.3 kg/d)、能量校正乳、乳蛋白、乳糖和乳中尿素氮相近。与不饲喂FO和CDS相比,饲喂FO和CDS降低乳脂百分率(4个试验组分别为3.85%、3.39%、3.33%和3.12%)和乳脂产量。饲喂FO和CDS提高trans-11 C18∶1(十八碳烯酸),cis-9,trans-11共轭亚油酸(每100 g脂肪酸中CLA含量分别为0.52、0.90、1.11和1.52 g)和trans-10 cis-12 CLA浓度(100 g脂肪酸中分别为0.07、0.14、0.13和0.16 g)。FO和CDS对cis-9,trans-11 CLA的影响没有互作作用,但对十八碳烯酸趋于提高方面存在互作作用。添加CDS可提高trans-10 C18∶1,饲喂FO和CDS血浆中十八碳烯酸与cis-9,trans-11 CLA比率高于乳脂中的比率,这表明饲喂FO和CDS促进乳腺组织中十八碳烯酸合成cis-9,trans-11 CLA。日粮中添加占干物质0.5%的鱼油和富含C18∶2 n-6脂肪酸的CDS提高牛奶中CLA含量,降低乳脂百分率。  相似文献   

7.
试验利用饲喂红叶为主要粗饲料基础日粮的5头经产的芬兰艾尔郡牛,采用5×5拉丁方设计,每期试验21d用于评价添加植物油和亚麻芥对动物的生产性能和乳脂肪酸组分的影响。试验处理为5组:①精料中不添加脂类(对照组);②按29g/kg添加菜籽油(RO);③按29g/kg添加葵花籽油(SFO);④按29g/kg添加亚麻芥油(CO);⑤按29g/kg添加压制亚麻芥(CE)。试验动物随意采食红叶,每天饲喂的精料为12kg。试验处理对粗饲料和总的干物质采食量、全肠道消化率、乳产量和乳成分无影响。饲喂植物油会降低乳中中短链饱和脂肪酸(6∶0-16∶0)含量(包括奇数碳脂肪酸和支链脂肪酸),增加乳中C18∶0和18碳不饱和脂肪酸的浓度。乳中顺-C18∶1、反-C18∶1、非共轭C18∶2、CLA和多不饱和脂肪酸含量增加的相对比例取决于日粮中添加的油的脂肪酸组成。饲喂菜籽油可能会增加反-C18∶1(Δ位于4、6、7、8和9)、顺-9C18∶1、Δ9,11CLA、Δ10,12CLA和C18∶2n-6脂肪酸的含量,而添加CO可能会增加乳中反-13–16C18∶1、Δ11,15C18∶2、Δ12,15C18∶2、反-9,顺-13C18∶2、Δ11,13CLA、Δ12,14CLA、Δ13,15CLA、Δ9,11,15C18∶3和C18∶3n-3含量.饲喂CO和CE会引起乳中C18∶0和顺-9C18∶1浓度降低并增加乳中反-10C18∶1、顺-11C18∶1、反-9,顺-11CLA、反-9,顺-13C18∶2和顺-11,反-15C18∶2占总脂肪酸的比例。乳脂肪酸对CO和CE的响应说明亚麻芥经压制后添加比游离添加对瘤胃内C18多不饱和脂肪酸氢化为C18∶0的速率降低。总而言之,以红叶为粗饲料的基础日粮中适量添加植物油对奶牛青贮饲料的干物质采食量、营养物质的消化和乳产量无影响,但会改变乳脂组分,主要表现为降低饱和脂肪酸含量增加反式脂肪酸含量,富集特殊不饱和脂肪酸。  相似文献   

8.
本研究旨在探讨饲粮中添加硬脂酰辅酶A去饱和酶(SCD)的抑制剂(梧桐子油)和促进剂(罗格列酮)对绵羊背最长肌及皮下脂肪中脂肪酸组成及含量的影响。选用18只平均体重为(27.71±2.64)kg、生理状况相似的杂交公羊(美利奴×小尾寒羊♀)随机分为3组,每组6只。对照组(C组)饲喂基础饲粮+4.8%胡麻籽,梧桐子油组(W组)饲喂C组饲粮+15 g/d梧桐子油,罗格列酮组(L组)饲喂C组饲粮+8 mg/d罗格列酮。试验期50 d,其中过渡期10 d,预试期5 d,正试期35 d。结果表明:1)与C组相比,W组背最长肌中反-11油酸(trans-11 C18∶1)、反-9,12亚油酸(trans-9,12 C18∶2)的含量显著增加(P0.05),亚麻酸(C18∶3)(n-6)含量显著降低(P0.05),皮下脂肪中花生烯酸(C20∶1)含量显著升高(P0.05),其他脂肪酸含量没有显著变化(P0.05);2)与C组相比,L组背最长肌中trans-11 C18∶1、trans-9,12 C18∶2、顺-9,反-11共轭亚油酸(cis-9,trans-11 CLA)、多不饱和脂肪酸(PUFA)含量和PUFA/饱和脂肪酸(SFA)显著增加(P0.05),C18∶3(n-6)和SFA的含量显著降低(P0.05),皮下脂肪中癸酸(C10∶0)、顺-9油酸(cis-9 C18∶1)和花生三烯酸(C20∶3)(n-3)含量显著升高(P0.05)。结果提示,饲粮中添加梧桐子油增加了绵羊背最长肌中trans-11 C18∶1、trans-9,12 C18∶2的含量,降低了C18∶3(n-6)的含量,增加了皮下脂肪中C20∶1的含量;饲粮中添加罗格列酮增加了绵羊背最长肌中trans-11 C18∶1、trans-9,12 C18∶2和cis-9,trans-11 CLA的含量,降低了C18∶3(n-6)的含量,增加了皮下脂肪中C10∶0、cis-9 C18∶1和C20∶3(n-3)的含量。  相似文献   

9.
在泌乳期奶牛日粮中添加trans-18:1亚油酸钙盐(Ca-tFA)或共轭亚油酸钙盐(Ca-CLA)测定乳脂变化。45头荷斯坦奶牛(115d,产奶期),饲喂添加400g EnerG Ⅱ(棕榈油脂肪酸钙盐)对照日粮(51%饲草,以干物质为基础)2周;之后,采用随机区组设计分为5组,每组9头,分别饲喂对照日粮、添加100g Ca-CLA的日粮和分别添加100、200、400g Ca-tFA的日粮,饲喂4周。各处理组奶牛的干物质进食量、产奶量、乳蛋白、乳糖和体细胞数没有受到影响。乳脂率从3.39%(对照组)降到3.3%(100g Ca-tFA)、3.04%(200g Ca-tFA)、2.98%(400g Ca-tFA)和2.54%(Ca-CLA)。乳脂量(对照组1.24kg/d)随Ca-tFA添加量的增加分别下降了60、130、190g/d,Ca-CLA组下降了290g/d。添加Ca-tFA增加了内源cis-9-共轭亚油酸的合成。所以日粮中添加Ca-CLA或Ca-tFA乳中总CLA含量相似。与对照组相比,添加Ca-CLA增加了乳中trans-10 CLA、cis-12-18:2CLA的含量,但trans-18:1CLA异构体的水平没有改变;添加Ca-tFA组乳中多数的trans-18:1CLA异构体含量增加,但trans-10、cis-12-18:2CLA的含量与对照组相似。结论:乳脂降低与乳中trans-10CLA、cis-12-18:2CLA和其它成分的含量无关,可能与trans-10-18:1CLA异构体有关。  相似文献   

10.
本研究旨在探讨日粮中添加不同水平的共轭哑油酸(conjugated linoleic acid,CLA)对奶山羊公羔肉用性能以及肌肉和脂肪中脂肪酸组成的影响.选择28只健康、体重相近[(25.46±4.37)kg]的关中奶山羊公羔,按随机区组试验设计原则等分为4组.每组7个重复,每个重复1只.对照组(C组)饲喂基础日粮,试验组分别饲喂添加1%(CLA1组)、2%(CLA2组)和3%(CLA3组)CLA油的试验日粮.试验期12周.结果表明:日粮中CLA添加水平对奶山羊公羔生长性能无显著影响(P>0.05);除CLA1组的胴体胸深显著高于CLA2组(P<0.05)、CLA1组的胸肌厚度显著高于C组和CLA3组(P<0.05)外,其他肉用性能指标在各组间差异均不显著(P>0.05);肌肉和脂肪中cis-9,trans-11-CLA、trans-10,cis-12-CLA和总CLA的含量随日粮CLA添加水平的升高显著或极显著增加(P<0.05或P<0.01).由此得出,日粮添加CLA可以提高肌肉和脂肪中CLA含量,改善羊肉品质.  相似文献   

11.
Four ruminally and duodenally cannulated Hampshire wethers were used in a 4 x 4 Latin square experiment to determine whether linoleoyl methionine and calcium linoleate would increase duodenal flow of unsaturated fatty acids (C18:2 + cis C18:1). All animals received the same basal diet plus a treatment enclosed in gelatin capsules that were placed directly in the rumen. Of the four experimental treatments, one was a control (empty capsules) and three were 5 g of fatty acid equivalent as either free linoleic acid, calcium linoleate, or linoleoyl methionine. Linoleoyl methionine had the lowest ruminal disappearance of C18:2 + cis C18:1. Ruminal loss of unsaturated fatty acids from each supplement exclusive of feed unsaturated fatty acids was 69.8, 92.9, and 94.6% for linoleoyl methionine, free linoleic acid, and calcium linoleate, respectively. Duodenal flow of methionine also was higher for linoleoyl methionine than for control, free linoleic acid, or calcium linoleate (2.5, 1.7, 2.0, and 2.5 g/d, respectively). Plasma linoleic acid was higher for linoleoyl methionine than for control or free linoleic acid but was not different from calcium linoleate (22.0, 17.8, 18.9, and 20.2% of total fatty acids, respectively). Plasma methionine levels were not different among treatments. Intestinal disappearance of unsaturated fatty acids did not differ among treatments. Linoleoyl methionine resisted ruminal biohydrogenation and was digested normally in the intestine. Calcium linoleate did not escape biohydrogenation by ruminal bacteria.  相似文献   

12.
Five steers (mean BW 526 kg) fitted with ruminal, duodenal, and ileal cannulas were used in a 5 x 6 Youden square design with 14-d periods. Diets contained chopped alfalfa hay, corn silage, and concentrate (25:35:40, DM basis). Treatments were 1) control (no added fat); 2) tallow (T), iodine value (IV) = 51.5; 3) partially hydrogenated tallow (PHT), IV = 30.7; 4) hydrogenated tallow (HT), IV = 6.9; 5) blend (1: 1) of HT and hydrogenated free fatty acids (HTHFA), IV = 9.0; and 6) hydrogenated free fatty acids (HFA), IV = 11.2. Fats replaced cornstarch in the control diet to supply 5% added fatty acids. Intake was restricted to 90% of ad libitum; DMI was similar among diets (mean 9 kg/d). Total fatty acid intake averaged 170, 500, 506, 525, 489, and 491 g/d for treatments 1 to 6, respectively. Flows of total C16, total C18, and total fatty acids to the duodenum were increased by supplemental fat; flows of total C18 and total fatty acids were greater than their intake for all treatments. Flow of total fatty acids associated with ruminal bacteria accounted for 50 and 17% of the total duodenal fatty acid flow for the control and fat-supplemented diets, respectively. Digestibility of total fatty acids entering the small intestine (74, 71, 62, 39, 53, and 63% for treatments 1 to 6, respectively) was greater for the control diet than for fat-supplemented diets and decreased as either saturation (T < PHT < HT) or esterification (HFA < HTHFA < HT) increased. Digestibilities of fatty acids in the total tract followed similar patterns. Ruminal lipolysis of dietary triglycerides decreased linearly as the degree of saturation of fat sources increased. Small intestinal disappearance of triglycerides (89, 75, 51, 44, 64, and 73% of duodenal flow for treatments 1 to 6, respectively) decreased linearly as either saturation or esterification increased. Flows and digestion of gross energy followed patterns similar to those for fatty acids and triglycerides. Resistance to ruminal and small intestinal lipolysis is a major factor contributing to the poor digestibility of highly saturated triglycerides.  相似文献   

13.
EPA/DHA对体外发酵及瘤胃液脂肪酸组成的影响   总被引:2,自引:1,他引:1  
试验旨在研究日粮中添加不同水平的DHA/EPA对体外发酵和瘤胃液脂肪酸变化的影响。试验通过采用持续动态人工瘤胃装置,向发酵罐中添加EPA/DHA,连续培养7 d,分析脂肪酸组成的变化及发酵模式的改变。试验结果表明,日粮添加EPA/DHA使瘤胃液pH升高(与CK相比,Trt1和Trt2分别升高了0.11和0.35),Trt2 与CK相比差异极显著(P<0.01);与CK相比处理组3种主要挥发酸中乙酸浓度下降(P<0.01),丙酸浓度升高(P<0.01),丁酸浓度下降(P<0.01),总挥发性脂肪酸浓度与对照组相比略有下降但差异不显著(P>0.05);日粮添加EPA/DHA使瘤胃液脂肪酸成分发生改变。与CK相比处理组C18∶0含量显著下降(P<0.01); t 11 C18∶1含量显著升高(P<0.01);c-9,t-11 CLA含量显著升高(P<0.01),但是两组之间差异均不显著。因此,日粮中添加不同水平的EPA/DHA可以改变瘤胃发酵模式,影响不饱和脂肪酸瘤胃氢化过程,使脂肪酸组成发生改变,为采用新的营养措施调控反刍动物产品中CLA的含量提供理论依据。  相似文献   

14.
Fatty acid composition of total lipid extracts of muscle and adipose samples from crossbred bulls (N = 34) and steers (N = 35) was determined by gas-liquid chromatography. Samples of semitendinosus, triceps brachii and longissimus muscle and of subcutaneous and perinephric adipose tissue were excised from the right side of each carcass. In addition, thin-layer chromatography was utilized to obtain phospholipid and triacylglycerol fractions from total lipid extracts of semitendinosus and longissimus muscle and subcutaneous adipose tissue from 10 bull and steer cohorts (N = 20). The most prominent sex condition effect was in percentage of total poly-unsaturated fatty acids (PUFA). Bull tissues contained higher (P less than .01) percentages of PUFA than those of steers at all sampling sites. This reflected higher percentages of linoleate (C18:2), linolenate (C18:3) and arachidonate (C20:4) in bull tissues. Most of the PUFA were present as phospholipids in muscle samples. The fatty acid composition of muscle phospholipids was similar regardless of sex condition or muscle sampled. Total lipid extracts of semitendinosus and triceps brachii muscles of both bulls and steers contained from 6 to 10% more unsaturated fatty acids (UFA) compared with M. longissimus. Muscle triacylglycerols contained relatively high percentages of saturated fatty acids (SFA). Semitendinosus and longissimus samples from steers contained higher (P less than .05 and P less than .01, respectively) percentages of total SFA than those from bulls. Steer samples contained slightly higher percentages of palmitic acid (C16:0) compared with bulls at all sampling sites, and this difference was significant for M. longissimus. The fat:lean ratio of muscle tissue is the major factor that determines fatty acid composition.  相似文献   

15.
An experiment was conducted to study disappearance of C14 to C18 fatty acids, lag times and biohydrogenation (BH) rates of C18 fatty acids of ground soya bean and canola seeds in situ. Three ruminally fistulated Dallagh sheep were used to determine ruminal BH of unsaturated fatty acids (UFAs). Differences in the disappearance of fatty acids through the bags and lag times were observed between the oilseeds. We saw that the longer the incubation time of the oilseeds in the rumen, the lower the content of C18:2 and C18:3. Significantly higher lag times for both C18:2 and C18:3 were observed in ground canola compared to ground soya bean. BH rates of C18:2 and C18:3 fatty acids in soya bean were three times higher than those of canola. These results suggest that the fatty acid profile of fat source can affect the BH of UFAs by rumen micro‐organisms. So that UFAs of canola had higher ability to escape from ruminal BH. It seems that fatty acid profile of ruminant products is more affected by canola seed compared to soya bean seed.  相似文献   

16.
Dietary supplementation of stearidonic acid (SDA; 18:4n-3) has been considered a possible strategy to increase n-3 unsaturated fatty acid content in ruminant products; however, little is known about its metabolism in the rumen. In vitro batch incubations were carried out with bovine ruminal digesta to investigate the metabolism of SDA and its biohydrogenation products. Incubation mixtures (4.5 mL) that contained 0 (control), 0.25, 0.50, 0.75, 1.00, 1.25, or 1.50 mg of SDA supplemented to 33 mg (DM basis) of commercial total mixed ration based on corn silage, for dairy cows, were incubated for 72 h at 39°C. The content of most fatty acids in whole freeze-dried cultures was affected by SDA supplementation. Branched-chain fatty acids decreased linearly (P < 0.01), and odd-chain fatty acids decreased quadratically (P < 0.01), particularly from 1.00 mg of SDA and above, whereas most C18 fatty acids increased linearly or quadratically (P ≤ 0.04). Stearidonic acid concentrations at 72 h of incubation were very small (<0.6% of total fatty acids and ≤0.9% of added SDA) in all treatments. The apparent biohydrogenation of SDA was extensive, but it was not affected by SDA concentration (P > 0.05). Biohydrogenation followed a pattern similar to that of other C18 unsaturated fatty acids up to 1.00 mg of SDA. Stearic acid (18:0) and vaccenic acid (18:1 trans-11) were the major fatty acids formed, with the latter increasing 9-fold in the 1.00 mg of SDA treatment. At greater inclusion rates, 18:0 and 18:1 trans isomers decreased (P ≤ 0.03), accompanied by increases in unidentified 18:3 and 18:4 isomers (P = 0.02), suggesting that the biohydrogenation pathway was inhibited. The present results clearly indicate that SDA was metabolized extensively, with numerous 18:4 and 18:3 products formed en route to further conversion to 18:2, 18:1 isomers, and 18:0.  相似文献   

17.
对鲈鲤肌肉脂肪酸进行测定,结果显示:鲈鲤肌肉中含有7种脂肪酸,饱和脂肪酸有3种,不饱和脂肪酸有4种。3种饱和脂肪酸(SFA)总量为28.22%,4种不饱和脂肪酸(UFA)为71.75%,以不饱和脂肪酸中油酸C18∶1含量最高,为44.28%。鲈鲤鱼体肌肉脂肪酸主要由油酸C18∶1、棕榈酸C16∶0、亚油酸C18∶2和棕榈油酸C16∶14种脂肪酸组成,这4种脂肪酸质量分数总和占脂肪酸总质量分数的93.58%。鲈鲤肌肉脂肪酸种类组成与其它几种淡水鱼类比较,存在明显差异。  相似文献   

18.
Two lactating dairy cows fitted with a rumen cannula received successively diets containing 0%, 20%, 34% and again 0% of wheat on a dry matter basis. After 5, 10 and 11 days, ruminal pH was measured between 8:00 and 16:00 hours, and milk was analysed for fat content and fatty acid profile. Diets with 20% and 34% wheat induced a marginal and a severe subacute ruminal acidosis respectively. After 11 days, diets with wheat strongly reduced the milk yield and milk fat content, increased the proportions of C8:0 to C13:0 even- or odd-chain fatty acids, C18:2 n-6 and C18:3 n-3 fatty acids but decreased the proportions of C18:0 and cis-9 C18:1 fatty acids. Wheat also increased the proportions of trans-5 to trans-10 C18:1, the latter exhibiting a 10-fold increase with 34% of wheat compared with value during the initial 0% wheat period. There was also an increase of trans-10, cis-12 C18:2 fatty acid and a decrease of trans-11 to trans-16 C18:1 fatty acids. The evolution during adaptation or after return to a 0% wheat diet was rapid for pH but much slower for the fatty acid profile. The mean ruminal pH was closely related to milk fat content, the proportion of odd-chain fatty acids (linear relationship) and the ratio of trans-10 C18:1/trans-11 C18:1 (nonlinear relationship). Such changes in fatty acid profile suggested a possible use for non-invasive diagnosis of subacute ruminal acidosis.  相似文献   

19.
Eight cows were used to evaluate the effects of supplementation of soy sauce oil (SO) or Ca salts of fatty acids (FA) on rumen fermentation and milk production. The control diet (CO) consisted mainly of hay, corn silage and a concentrate. In the experimental diets, 400 g/day per cow of SO or FA (soybean oil and rapeseed oil) was supplemented to the CO diet. Experimental period for the three treatments was 14 days, and milk samples were taken during the last 2 days and rumen sample was taken on the last day. Dry matter intake was not affected by the treatments. The number of rumen protozoa at 0 h increased by SO and FA diets. Total volatile fatty acids at 2 h after feeding of SO diet was decreased compared to CO. The milk composition yield did not differ among treatments, although the percentages of fat and protein were decreased by SO and FA diets. The proportions of C8–C16 fatty acids in milk fat decreased, and those of C18 increased by SO and FA diets. The proportion of cis‐9, trans‐11 conjugated linoleic acid in milk fat by SO and FA diets increased by 120% and 135%, respectively. In spite of the slight suppression of rumen fermentation by SO diet, negative effects on feed intake and milk production were not detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号