首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Airlift pumps are commonly used in aquaculture systems to circulate water and maintain critical gas levels. In production marine reuse systems, a significant decrease in airlift pump flowrate was visually observed immediately after feeding. In experimental systems without fish, it was found that feed additions of less than 10 mg/L decreased water flow by as much as 78% for diffuser injectors but only 10% for pumps with direct air injection. For both injector types, feed impact diminished over several hours but persisted longer in seawater than in freshwater. Video footage revealed increasing bubble coalescence with the addition of feed. The decrease in pump flow is likely attributed to water property changes due to compounds leaching out of the feed. This decrease in pumping rate has the potential to negatively impact water quality, system performance, and fish health.  相似文献   

2.
There are a number of different types of pumping systems that can be used for marine aquaculture systems. Five common types include: (a) pier mounted pumps, (b) package pump stations, (c) submersible pumps, (d) float mounted pumps, and (e) pumps that only operated over part of the tidal cycle. The ability of these systems to successfully operate under tidal conditions at 48 sites along the United States coasts was evaluated as a function of pump elevation, suction side head losses, water temperature, and salinity. This analysis provides insight into the relative advantages and disadvantages of each approach and presents procedures to assist in the engineering analysis for specific applications.  相似文献   

3.
Centrifugal pumps are indispensable in aquaculture engineering. The existence of bubbles is inevitable in a centrifugal pump and may affect the performance of the pump which delivers solid-liquid two-phase flow. Thus, this study aims to analyze the effects of gas-phase properties on the internal characteristics of a centrifugal pump by using a computational fluid dynamic code based on Eulerian multiphase mode and a standard k–ε two-equation turbulence model. Results show that gas-phase properties, such as concentration and diameter, affect the absolute pressure and the phase distribution in the centrifugal pump. The gas-phase distribution on the working faces of blades is greater than forces on the back face of the blades. The larger the diameter of the gas-phase is, the easier it is to be concentrated; Thus, the working face of the blades is prone to cavitation and corrosion, and with the increase of the bubble size, the cavitation corrosion of the back surface of the impeller becomes more serious. The solid-phase velocity and static pressure distribution increase with increasing concentration or diameter of gas-phase. The solid-phase is more easily leave the impeller area and enter the volute because of the existence of gas-phase, which may lead to abrasion of volute. The existence of gas makes the solid velocity distribution in the centrifugal pump more uneven, which may cause uneven wear of the centrifugal pump. The obtained results by this method can reveal the effects of gas-phase properties and wear on the internal characteristics in centrifugal pumps and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps.  相似文献   

4.
随着人口与经济的发展,水产养殖业在世界范围内迅速兴起,集约型工厂化循环水养殖因其高密度、低污染、高效率等独特的优势,契合水产养殖业绿色发展理念,已成为水产养殖转型升级的重要方向之一。水作为循环水养殖系统中重要的环境因子,其流态能够直接影响鱼类的生长及福利,同样,鱼类存在及运动也会影响到系统流态的构建。本文综合分析了循环水养殖系统中流场条件对不同鱼类生长发育及福利的影响,鱼类及其运动行为对养殖池内水动力条件及性能的影响,以及鱼类对养殖池内流场流态、水体混合等的影响。将研究鱼类运动对流场特性的影响方法主要归纳为实测法和数值研究,通过对比分析2种方法的优点和不足之处,并结合当前循环水养殖产业系统构建中的问题提出针对性方法建议,旨在为系统中水动力条件的设计拓展思路,促进循环水养殖产业流态构建向“鱼”与“水”兼顾的方向发展。  相似文献   

5.
Split ponds are recently developed pond‐based aquaculture systems that allow intensification of catfish aquaculture. Successful industry‐wide adoption of newly developing technologies like split‐pond systems will depend upon their productivity and cost efficiencies. Costs and production performance of the following three split‐pond design scenarios were monitored in Arkansas and Mississippi: (1) research design developed at the Thad Cochran National Warmwater Aquaculture Center, Stoneville, Mississippi; (2) waterwheel design tested on commercial catfish ponds; and (3) screw‐pump design tested on commercial catfish ponds. An economic engineering approach using standard enterprise budget analysis was used to develop estimates of breakeven prices (BEPs) ($/kg) for producing foodsize hybrid catfish (♂Ictalurus furcatus × ♀Ictalurus punctatus) for each scenario. Estimates of BEPs of hybrid catfish raised in split ponds ranged from $1.72 to $2.05/kg. The cost of catfish production in split ponds was sensitive to yield, fish prices, and feed prices. Annual net cash flows from both commercial split‐pond systems were high and sufficient to make the investment profitable in the long run. Feed price, feed conversion ratio, and yield contributed the most to downside risk of split ponds.  相似文献   

6.
Interest is growing in offshore aquaculture as a means of overcoming environmental concerns that plague nearshore and coastal aquaculture production. The challenge of dealing in the offshore environment adds expenses that are not present in other aquaculture production systems. We collected financial and production performance data from a commercial‐scale offshore aquaculture production system for rock bream off the coast of Korea. Financial performance of the system was evaluated using Aquasim, a stochastic financial simulator. To compare performance, we focused on the 10‐yr internal rate of return (IRR) and net present value based on different assumptions regarding fish survival rates and market prices. The baseline model that used the observed survival and market prices had a high probability of financial success and an IRR of 18%. Financial performance became a lot riskier when we assumed that survival rates followed a triangular distribution with a 25% minimum survival that increased 5% per yr, even when the mean survival rate was as high as 97%. Rock bream aquaculture could be successful under that survival scenario if prices are high for the first 5 yr and then start declining in consequence of the industry expanding. In that case, the IRR is around 14%, but with greater variability than the baseline. If prices fall from the initial baseline level in the early yr of production, then the operation has little chance of surviving.  相似文献   

7.
Tropical and subtropical climatic conditions in India present an ideal and unique opportunity for being the leader in tropical marine finfish aquaculture. However, the problem persist due to non-availability of marine finfish seed for the culture. In response to this problem, broodstock development of different tropical marine finfishes for seed production was started. The present study was undertaken to design a recirculating aquaculture system (RAS) and studying their performance in managing the various water quality required for the marine finfish broodstock development and breeding. The design of RAS, developed in the present study, included a broodstock tank, egg collection chamber, electrical pump, rapid sand filter, venturi type protein skimmer and biological filter. Two RAS were designed, one was stocked with a demersal fish species, orange spotted grouper (Epinephelus coioides) and the other was stocked with a pelagic fish species, Indian pompano (Trachinotus mookalee) at the rate 1 and 0.5 kg/m3 with a sex ratio of 1:1 and 1:2 (female: male) respectively. Various physio-chemical parameters, viz, total ammonia nitrogen (TAN), nitrite, nitrate, pH, alkalinity, temperature, free carbon dioxide (CO2) and dissolved oxygen (DO) of both tank water were analyzed to assess the performance of recirculating aquaculture system in maintaining the water quality. Gonadal development of the fishes was assessed and the spawning performance was recorded and finally, economic performance of the system was also evaluated. During the entire experimental period, mean monthly total ammonia nitrogen was less than 0.07 and 0.06 mg L−1 and mean monthly nitrite was less than 0.02 and 0.01 mg L−1 in orange spotted grouper and Indian pompano RAS tanks respectively. The pH (7.8–8.2), DO (>4 mg/L) and alkalinity (100–120 mg/L) were found to be in optimum range in both recirculating aquaculture systems. Carbon dioxide was found to be nil during the entire experimental period in both the systems. In fact these levels were comparable or less than that is reported as the permissible limits for broodstock development. Indian pompano and Orange spotted grouper matured and spawning was obtained with production of fertilized eggs round the year. Economic evaluation showed the price of 10,000 fertilized eggs of orange spotted grouper to be US $ 1.33. The design of RAS devised in the present study is efficient in controlling and maintaining optimum water quality for broodstock development of both demersal and pelagic finfishes. The fishes stocked in RAS attained final maturation and round the year spawning was obtained.  相似文献   

8.
Gas bubble disease and improper inflation of swim bladders in larval striped bass Morone saxatilis have been recently related in laboratory studies to very low levels of gas supersaturation. In other species, kills resulting from gas supersaturation have been reported in natural waters as large as Galveston Bay. We monitored warmwater ponds during spring to determine the extent of naturally occurring gas supersaturation and compared these levels with levels of gas saturation in ponds equipped with airlift pumps. Total gas pressure averaged 110% in the morning at the surface of non-aerated ponds and in the afternoon in ponds with airlift pumps. At other times of the day total gas pressure averaged 106–107% at the surface and bottom, morning and afternoon, in both aerated and non-aerated ponds. No evidence of gas bubble disease was found in 15-day-old striped bass fry cultured for 42 days in either aerated or non-aerated ponds.  相似文献   

9.
Abstract The geographic distribution of the Atlantic white shrimp Penaeus setiferus is in coastal waters from New York to Florida and around the Gulf of Mexico. Beside its value to commercial fisheries, this shrimp is sold as bait for recreational fishing. Previous data suggest that demand for live bait shrimp cannot be satisfied by commercial fleets. A 120-d trial was designed to study production of bait size P. setiferus at high densities in eight small outdoor ponds in south Texas. A 24–1 fractional factorial design was applied to study the effects of postlarval (PL) density (350 and 700 shrimp/m2), feed type (A and B), and water circulation methods (with and without airlift pumps or center pond dividers) on shrimp growth, survival and yield. No significant differences in survivals or yields were found between treatments (P = 0.2). Feed type ( P = 0.011), airlift pumps ( P = 0.021), and center dividers ( P = 0.026), had significant impacts on shrimp growth rates. Density effect on growth was not statistically significant ( P = 0.055). This study demonstrated that 6-d-old postlarvae can be stocked at 700 per square meter and reached a bait size (6.2 g) in 94 d with a 73.6% survival and a yield equivalent to 31,300 kg/ha when offered a commercial shrimp feed. A preliminary economic analysis based on this data suggests that operating a bait shrimp farm in Texas with two crops/yr will show profitability within 7 to 12 yr with an internal rate of return of 6.5 and 17.6%, respectively.  相似文献   

10.
中国深远海养殖发展方式研究   总被引:1,自引:0,他引:1  
在渔业转型发展进程中,发展深远海养殖是突破生态环境和自然资源约束性挑战,实现新时期中国海水养殖业可持续发展的战略方向。基于联合国粮食及农业组织(FAO)关于深远海养殖发展的定义,结合中国海水养殖业发展水平和海域条件,对中国深远海养殖概念进行了界定。提出养殖品种选择、养殖系统构建、养殖海域规划是关系深远海养殖产业稳步有序发展的重要因素。在养殖品种选择方面,应重点考虑经济潜力、适应水温和养殖技术;在养殖系统构建上,分析比较了不同养殖系统应用于深远海养殖的适宜性、安全性和经济性;在养殖海域规划方面,应重点考虑养殖排放、环境承载力和海域条件。  相似文献   

11.
养殖水质在线监控的系统集成技术   总被引:2,自引:2,他引:0  
应用多参数水质传感器、PAC场控制器、IEEE802.15.4无线传感器网络、CAN现场通信网络等技术进行系统设计,创建低成本、高效率、性能匀称、可扩充系统的水产养殖水质测试和水质调控的集成系统。认为推广普及规范化的水质监控手段,对促进水产养殖的科技进步和产业升级,实现水产养殖业增长方式转变有积极的意义。指出在现阶段发展我国的“数字化”养殖水质监控系统时,要注意现场设备的数字化、智能化、多功能化、网络化,开发低价位性能可靠的数字化水质传感器,提高信息的共享性和发挥养殖水质数据的应用价值。  相似文献   

12.
基于物联网和GIS的水产养殖测控系统平台设计   总被引:1,自引:0,他引:1  
针对水产养殖水质多参数监测的需求和现有水质环境监测系统存在的问题,设计了一种基于物联网和地理信息系统(GIS)的水产养殖测控系统。通过整体性能的研究分析,设计了测控系统平台的3层体系架构(传感控制层、传输层和应用层),提出了自顶向下、逐步求精以及模块化、结构化的设计方法;根据采集数据传输的可靠性、稳定性等要求,提出WiFi网状组网的配置方法,设计了系统硬件的供电模块;研究了本地服务器、中心服务器和控制模块软件系统;通过网络丢包率测试和水质溶氧量分析,验证了系统数据传输的可靠性,并在溶氧超出范围后自动控制增氧机,有效地调节池塘溶氧量。相比于传统的水产养殖远程监控系统,该系统通过物联网和GIS技术的融合,实现了水质环境的远程无线测控和区域化水产养殖管理,因此能够大大推进水产养殖智能化、自动化系统建设的发展,适应水产养殖的需要。  相似文献   

13.
A study was undertaken to measure the water flow (Qw) delivered by a vacuum airlift designed for recirculating aquaculture systems (RAS) in fresh (<1‰ of salinity) and sea water (35‰ of salinity). The vacuum airlift consists of two concentric tubes connected at their top to a depression chamber. The water rises in the inner tube as a result of air being injected in its lower section and flows back through the external downcomer tube. The vacuum airlift was adjusted at three different lengths: 2, 4 or 6 m and water discharge could be lifted from 0 to 30 cm. Air flow rate (Qg) varied from 0 to 80 L min−1. Different types of air injectors were tested, delivering different bubble sizes (0.1–5 mm) depending on porosity and functioning at low or high injection pressure. Results show an increase in water flow when pipe length and air flow were increased and lift height reduced. Water flow also depended on the type of water and ranged from 0 to 35 m3 h−1 (0–580 L min−1) for fresh water and only from 0 to 20 m3 h−1 (0–330 L min−1) for sea water (for a 6 m high vacuum airlift). This difference was attributed to the smaller bubble diameter and higher gas holdup (ɛg) observed in sea water (0–20%) compared to fresh water (0–10%). When bubbles were present in the downcomer tube, they created a resistance to flow (counter-current airlift) that slowed down liquid velocity and thus water flow. Increasing the vacuum made it possible to use low air injection pressures and high injection depths. Vacuum also increased bubble size and airflow (20 L min−1 at atmospheric pressure to 60 L min−1 at 0.3 barA) and thus water flow rates. With RAS, the presence of fish feed in water rapidly increased water flow delivered by the airlift because of changes of water quality and gas holdup. When working with low head RAS (under 0.3 m), vacuum airlift could save up to 50% of the energy required for centrifugal pumps. An empirical predictive model was developed and calibrated. Simulation shows a good correlation between predicted values and measurements (R2 = 0.96).  相似文献   

14.
Recirculating aquaculture systems (RAS) are often designed using simplified steady-state mass balances, which fail to account for the complex dynamics that biological water treatment systems exhibit. Because of the very slow dynamics, experimental development is also difficult. We present a new, fast and robust Modelica implementation of a material balance-based dynamic simulator for fish growth, waste production and water treatment in recirculating aquaculture systems. This simulator is used together with an optimization routine based on a genetic algorithm to evaluate the performance of three different water treatment topologies, each for two fish species (Rainbow trout and Atlantic salmon) and each in both a semi-closed (no denitrification) and a fully recirculating version (with denitrification). Each case is furthermore evaluated at both saturated and supersaturated oxygen levels in the fish tank influent. The 24 cases are compared in terms of volume required to maintain an acceptable TAN concentration in the fish tank. The results indicate that the smallest volume is obtainable by introducing several bypass flows in the treatment system of a semi-closed RAS and that the gains can be significant. We also show that recycling already treated water back upstream in the treatment process degrades performance and that if one wishes to have a fully recirculating system with minimal water exchange, then the flows of oxygen, carbon and nitrogen must be carefully considered. For several of the cases, no optimum with denitrification could be found. We thus demonstrate that the best configuration and operation strategy for water treatment varies with the conditions imposed by the fish culture, illustrating the complexity of RAS plants and the importance of simulations, but also that computer-driven optimal design has the potential to increase the treatment efficiency of biofilters which could lead to cheaper plants with better water quality.  相似文献   

15.
Split-pond aquaculture systems are being implemented by United States (US) catfish farmers as a way to improve production performance. The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two water conveyance structures. Water is circulated between the two basins with high-volume pumps (water circulators) and many different units are being used on commercial farms. In this study circulator performance was evaluated with four different circulating systems. Rotational speeds ranged from 0.5 to 3.5 rpm for a twin, slow rotating paddlewheel; 12.5 to 56.5 rpm for a paddlewheel aerator; 60 to 240 rpm for a high-speed screw pump; and 150 to 600 rpm for an axial-flow pump. Water flow rates ranged from 8.6 to 77.6 m3/min and increased with increasing rotational speed. Power input varied directly with flow rate and ranged from 0.24 to 13.43 kW for all four circulators. Water discharge per unit power input (i.e., efficiency) ranged from 3.5 to 70.9 m3 min−1 kW−1 for the circulators tested. In general, efficiency decreased as water flow rate increased. Initial investment cost for each circulator and complete circulating system ranged from US $5850 to $22,900, and $15,335 to $78,660, respectively. The least expensive circulator to operate was the twin, slow-rotating paddlewheel, followed by the paddlewheel aerator, high-speed screw pump, and axial-flow pump. Our results show that four different circulating systems can be effectively installed and used to circulate water in split-ponds. However, water flow rate, rotational speed, required power input, efficiency, initial investment cost, and operational expense varied greatly among the systems tested. Long term studies are underway to better define the relationship between water flow rate and fish production in split-ponds. That information will help identify the water circulating system most appropriate for split-pond aquaculture.  相似文献   

16.
网箱真空活鱼起捕机的研究   总被引:4,自引:0,他引:4  
采用真空负压原理,利用负压抽吸与零压排放交替起捕的方法,研制了由真空泵、耐压集鱼罐和全自动控制电路等组成的网箱活鱼起捕机。起捕试验结果表明,在1:1的鱼水比例时,该机的活鱼起捕量可达(15~20)t/h,且对鱼体无伤害,其设备技术性能稳定可靠、自动化程度高,可广泛应用于网箱养殖生产。  相似文献   

17.
深海网箱作为现代海洋渔业拓展外海养殖空间的重要养殖装备,其布设环境一般较近海更为复杂恶劣,对于保障其安全性和稳定性提出了更高的要求。本研究针对一种单点系泊潜浮式船型桁架网箱开展了模型比尺为1︰40的波浪流水池试验,重点围绕该网箱在不同吃水深度受波浪作用的系泊受力、升沉、纵摇和横摇等水动力学特性进行了比较分析。试验结果显示,波高为7.5~12.5 cm时(原型3~5 m),网箱漂浮状态即可以满足养殖需求,其系泊力及运动响应均较小,具备较高的安全性和稳定性;恶劣海况时,即本试验中波高为15.0和17.5 cm (原型6 m和7 m),通过整体下潜的方式网箱具有良好的避浪性能,其中,系泊力减幅达70%以上,升沉、纵摇和横摇等运动分量减幅也达20%~60%;波流试验中,海流对网箱避浪性能存在一定的影响,但总体上仍然具有较好的避浪效果。研究结果可为单点系泊潜浮式深海网箱的安全运行与日常管理提供理论依据和数据参考。  相似文献   

18.
在工厂化水产养殖中,有许多水体参数需要检测和控制。本文对使用物理手段准确控制的参数,即温度,溶解氧,pH值进行研究,说明控制的意义,提出控制方法,并建立组态工程,方便对重要参数进行在线监测和控制。  相似文献   

19.
20.
鱼菜共生管式结构试验及应用模式研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文讨论一种以气力提水循环、生物膜降解和立体管式植物栽培为特征的鱼菜共生系统,在养鱼密度31.5kg/m3的条件下,芹菜 75天的试验产量为23.69kg/m2 。试验表明,用生物膜结合栽培植物的处理方法对养鱼污水有不同程度的净化效果,光照对植物的生物量也有影响,得出每立方米养鱼水体配置 2 ~4m2栽菜面积和管式栽槽直径以 10~20cm为宜的设计参数。此外,论及该形式的咸水鱼菜共生和磁场增效(8% ~10%)试验,并提出工厂化养鱼中生物膜、藻类、植物等多样生物综合净水的生态养鱼应用模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号