首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AquaMats are high surface–area polymer filters whose use produces higher yields with reduced health risks for the aquaculture product. We used AquaMats in pilot-scale systems and in intensive commercial Pacific white shrimp Litopenaeus vannamei production systems to stabilize and improve water quality by removing ammonia. In the pilot-scale systems, evaluation of the effects of temperature and hydraulic retention time (HRT) on ammonia removal rate indicated that the surface total ammonia nitrogen (TAN) conversion rate (STR, mg TAN/m2-day) increased with increasing temperature and decreasing HRT. The highest STR of 319.8 mg TAN/m2-day was observed at a temperature of 30 °C and a HRT of 5 min. In the commercial shrimp production systems, ammonia levels were significantly greater in the control systems (without AquaMats) than in the treatment systems (with AquaMats) after 6 days (P < 0.05). Results suggested that eight 150 cm × 90 cm pieces of AquaMats (0.057 m2 surface area per m3 culture volume) were sufficient for promoting nitrification in this system. The growth rate of juvenile shrimp was most enhanced in treatment C (with 12 pieces of AquaMats, 0.085 m2/m3), which exhibited a significant decrease in ammonia.  相似文献   

2.
One pilot-scale portable Nutrient Film Technique (NFT) aquaponic system has been designed, developed, and tested at ICAR-CIFA, Bhubaneswar for a period of 90 days (October to December 2018) to study the efficiency of the new design. The experimental setup has three separate units, each consisting of four major components, such as Fibreglass Reinforced Plastic (FRP) round fish culture tank (ø2.15 × 0.9 m) with operational capacity 2800 L, biofilter unit made up of Polypropylene (PP) of 100 L capacity, FRP rectangular hydroponics tank (4 × 0.9 × 0.35 m) having 2.64 m2 plantation area and High-density Polyethylene (HDPE) sump (ø0.6 × 0.7 m) of 200 L capacity. Implementation of custom designed and calibrated automatic water recirculation system gives an average flow rate of 94.7 L/h for continuous flow of nutrients from fish culture tank to hydroponics tank. The designed system harnesses gravity flow in 75 % of the cycle. For performance assessment, the system was initially stocked with 54 numbers of fish fry/m3 (153.7 g/m3) of pangas (Pangasius hypophthalmus) in culture tank and 27 marigold (Tagetes erecta) plants/m2 in hydroponics tank. Length and weight gain of fish were by 77.04 % and 397.2 % from initial, respectively, and marigold plant harvested 107 number of flowers/m2. The Total Ammoniacal Nitrogen (TAN) reduction in biofilter was found to be 61.97 %.  相似文献   

3.
A low‐head recirculating aquaculture system (RAS) for the production of Florida pompano, Trachinotus carolinus, from juvenile to market size was evaluated. The 32.4‐m3 RAS consisted of three dual‐drain, 3‐m diameter culture tanks of 7.8‐m3 volume each, two 0.71‐m3 moving bed bioreactors filled with media (67% fill with K1 Kaldness media) for biofiltration, two degassing towers for CO2 removal and aeration, a drum filter with a 40‐µm screen for solids removal, and a 1‐hp low‐head propeller pump for water circulation. Supplemental oxygenation was provided in each tank by ultrafine ceramic diffusers and system salinity was maintained at 7.0 g/L. Juvenile pompano (0.043 kg mean weight) were stocked into each of the three tanks at an initial density of 1.7 kg/m3 (300 fish/tank). After 306 d of culture, the mean weight of the fish harvested from each tank ranged from 0.589 to 0.655 kg with survival ranging from 57.7 to 81.7%. During the culture period, the average water use per kilogram of fish was 3.26 or 1.82 m3 per fish harvested. Energy consumption per kilogram of fish was 47.2 or 22.4 kwh per fish harvested. The mean volumetric total ammonia nitrogen (TAN) removal rate of the bioreactors was 127.6 ± 58.3 g TAN removed/m3 media‐d with an average of 33.0% removal per pass. Results of this evaluation suggest that system modifications are warranted to enhance production to commercial levels (>60 kg/m3).  相似文献   

4.
Three different commercially available structural plastic media were evaluated in triplicate in moving bed biofilters under low salinity (11–12 ppt) warm water culture conditions and two different feed loading rates. The culture system consisted of nine separate modules that include a double drain fish culture tank paired to a moving bed biofilter. The biofilters were filled with 0.11 m3 of one of three different types of floating plastic structured media. The three types of media evaluated were K1 kaldnes media, MB3 media, and AMB media. Volumetric total ammonia nitrogen (TAN) removal rates (g TAN removed/m3 media-day), TAN removal efficiency, and biofilm kinetic constants, Ki (h−1) were determined for the three media types at two different daily feed load rates of 3.5 and 8.2 kg feed/m3 media. The feed provided was a 4.8 mm slow sinking marine grower diet pellet (45% protein, 17% fat). Average (±standard deviation, SD) volumetric TAN removal rates (VTR) at the lower feed load for the three media types were 92.2 ± 26.3, 86.1 ± 27.5, and 82.5 ± 25.9 for the MB3, AMB, and K1 kaldnes media, respectively. At the higher feed load the average VTR for the three media types was 186.4 ± 53.7, 172.9 ± 47.8, and 139.9 ± 38.9 for the MB3, AMB, and K1 kaldnes media, respectively. Influent TAN concentrations varied by the feed load rate and ranged from 0.55 to 0.93 mg/L and 0.83 to 1.87 mg/L for the low and higher feed loads, respectively. The percent TAN removal rates for the MB3 media was the highest of the three media types at both the low and high feed load rates averaging 12.3% and 14.4%, respectively. The MB3 media was selected for use in the moving bed biofilters because of the greater VTR and removal efficiency results for use in the 0.11 m3 moving bed biofilters of the hatchery recirculating aquaculture system.  相似文献   

5.
Three kinds of locally available plastic biofilter media with different configurations (plastic rolls, PVC pipes and scrub pads) were evaluated for their efficiency in organic waste removal from the effluents of an intensive recirculating tilapia culture system. A set of three types of solid-removing filters consisting of screened sedimentation; upflow sand as well as plastic bead filtration accomplished the mechanical filtration. Values of critical metabolic wastes like total ammonia nitrogen (TAN) (0.92 ppm) and nitrite-nitrogen (NO2-N) (0.22 ppm) were found to be well within the acceptable limits, while other water quality parameters in the culture water were also maintained within the normal range by the filtration system. Removal rates of 3.46 g TAN/m3 per day and 0.77 g NO2-N/m3 per day, as well as TAN and NO2-N removal efficiencies of 29.37 and 27.3% respectively, were established to be the best for the plastic-roll biofilter medium as compared to PVC-pipe and scrub-pad media. Percent removal of TAN and NO2-N per pass of the biofilter (25.49 and 26.3% respectively) and the specific TAN and NO2-N removal rates (43 and 9.6 mg/m2 per day) of plastic rolls were also found to be superior to the other two biofilter media. Pieces of PVC pipes as biofilter medium is recommended to be used in the biofilters in view of their cheaper cost.  相似文献   

6.
The paper addresses two potential applications for electrochemical ammonia oxidation within the operation of recirculating aquaculture systems, in which nearly complete removal of N species is required. In one described application, a physical–chemical ammonia oxidation method is suggested to entirely replace conventional biological treatment methods (i.e. nitrification/denitrification). The second described method is suggested as a final polishing step for removing ammonia from effluents of denitrification reactors supplied with intrinsic organic matter, prior to the discharge of the water. Empirical results and cost assessment are reported for the second alternative, while the first, which was recently published, is discussed with respect to improvements, operational conditions and field tests required to induce its commercial application. The polishing alternative was shown capable of efficiently removing TAN in the effluents of RAS denitrification reactors fed with intrinsic organic solids. The cost for treating denitrification reactor effluents with TAN concentration of 10 mgN/L was estimated at 6.67 cent/m3 of discharged water. Since the chloride ion concentration in seawater and in most brackish waters is high, combining the intrinsic organic carbon denitrification process with subsequent ammonia polishing by electrochemically produced active chlorine may be a competitive approach for the removal of nitrogen species from seawater and brackish water RAS.  相似文献   

7.
A mathematical model is framed for a goldfish recirculating aquaculture system based on unsteady-state mass balance for prediction of the concentration of total ammonia nitrogen (TAN), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N), dissolved oxygen (DO) and total suspended solids (TSS). The goldfish were stocked at 100 numbers per m3 of rearing water volume of 5 m3 tank capacity in the years 2009 and 2010 and the model was calibrated and validated. The recirculation flow rate was fixed at 29,000 L/day. The model parameters were estimated as kTAN (mg of TAN generated per kg of feed): 20,000, M (mortality rate): 0.002 day−1, α (percentage of feed conversion to suspended solids): 23.8, koxy (mg of oxygen required for fish respiration per kg of feed applied in unit time): 300,000, kb (partial nitrification in the culture tank): 0.86 and the reaction rate constants, k1 and k2: 84.65 day−1 and 42.03 day−1 respectively and temperature growth coefficient (TGC): 5.00 × 10-5. The model efficacy was adjudged by estimation of the coefficient of determination (R2), root mean square error (RMSE), Nash-Sutcliffe modelling efficiency (ENS) and graphical plots between predicted and observed values.  相似文献   

8.
The nitrification process is a widely used biological approach responsible for ammonia and nitrite removal in recirculating aquaculture system (RAS) biofilters. Given this pivotal role, the influence of different water quality parameter on nitrification efficiency is important information for RAS operations. One influencing parameter is salinity, and salinity fluctuations in freshwater RAS biofilters are reported to affect the nitrifying bacteria. This study investigated the effects of abrupt increase in salinity in freshwater RAS on substrate-dependent (1’-order) as well as substrate independent (0’-order) nitrification rates. A 100% inhibition was found for surface specific removal (STR) of total ammonia nitrogen (TAN) and surface specific nitrite removal (SNR) when salinity was abruptly increased to 25‰ and above. A fast turnover (i.e. steep decline in [NH4-N+] and [NO2-N]) were observed at lower salinities (≤10‰), while limited/no degradation of either ammonia or nitrite was seen at salinities above 25‰. At low substrate loading (1’-order process), removal rate constants (k1a) of 0.22 and 0.23 m d-1 were observed for ammonia and nitrite degradation, respectively, declining to 0.01 m d-1when adding marine RAS water increasing the salinity to 15‰. Similar observations followed at high nutrient loadings (0’-order process) with STR and SNR of 0.10 and 0.12 g N m-2 d-1, respectively, declining to 0.01 g N m-2 d-1 at 15‰. When salinities of 25‰ and 35‰ were applied, neither TAN nor nitrite degradation was seen. The results thus demonstrate a pronounced effect of salinity changes when freshwater RAS biofilters are subjected to fast/abrupt changes in salinity. RAS facility operators should be aware of such potential effects and take relevant precautions.  相似文献   

9.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

10.
Four fixed-film biological filters (rotating biological contactor, biodrum, trickling filter, and a submerged anaerobic filter) were tested for the removal of ammonia using a simulated warmwater fish and invertebrate culture water supply. Filter design may be determined based on the results of ammonia removal efficiency over a wide range of hydraulic loads. The rotating biological contactor (RBC) provided the best ammonia removal (over 90%) up to about 0·06 m3 m?2 day?1 (1·2 gpd ft?2). The biodrum removed over 80% of the ammonia to a hydraulic load of 0·05 m3 m?2 day?1 (0·9 gpd ft?2). The trickling filter removed 50% of the ammonia at a hydraulic loading of 0·012 m3 m?2 day?1 (0·3 gpd ft?2).  相似文献   

11.
The effects of total ammonia (TAN; NH4++ NH3) on the reproductive performance, survival, growth and moulting of wild Penaeus paulensis (Pérez-Farfante) broodstock were studied to determine optimal rearing conditions. Based on previously established ‘safe levels’ for P. paulensis adults (3.4 and 4.2 mg L?1 TAN), two 46-day trials were performed. In the first trial, six females and four males were stocked in 700-L tanks under three treatments (0.37, 2.53 and 6.86 mg L?1 TAN) with at least two replicates per treatment. In trial 2, ammonia levels of 0.68, 1.55 and 2.62 mg L?1 TAN were assigned to three 6000-L tanks, each stocked with 36 females and 24 males. Ammonia only influenced the survival of females and the growth of males exposed to 6.86 mg L?1 TAN (0.21 mg L?1 NH3). No further effects of ammonia on moulting and reproductive performance were detected. The present results demonstrate that up to 2.62 mg L?1 TAN, coupled with 0.07 mg L?1 NH3 and 1.50 mg L?1 NO2, will not impair reproductive performance of P. paulensis. It is suggested that water quality for the maturation of P. paulensis may be maintained through lower daily water exchange rates instead of the usual high levels (150-300%) employed on penaeid shrimp maturation systems.  相似文献   

12.
The red seaweed Asparagopsis armata (Harvey; Rhodophytae, Bonnemaisoniaceae) produces biologically active secondary metabolites that are valuable natural ingredients for cosmetics and medicine and its cultivation may therefore be a profitable venture. The tetrasporophyte of this species (“Falkenbergia rufolanosa”) was successfully tank-cultivated as a continuous biofilter for the effluent of a commercial fish farm in southern Portugal. Optimal stocking density for highest biomass yield and a low level of other algal species in winter and late spring was 5×g centrifuged fresh weight l− 1. The effect of total ammonia nitrogen supply (TAN flux) on biofiltration and biomass yield was investigated in winter and spring. Results revealed that A. armata is currently the seaweed-biofilter with the highest TAN removal of up to 90 μmol l− 1 h− 1 at a TAN flux of about 500 μmol l− 1 h− 1. In the tanks used, this is equivalent to a removal of up to 14.5 g TAN m− 2 day− 1. At a lower TAN flux of about 40 μmol l− 1 h− 1, TAN removal by A. armata is more than double to what is reported at this flux for another successful seaweed biofilter, the genus Ulva. Monthly variation of A. armata biomass yield peaked in May and was lowest in January. At TAN fluxes between 300 and 400 μmol l− 1 h− 1, an average water temperature of 21.7 °C and a total daily photon flux density of 47 Mol m− 2, seaweed yield was over 100 g DW m− 2 day− 1 with a recorded maximum of 119 g. During spring, autumn and early summer, the biomass of A. armata within the experimental tanks doubled every week. A model for the up scaling of this finfish integrated aquaculture of A. armata varies the investment in biofilter surface area and estimates the return in biofiltration and biomass yield. Highest TAN removal efficiencies will only be possible at low TAN fluxes and a very large biofilter area, resulting in a low production of biomass per unit area. To remove 50% of TAN from the effluent (1 mt Sparus aurata; 21 °C), 28 m2 of biofilter, designed to support a water turnover rate of 0.8 Vol h− 1 would be necessary. This system produces 6.1 kg FW (1.5 kg DW) of A. armata per day and has the potential to turn biofiltration into an economically sustained, beneficial side effect.  相似文献   

13.
Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examine the effect of total suspended solids (TSS), sludge accumulation and nutrient loading rate on total ammonia nitrogen (TAN), nitrite and nitrate removal. Nutrient removal rates were not affected at TSS concentration of up to 0.08 g L?1 (P > 0.05). TAN removal rate was higher (0.656 ± 0.088 g m?² day?1 TAN) in young biofilm than (0.302 ± 0.098 g m?² day?1 TAN) in mature biofilm at loading rates of 3.81 and 3.76 g m?² day?1 TAN (P < 0.05), respectively, which were considered close to maximum loading. TAN removal increased with TAN loading, which increased with hydraulic loading rate. There was no significant difference in removal rate for both nitrite and nitrate between young and mature biofilms (P > 0.05). The ATS ably removed nitrogen at high rates from catfish effluent at high loading rates. ATS‐based nitrogen removal exhibits high potential for use with high feed loads in intensive aquaculture.  相似文献   

14.
Total ammonia nitrogen (TAN) concentration is often a key limiting water quality parameter in intensive aquaculture systems. Removing ammonia through biological filtration is thus the first objective in recirculating aquaculture system design. In this study, the performance characteristics of a steady-state nitrification biofilm were explored using a series of reactors. Four nitrification kinetics parameters were estimated using the data collected from the experimental system, including minimum TAN concentration, half saturation constant, maximum TAN removal rate and maximum specific bacterial growth rate. Experimental data showed that a minimum TAN concentration was needed to support a steady-state nitrification biofilm. For the temperature of 27.2°C, the mean minimum TAN concentration was 0.07 mg/l. For a single substrate-limiting factor, the relationship between TAN removal rate (R) and TAN concentration (S) was represented by an empirical equation [R=1859(S−0.07)/(S+1.93)]. The characteristics of nitrite oxidation were also demonstrated by the experiment system. The results of this study will help to better understand the characteristics of nitrification biofilters applied in recirculating aquaculture systems.  相似文献   

15.
The effect of water velocity on nitrification rates in fixed bed biofilters was investigated in three freshwater pilot scale RAS with rainbow trout. Removal of total ammonia nitrogen (TAN) and nitrite-nitrogen were assessed by NH4Cl spikes and tested at four different water velocities in the biofilters (1.4, 5.4, 10.8 and 16.2 m h−1) under identical conditions. Water velocities below 10.8 m h−1 significantly reduced TAN- and nitrite removal rates. The surface specific TAN removal rates correlated with the TAN concentrations at the water velocities 10.8 and 16.2 m h−1, and the first order surface removal rate constant was estimated at 0.45 m h−1. However, no correlations between TAN removal and TAN concentrations were found at the lowest velocities. Up to five-fold elevated nitrite levels were found in the RAS when biofilters were operated at 1.4 m h−1 compared to the trials at other water velocities, substantiating the significant effect of water velocity on both nitrification processes. The importance of biofilter hydraulics documented in this pilot scale RAS probably have implications for design and operation in larger scale RAS.  相似文献   

16.
Reuse strategy of wastewater in prawn nursery by microbial remediation   总被引:7,自引:0,他引:7  
A strategy of reusing the prawn nursery wastewater was developed by the previous remediation with Bacillus subtilis and nutrients addition. The suggested method was preliminarily verified in rearing prawn larval. Bacteria assimilation is proved as a main and powerful mechanism for removing dissolved organic matter (DOM) and total ammonia nitrogen (TAN) in the experiments. The process of microbial remediation could be featured as two sequential stages: DOM degradation and TAN reduction. In the first stage (from day 0 to day 2), DOM was degraded directly as the bacterial carbon and nitrogen sources. The 48-h COD removal efficiencies (RCOD) in the treatment were 57.7±5.5%, showing significantly different from 12.2±4.1% in control. In the second phase (from day 2 to day 5), the deficiencies of C and P source relative to N source might limit bacteria proliferation and TAN removal. The glucose and/or phosphate addition significantly influenced the TAN removal performance, while the addition of vitamin mixture and/or microelement solution was not. When the initial TAN level was nearly 5 mg N/l, the optimal TAN removal efficiencies from day 2 to day 5 were above 85% in the treatments with both glucose and phosphate additions, where the white microbial floccules were observed to suspend. The C/N or N/P weight ratio of 5.4:1or 5–7:1 was suggested for remediating the nursery effluents. The situation that the maximum bacterial levels did not exceed 108 CFU/ml was estimated to correlate with the formation of microbial floccules. After 5 days of microbial remediation by these adequate methods, the wastewater had been became the “microbially matured” water suitable to reuse. In the practical operations, the nutrient supplements were directed by Glucose/TAN weight ratio of 13:1 and KH2PO4/TAN weight ratio of 0.6–0.9:1. The results of the application trial pointed out that the remediated water reclaimed to the larvae culture tanks did not produce observable deleterious effects on the water quality and on the mortality of the prawn larvae. The method of reusing the remediated wastewater by microbial agents and nutrients additions will be advantageous to reduce both production cost and environmental pollution in the inland hatchery and nursery for prawn.  相似文献   

17.
Particulate and dissolved nitrogen (N) waste components are removed in recirculating aquaculture systems (RAS) using different cleaning technologies, and to dimension and optimize their removal efficiency requires that the expected daily load of the different waste forms can be estimated. Using a laboratory, mass-balance approach, the current study examined the effects of commercially applied feeding levels on the loading of different N waste forms, including daily fluctuations in dissolved total nitrogen (TN), total ammonia nitrogen (TAN), urea-N, and non-characterized, dissolved N deriving from juvenile rainbow trout (Oncorhynchus mykiss). In addition, the study examined whether there was a removal of urea-N across a moving bed biofilter operated as end-of-pipe under commercial conditions. The laboratory, mass-balance study showed that there were no effects of feeding levels (1.3, 1.5 or 1.7% of the biomass per day ) on the excretion of dissolved N components, which constituted the majority of total N waste (>81.6% on average). The excretion of urea-N and non-characterized, dissolved N components constituted 12–13% and 9–11%, respectively of dissolved TN. The excretion of urea-N was largely constant and independent of the daily feeding practice, whereas that of non-characterized N appeared to reflect the daily feeding activity, following the trends in TN and TAN. The time limited feeding regime applied in the laboratory study resulted in a pulse in the excretion of TAN that a biofilter may be unable to fully level out, potentially resulting in unnoticed, critical water quality conditions in intensive RAS during certain times of the day. Particulate N waste constituted a minor fraction of total N waste (<18.4% on average), and the actual loading depended on the digestibility of dietary protein/nitrogen. Results from the commercially operated, nitrifying biofilter showed that urea-N was removed at a rate of 0.014 g N m2 day−1. Compared to the removal of TAN (0.208 g N m2 day−1), the moving bed biofilter was 1.07 times more active in removing dissolved N than immediately expected when only considering TAN.  相似文献   

18.
Nitrogen excreted by aquatic animals mainly takes the form of metabolic wastes such as feces and ammonia, which is accumulated in the intensive aquaculture system and causes serious environmental contamination. So it is very important to determine the waste excretion characteristics of aquatic animals for the development of practical and nonpolluting land‐based aquaculture. Abalone has a unique feeding habit and feeding regime, different from those of finfish; abalone gnaw feed seaweed to produce feces and ammonia continuously. In this study, the rates of feces production and ammonia excretion of pacific abalone, Haliotis discus hannai, of three shell lengths (3, 5, and 7 cm) were investigated under three different temperature conditions (12, 16, and 20 C). All experiments were performed in triplicate in a semirecirculating aquaculture system. Feces were collected for 5 d, and ammonia concentrations (total ammonia nitrogen [TAN]) in the tank inlet and outlet were monitored every 4‐h interval for 24 h at the fourth day of the feces collection. The regressions for the weight‐specific feces production rate (g feces/kg abalone/d) and the weight‐specific TAN excretion rate (mg TAN/kg abalone/d) in relation to water temperature (T, C) and shell length (L, cm) were weight‐specific feces production rate = exp(1.575 ? 281.2/T2 – 0.142L), r2 = 0.9550, and weight‐specific TAN excretion rate = exp(5.052 ? 277.1/T2 ? 0.136L), r2 = 0.9598. Pacific abalone produced 108.3–111.7 g feces and excreted 3.83 g TAN/kg seaweed ingested (dry weight).  相似文献   

19.
Results are presented of a zero‐discharge marine recirculating system used for the culture of gilthead seabream Sparus aurata. Operation of the system without any discharge of water and sludge was enabled by recirculation of effluent water through two separate treatment loops, an aerobic trickling filter and a predominantly anoxic sedimentation basin, followed by a fluidized bed reactor. The fish basin was stocked for the first 6 mo with red tilapia Oreochromis niloticus × O. aureus at an initial density of 16 kg/m3. During this period salinity was raised from 0 to 20 parts per thousand. Then, gilthead seabream, stocked at an initial density of 21 kg/m3, replaced tilapia at day 167 and were cultured for an additional 225 d. Non steady‐state inorganic nitrogen transformations occurred as a result of these salinity changes. After day 210, the system operated at all times with those water quality parameters considered critical for successful operation of mariculture systems, within acceptable limits. Thus ammonia, nitrite, and nitrate concentrations did not exceed 1.0‐mg total ammonia‐N/ L, 0.5‐mg NO2:‐N/L and 50‐mg NO3‐N/L, respectively. Sulfide levels in the fish basin were below detection limits and oxygen > 6 mg/L after the oxygen generator was added at day 315. Ammonia, produced in the fish basin and to a lesser extent in the sedimentation basin, was converted to nitrate in the aerobic trickling filter. Nitrate removal took place in the sedimentation basin and to a lesser extent in the fluidized bed reactor. Sludge, remaining in the sedimentation basin at the end of the experimental period, accounted for 9.2% of the total feed dry matter addition to the system. The system was disease‐free for the entire year and fish at harvest were of good quality. Water consumption for production of 1 kg of tilapia was 93 L and 214 L for production of 1 kg of gilthead seabream. Additional growth performance data of gilthead seabream cultured in a similar but larger system are presented. During 164 d of operation of the latter system, maximum stocking densities reached 50 kgl M3 and fish biomass production was 27.7 kg/m3. Relatively poor fish survival and growth resulted from occasional technical failures of this pilot system.  相似文献   

20.
Eight of the existing 9.1 m (30 ft) diameter circular culture tanks at the White River National Fish Hatchery in Bethel, Vermont, were retrofitted and plumbed into two 8000 L/min partial water reuse systems to help meet the region's need for Atlantic salmon (Salmo salar) smolt production. The partial reuse systems were designed to increase fish production on a limited but biosecure water resource, maintain excellent water quality, and provide more optimum swimming speeds for salmonids than those provided in traditional single-pass or serial-reuse raceways. The two systems were stocked with a total of 147,840 Atlantic salmon parr in May of 2005 (mean size 89 mm and 8.5 g/fish) and operated with 87–89% water reuse on a flow basis. By the time that the smolt were removed from the systems between March 28 to April 12, 2006, the salmon smolt had reached a mean size of 24 cm and 137 g and hatchery staff considered the quality of the salmon to be exceptional. Overall feed conversion was <1:1. The Cornell-type dual-drain circular culture tanks were found to be self-cleaning and provided mean water rotational velocities that ranged from a low of 0.034 m/s (0.2 body length per second) near the center of the tank to a high of 39 cm/s (2.2 body length per second) near the perimeter of the tank. The fish swam at approximately the same speed as the water rotated. System water quality data were collected in mid-September when the systems were operated at near full loading, i.e., 24 kg/m3 maximum density and 52.1 and 44.1 kg/day of feed in system A and system B, respectively. During this evaluation, afternoon water temperatures, as well as dissolved oxygen (O2), carbon dioxide (CO2), total ammonia nitrogen (TAN), and total suspended solids (TSS) concentrations that exited the culture tank's sidewall drains averaged 14.8 and 15.9 °C, of 7.9 and 8.2 mg/L (O2), 4.0 and 3.2 mg/L (CO2), 0.72 and 0.67 mg/L (TAN), and 0.52 and 0.13 mg/L (TSS), respectively, in system A and system B. Dissolved O2 was fairly uniform across each culture tank. In addition, water temperature varied diurnally and seasonally in a distinct pattern that corresponded to water temperature fluctuations in the nearby river water, as planned. This work demonstrates that partial reuse systems are an effective alternative to traditional single-pass systems and serial-reuse raceway systems for culture of fish intended for endangered species restoration programs and supplementation programs such as salmon smolt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号