首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Faecal samples from 222 healthy dairy goats on 12 farms in Spain, as well as bulk tank milk samples of these farms, were screened for the presence of verotoxin-producing Escherichia coli (VTEC) and enteropathogenic E. coli (EPEC). VTEC and EPEC were isolated in 47.7 and 7.7% of the animals, respectively. VTEC were isolated more frequently from adults and replacement animals than from goat kids. In contrast, EPEC were detected more frequently from goat kids than from replacement animals and adults. VTEC or EPEC strains were not detected in the bulk tank milk samples. Although a selective enrichment protocol was used, the serotype O157:H7 was not detected. The most frequent serotypes among the 106 VTEC strains isolated from goats were O5:H-, O76:H19, O126:H8, O146:H21, ONT:H- and ONT:H21. None VTEC strain was eae-positive. The absence of the eae gene in the VTEC strains could indicate that these strains are less virulent for humans that the classical eae-positive enterohaemorrhagic E. coli types. However, 16% of VTEC strains isolated from healthy goats belonged to serotypes associated with haemolytic uraemic syndrome in humans. The ehxA gene was detected in 84.9 and 52.9% of the VTEC and EPEC from goats, respectively. The beta1, theta/gamma2 and zeta were the most frequent intimin types among the 17 EPEC strains studied and the most prevalent serotypes of these strains were O156:H25 and O177:H11. Our data show that in Spain healthy goats are an important reservoir of VTEC and EPEC, and a potential source of infection for humans.  相似文献   

2.
Cattle arriving for slaughter at a large abattoir in northern Italy between April 1997 and January 1998 were examined for intestinal carriage of Verocytotoxin-producing Escherichia coli (VTEC) O157 using an immunomagnetic separation technique. Sixty sorbitol non-fermenting VTEC O157 strains were isolated from 59 (13.1%) of the 450 cattle examined. In particular, VTEC O157 was found in 37 (16.6%) of 223 feedlot cattle and in 22 (16.1%) of 137 dairy cull cows, but not in the 90 veal calves sampled. The isolation rate was higher during warm weather (17.5%), falling to an average of 2.9% during the winter months. VT-negative, O157 latex-agglutinating E. coli strains were isolated from 23 (5.1%) of the 450 animals. PCR analysis showed that all 60 VTEC O157 strains carried the VT2 gene and that 25 strains also carried the VT1 gene. In addition, four of the VT-negative, O157 latex-agglutinating E. coli strains carried the VT2 gene. Atypical biochemical features were observed in some VTEC O157: two strains (3.3%) showed beta-glucuronidase activity, and seven (11.7%) produced urease.  相似文献   

3.
The presence of porcine toxigenic E. coli (ETEC, VTEC) in 28 piggeries (5% of total) of the central and northeast region of Argentina was studied for a better understanding of the epidemiology of porcine strains. Samples were taken by rectal swabs from healthy piglets and from those with diarrhoea, in addition to their dams. Between 5-10 colonies were isolated from each one of 223 animals sampled from 1992 to 1997. By using specific primers each strain was screened by PCR for VT1, VT2all, VT2e, STIa, and LTI toxin genes. Only strains positive for any of the toxins mentioned above were screened for STb. Their O serogroups were determined by agglutination. All of the above enterotoxins and verocytotoxins were found in E. coli isolated from the animals. The STIa gene was detected in E. coli isolated from 27/127 piglets with diarrhoea, in comparison with LTI (4/127 pigs). No toxin gene was amplified from E. coli isolated from either healthy piglets or their dams. When strains isolated from 48 piglets without diarrhoea but showing delayed growth were analysed by PCR, their toxin profile was determined to be VT1 (1/48 piglets), VT2all (5/48), STIa (1/48), LTI (3/48) and VT2e (3/48). Serogroup O64 prevailed among ETEC; O138 prevailed for ETEC/VTEC strains. This is the first extensive study regarding porcine toxigenic E. coli in Argentina and constitutes an important database for the implementation of prevention measures.  相似文献   

4.
Between December 1996 and October 1997, milk samples from a total of 145 cows with coli mastitis were screened for the presence of verotoxin-producing E. coli (VTEC). VTEC were found in four (2.8%) out of the 145 samples. The four isolated strains proved to be verotoxin (VT) 1-, VT2- or VT1- and VT2-positive. However, no strain contained all three virulence factors tested. Further strain characterization was carried out by serotyping as well as by resistance pattern analysis.  相似文献   

5.
Between December 1996 and October 1997, milk samples from a total of 145 cows with coli mastitis were screened for the presence of verotoxin-producing E. coli (VTEC). VTEC were found in four (2.8 %) out of the 145 samples. The four isolated strains proved to be verotoxin (VT) 1-, VT2- or VT1- and VT2-positive. However, no strain contained all three virulence factors tested. Further strain characterization was carried out by serotyping as well as by resistance pattern analysis.  相似文献   

6.
This study determined the prevalence of verotoxin (VT)-producing Escherichia coli (VTEC) in Ontario beef cattle at slaughter and characterized the isolates by serotype, virulence factors, virulence markers, and antimicrobial resistance. Cultures of rectal feces from 500 animals were screened for VT by an enzyme-linked immunosorbent assay (ELISA) and by polymerase chain reaction (PCR) for genes vt1, vt2, and eae. The VT-ELISA-positive samples were tested by a VT-immunoblot to isolate VTEC colonies. The prevalence rates of VTEC by VT-ELISA and PCR were 10.2% [95% confidence interval (CI), 7.8% to 13.2%] and 6.2% (95% CI, 4.4% to 8.7%), respectively. Colonies of VTEC were isolated from 27 (53%) of the 51 VT-ELISA-positive samples and belonged to 24 serotypes, which did not include O157:H7. Twelve of the serotypes have been implicated in disease in humans. Virulence profiling of the isolates by PCR revealed that 2 (8%) were eae-positive, 5 (21%) had vt1 only, and 19 (79%) had vt2, of which 3 had vt2 only, 7 had vt1 + vt2, 4 had vt2 + vt2c, 2 had vt2 + vt2c + vt2d, 2 had vt1 + vt2 + vt2c, and 1 had vt1 + vt2 + vt2c + vt2d. The distribution of selected plasmid-encoded putative virulence genes was as follows: ehxA, 63%; espP, 46%; saa, 67%; and subA, 54%. Nine of the 24 isolates were resistant to 1 or more antimicrobials. Major conclusions are that the VTEC prevalence of 10.2% was among the lower rates reported for beef cattle, a high proportion of the isolates had vt2 genes, the subA gene was reported for the 1st time in Canadian VTEC, and the absence of O157 VTEC likely reflects the use of a technique that detected all VTEC.  相似文献   

7.
A cross-sectional study was conducted to determine the prevalence and characteristics of verocytotoxigenic Escherichia coli (VTEC) on 25 dairy farms each located in Waller field and Carlsen field farming areas in Trinidad. On each selected farm, faecal samples were collected from milking cows, calves and humans; rectal swabs were obtained from pet farm dogs; bulk milk was sampled as well as effluent from the milking parlour. Escherichia coli was isolated from all sources on selective media using standard methods. Isolates of E. coli were subjected to slide agglutination test using E. coli O157 antiserum, vero cell cytotoxicity assay to detect verocytotoxin (VT) and heat labile toxin (LT) production, the polymerase chain reaction (PCR) to detect VT genes, and the dry spot test to screen for E. coli O157 and non-O157 strains. In addition, faecal samples from animal and human sources were tested for VT genes using PCR. Of a total of 933 E. coli isolates tested by the slide test, eight (0.9%) were positive for the O157 strain. The vero cell cytotoxicity assay detected VT-producing strains of E. coli in 16.6%, 14.6%, 3.2% and 7.1% of isolates from cows, calves, farm dogs and humans respectively (P < 0.05; chi(2)). For LT production, the highest frequency was detected amongst isolates of E. coli from calves (10.8%) and the lowest (0.0%) amongst isolates from humans and bulk milk (P < 0.05; chi(2)). Of the 61 VT-producing isolates by vero cell cytotoxicity assay tested by PCR, the VT, LT and eae genes were detected in 62.3%, 4.9% and 1.6% respectively (P < 0.05; chi(2)). Amongst the 45 E. coli isolates that were VT positive (vero cell) or VT-gene positive by PCR, 2.2%, 2.2%, 4.4% and 6.7% belonged to non-O157 strains O91, O111, O103 and O157, respectively, as determined by the Dry spot test. Detection of VTEC strains in milk and dairy animals poses a health risk to consumers of milk originating from these farms. In addition, the demonstration of VTEC strains in humans, VT gene in faecal samples and E. coli isolates as well as non-O157 VTEC strains of E. coli are being documented for the first time in the country.  相似文献   

8.
In the autumn of 1995 the first outbreaks of enterohemorrhagic Escherichia coli O157:H7 including ca 100 human cases were reported in Sweden. From outbreaks in other countries it is known that cattle may carry these bacteria and in many cases is the source of infection. Therefore, the present study was performed to survey the Swedish bovine population for the presence of verotoxin-producing E. coli (VTEC) of serotype O157:H7. Individual faecal samples were collected at the 16 main Swedish abattoirs from April 1996 to August 1997. Of 3071 faecal samples, VTEC O157 were found in 37 samples indicating a prevalence of 1.2% (CI95% 0.8-1.6). All 37 isolates carried genes encoding for verotoxin (VTI and/or VT2), intimin, EHEC-haemolysin and flagellin H7 as determined by PCR. Another 3 strains were of serotype O157:H7 but did not produce verotoxins. The 37 VTEC O157:H7 strains were further characterised by phage typing and pulsed-field gel electrophoresis. The results clearly show that VTEC O157:H7 is established in the Swedish bovine population and indicate that the prevalence of cattle carrying VTEC O157:H7 is correlated to the overall geographical distribution of cattle in Sweden. Results of this study have formed the basis for specific measures recommended to Swedish cattle farmers, and furthermore, a permanent monitoring programme was launched for VTEC O157:H7 in Swedish cattle at slaughter.  相似文献   

9.
The objectives of this study were to determine the prevalence of enteric verocytotoxigenic E. coli (VTEC) infection in a population of cats in Ontario, and to determine whether an association exists between the presence of VTEC and feline diarrhea. Fecal samples from 179 cats, representing 113 cats with diarrhea and 66 cats with normal feces, were cultured for E. coli. The fecal cultures were screened for verocytotoxin activity with a Vero cell assay. Confirmation of the presence of verocytotoxin (VT) genes was done with polymerase chain reaction (PCR) amplification; the frequency of occurrence of the genes for generic VT, VT1, and VT2 was determined. VTEC-positive samples were defined as those that demonstrated cytotoxicity on the Vero cell assay and yielded E. coli possessing one or more of the VT genes. All VTEC-positive isolates were serotyped. The overall prevalence of enteric VTEC infection in the cats was 12.3% (22/179). Statistical analysis of the case-control data showed no significant association between VTEC infection and diarrheal illness. The majority of the cats with VT-positive E. coli were positive for the presence of the generic VT, rather than for VT1 or VT2; it is therefore possible that a novel verocytotoxin gene may exist in E. coli isolated from cats. Eight VTEC strains were identified by serotyping; 4 of these serotypes have previously been isolated from humans, and 2 from cattle, suggesting that cats may be capable of acting as reservoirs for human and bovine VTEC serotypes.  相似文献   

10.
A longitudinal study was conducted on two dairy farms to investigate the pattern of shedding of verotoxin-producing Escherichia coli (VTEC) in goats. Faecal samples were taken from 20 goat kids once weekly during the first 4 weeks of life and then once every month for the next 5 months of life, and from 18 replacement animals and 15 adults once every month for 12 months. The proportion of samples containing VTEC was higher for replacement animals and adults (85.7% and 78.7%, respectively) than for goat kids (25.4%). About 90% of the VTEC colonies isolated from healthy goats belonged to five serogroups (O33, O76, O126, O146 and O166) but the most frequent serogroups of these isolates, except one, were different in the two herds studied. E. coli O157:H7 was found in three goat kids on only one occasion. None of the VTEC isolates, except the three E. coli O157:H7 isolates, was eae-positive. The patterns of shedding of VTEC in goat kids were variable, but, in contrast, most of the replacement animals and adults were persistent VTEC shedders. Our results show that isolates of VTEC O33, O76, O126, O146 and O166 are adapted for colonising the intestine of goats but that, in contrast, infection with VTEC O157:H7 in goats seems to be transient.  相似文献   

11.
Among the verocytotoxin producing E. coli strains (VTEC) the enterohemorrhagic group (EHEC) have emerged as important source of serious disease in human, e.g. the haemolytic uremic syndrome (HUS). VTEC strains possess different virulence profiles where by virulence traits can be provided by the chromosome, by plasmids and, in the case of verocytotoxins (except: VT2e) by bacteriophages. The original and main reservoir are ruminants. In Germany, VTEC strains were isolated in ruminant stocks regularly. In part, the prevalence was estimated up to 100%. However, strains of important EHEC serovar groups, e.g. O157, O26, O111, O103 and O145 as main source of human infections are isolated rarly. This is even the case for food originated from those animals. The hygienic management to avoid fecal contamination of carcasses during the slaughter process is of crucial importance. Future preventive strategies in the field of primary production may be the development of vaccination programs and/or the feeding management to reduce the shedding of acid resistant VTEC. Slowly recognized environmental sources of infection and contamination are biotic (e.g. flys, rodents) and abiotic factors (e.g. pasture, water, feed). In an own study that investigated the prevalence of VTEC positive animals in free range cows during sojourn on pasture a significant increase was estimated. Even asymptomatic human carriers can serve as source of infection or contamination.  相似文献   

12.
The adsorption property of activated charcoal on verotoxin (VT)-producing Escherichia coli (VTEC) was examined using E. coli O157:H7. In the present study, E. coli O157:H7 strains were effectively adsorbed by activated charcoal. Adsorption was dose-dependent, and the maximum adsorption occurred within 5 min. At 10 mg of activated charcoal, bacteria tested were completely adsorbed. Activated charcoal also had the capacity to adsorb toxin (verotoxin 2) activity from the bacterial extract. Furthermore, the adsorption efficiency of activated charcoal for the normal bacterial flora in the intestine was assessed using Enterococcus faecium, Bifidobacterium thermophilum, and Lactobacillus acidophilus. Activated charcoal showed lower binding capacity to the normal bacterial flora tested than that to E. coli O157:H7 strains. These results suggest that activated charcoal could be a good adsorbent system for the removal of VTEC and verotoxin.  相似文献   

13.
The aim of this study was to determine the simultaneous occurence of Salmonella spp., L. monocytogenes, verotoxigenic E. coli (VTEC), and Campylobacter spp. in slaughtered cattle and in beef meat subjected for human consumption. A total of 406 bovine hides and 406 corresponding carcasses were used to collect the samples with a swab method after exsanguination and evisceration of animals, respectively. Furthermore, 362 beef meat samples were purchased in local retail shops over the same period of time as for the bovine samples. Food-borne bacterial pathogens were identified with standard ISO methods with some modification by the use of PCR for VTEC. The isolated bacteria were then molecularly speciated (Campylobacter), serotyped (L. monocytogenes) and characterized for the presence of several virulence marker genes (VTEC and Campylobacter). It was found that 49 hide (12.1%) and 3 (0.7%) carcass samples were contaminated with more than one bacterial pathogen tested. Most of the hides were positive for Campylobacter spp. and VTEC (27 samples) and Campylobacter spp. together with L. monocytogenes (12 samples). Eight bovine hides contained L. monocytogenes and VTEC while L. monocytogenes and Salmonella spp. were detected in one sample. Furthermore, 3 pathogens (Campylobacter spp., L. monocytogenes and VTEC) were simultaneously identified in one bovine hide tested. In case of bovine carcasses 2 samples contained Campylobacter spp. and VTEC whereas one carcass was positive for L. monocytogenes and VTEC. On the other hand, 10 out of 362 (2.8%) minced beef samples were contaminated with at least two pathogens tested. The majority of these samples were contaminated with L. monocytogenes and Salmonella spp. (6 samples). It was noticed that equal number of C. jejuni and C. coli were found, irrespective of the origin of the samples. Most of the strains possessed more than one pathogenic factor as identified by PCR. Molecular serotyping of L. monocytogenes revealed that the majority of the isolates (27 out of 31; 87.1%) belonged to 1/2a serogroup. It was found that most of the VTEC isolates possessed the Shiga toxin stx2 gene (12 strains) whereas only 2 strains were str1-positive. The eneterohemolysin and intimin markers were identified only in 7 and 2 isolates, respectively. PCR analysis revealed that 4 VTEC belonged to O91 serogroup, 2 strains were O145 and 1 isolate was identified as O113. None of the VTEC detected in the study was O157 serogroup.  相似文献   

14.
A total of 163 verotoxin-producing Escherichia coli (VTEC) strains isolated from diarrheic and healthy cattle, sheep, and goats were analyzed for the presence of the saa gene by polymerase chain reaction. Seventeen (45.9%) and 5 (29.4%) of the VTEC isolated from healthy cattle and diarrheic calves, respectively, had the saa gene. None of the saa-positive strains carried the eae gene, but 20 of the 22 saa positive were ehxA positive. In contrast with cattle VTEC, none of the VTEC isolated from small ruminants were saa positive. These results show that the saa gene is commonly associated with bovine eae-negative VTEC strains but not with ovine or caprine VTEC strains.  相似文献   

15.
Samples of faeces from 57 dogs with acute diarrhoea, 82 dogs with chronic diarrhoea, 34 clinically healthy household dogs and 88 kennelled control dogs were analysed by hybridisation, using DNA probes to detect enteropathogenic Escherichia coli (EPEC) and enterotoxigenic E coli (ETEC), verocytotoxin-producing E coli (VTEC), enterohaemorrhagic E coli (EHEC), enteroinvasive E coli (EIEC) and enteroaggregative E coli (EAggEC). Samples of duodenal juice from 60 of the 82 dogs with chronic diarrhoea were also examined. Significantly more of the dogs with diarrhoea were excreting EPEC (acute 35.1 per cent, chronic 31.7 per cent) and VTEC (acute 24.6 per cent, chronic 28 per cent) than the kennelled dogs (EPEC 17.1 per cent, VTEC 0 per cent) or the household control dogs (EPEC 6 per cent, VTEC 5.9 per cent). Enteropathic E coli was also detected in the duodenal juice of 23 of 60 (38.3 per cent) of the dogs with chronic diarrhoea. The EPEC attaching and effacing A (eaeA) gene and the verocytotoxin 1 (VR1) gene coding for VTEC were often found together. There was good agreement between in vitro studies and hybridisation for the detection of eaeA and VT1. Isolates from the dogs with diarrhoea adhered significantly more to Hep-2 cells, and VT1-positive strains from the dogs with diarrhoea consistently killed more than 50 per cent of Vero cells.  相似文献   

16.
Fecal samples from 544 beef cattle and 140 sheep were investigated by PCR for verotoxin (VT)-producing Escherichia coli (VTEC) without and with an enrichment step. 6.1% (after enrichment 14%) of cattle samples and 10% (after enrichment 29.2%) of sheep samples were VT-PCR-positive. Moreover, a noticeable age-depending prevalence in cattle was found. Eleven VTEC strains isolated from fecal samples of 5 cattle and 6 sheep were taken for further characterization. None of the strains belonged to serogroup O157. But, as reported previously, we also found in this study strains with virulence genes that are associated with increased pathogenicity. The importance of slaughter hygiene and of bacteriological monitoring of carcass contamination has to be pointed out.  相似文献   

17.
Shiga/verocytotoxins and Shiga/verotoxigenic Escherichia coli in animals.   总被引:6,自引:0,他引:6  
J Mainil 《Veterinary research》1999,30(2-3):235-257
Vero/Shiga toxins (VT/Stx) have an A-B structure: the A subunit carries the enzymatic activity and the B subunit binds the toxin to the membrane receptor (Gb3 or Gb4). The VT/Stx inhibit protein synthesis in the target eucaryotic cells, mainly the endothelial cells of blood vessels. The VT/Stx are subdivided into two families. VT1/Stx1 is a homogeneous family of toxins identical to the Stx of Shigella dysenteriae. VT2/Stx2 is a more heterogeneous family of toxins more distantly related to this Stx toxin. The VT2/Stx2 variants can be distinguished by the polymerase chain reaction (PCR) and/or the reaction with monoclonal antibodies. The VT/Stx-producing Escherichia coli are also subdivided into two main groups on the basis of the presence or absence of additional properties: the enterohaemorrhagic E. coli (EHEC) induce the formation of attaching/effacing lesions and carry a 60 MD plasmid encoding a specific haemolysin (the enterohaemolysin); the vero/shiga-toxigenic E. coli (VTEC/STEC) do not show these properties. The EHEC are isolated from humans and ruminants, especially young calves. They are associated with haemorrhagic enterocolitis and its sequelae in humans, the haemolytic-uraemic syndrome (HUS). The VT/Stx play a role in the occurrence of blood in the faeces and in the HUS by their action on the endothelial cells of blood vessels in the intestinal submucosa and in the renal glomeruli, after resorption through the intestinal walls. The VTEC/STEC are isolated from piglets, calves and humans. In recently weaned piglets, they cause the oedema disease, an enterotoxaemia characterized by subcutaneous, mesenteric and cerebral oedemas, with nervous disorders as main clinical signs. The oedema disease is the consequence of the action of the VT/Stx on the endothelial cells of blood vessels in various organs. In calves and humans, the role in disease of VTEC/STEC is controversial, but they could be associated with some cases of diarrhoea and HUS. The case of the O157:H7 EHEC which are present in healthy cattle of various ages, but are highly virulent for humans is of special interest. The potential zoonotic aspect of VT/Stx-producing E. coli infections in animals is detailed chapter by chapter. Prophylaxis of these infections by vaccination is the subject of the discussion on the future of the research studies on these pathogenic bacteria.  相似文献   

18.
We investigated 158 samples of shortly ripened raw sausages bought in supermarkets of Dessau within 4 month. In 14 (8.8%) samples Verotoxin-producing E. coli were detected. 13 VT-positive samples were found in the group of easily spread raw sausages. The 14 isolates belonged to 6 different O-serotypes. 4 VT1-, 8 VT2- and 2 VT1/VT2-producers were found. 4 isolates belonged to serogroups which were already described in WHO tables and associated with EHEC infections in human beings. One strain of serogroup O22: H8, isolated from a "Teewurst", possessed the complete virulence gene combination of EHEC (eae, hlyA, stx). The detection procedure, already successfully used for detection and isolation of VTEC from raw milk, soft cheese and raw minced beef showed a sensitivity of approximately 10 CfU/25 g of raw sausages. It has to be considered that VTEC are frequently (8.8%) present in shortly ripened raw sausages. The group of easily spread raw sausages has a higher VTEC-contamination rate than firm raw sausages. Raw sausages, especially easy to spread types, belong to the risk foods for EHEC-infections in human beings.  相似文献   

19.
利用F18菌毛a因子单克降抗体以及已建立的鉴定F18菌毛及其亚型的双重PCR法,对来自断奶仔猪水肿病和/或腹泻病例的60株VTEC、24株VTEC/ETEC以及24株ETEC的进行了F18菌毛检测,以了解F18ab^+和F18ac^+大肠杆菌在江苏省断奶仔猪群的分子流行病学。结果表明:通过F18菌毛a因子单克隆抗体,可检测出52株大肠杆菌为F18^+,检出率为48.15%;而通过双重PCIL方法,共检测出63株大肠杆菌为F18^+,检出率为58.33%,其中53株(49.07%)为F18ab^+10株(92.6%)为F18ac^+。另外还发现:在VTEC、VTEC/ETEC以及ETEC的菌株之间,这2种F18菌毛亚型的分子流行病学是不同的。在VTEC中,F18ab^+,菌株37株(61.67%),未发现F18ac^+菌株;在VTEC/ETEC中,F18ab^+菌株15株(62.50%),F18ac^+菌株8株(33.33%);而在ETEC中F18ab^+菌株只有1株(4.17%),F18ac^+菌株只有2株(8.33%)。以上数据表明:④PCR法检测F18菌毛优于单抗法;②F18菌毛是VTEC/ETEC、VTEC的重要致病因子,而在ETEC中则明显低于VTEC/ETEC和VTEC;⑧F18ab^+菌株一般为SLT-IIe^+,而F8ac^+菌株一般为STI^+。  相似文献   

20.
Shiga toxin (Stx) [Verotoxin (VT)]-producing Escherichia coli (STEC), also called enterohaemorrhagic E. coli or VTEC are emerging zoonotic agents and became most important as human pathogens, particularly in the industrialized countries. Production of cytotoxins, also called Stx or VT, is the major pathogenicity determinant of STEC, which can cause life-threatening haemorrhagic diseases in humans. The spectrum of STEC phenotypes is diverse and domestic and wildlife animals constitute important reservoirs for these bacteria. STEC are spread from animal faeces to the environment, water and food. Ingestion of contaminated foodstuff and water, as well as contact with the environment, STEC-excreting animals or humans are the major sources of human infection. Economical changes in animal and food production, alteration of consumer habits and lack of specific immune response, particularly in urbanized populations, have contributed to the recent spread of STEC as a zoonotic agent. Supranational surveillance networks as well as national reference laboratories as sentinels play an important role in the prevention and control of STEC infections in humans. Development of new vaccines and probiotics may serve as future tools to control the spread of STEC in animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号