首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Excessive slash loading could pose a problem for the regeneration of the serotinous lodgpole pine especially in forests at higher elevation where soil temperature is limiting. In the past, these forests have commonly been harvested using full-tree harvesting where trees are processed at roadside; however, recently cut-to-length harvesting has become a more frequent harvesting method. In cut-to-length harvesting the harvested trees are processed in the block, as a result slash accumulation is much higher on these cutblocks. In an experimental field trial, the cone distribution, natural lodgepole pine regeneration, and the growth and establishment of planted lodgepole pine were evaluated in response to slash load, drag scarification, and mounding after cut-to-length harvesting of high elevation lodgepole pine stands in the Rocky Mountains. Twelve sites were established, each contained six plots which were randomly assigned to six treatment combinations of two slash removal (slash and slash removed) and three mechanical soil preparation treatments (no soil preparation, drag scarifying, and mounding). The slash removal reduced slash volume by more than 50% but also reduced the number of lodgepole pine cones available for regeneration by over 33%. However, soil mechanical treatments offset this effect as fewer cones were necessary to achieve high natural pine regeneration densities. Drag scarification of plots resulted in 12 times the number of pine seedlings compared to the non-prepared plots. Although slash removal did not have an effect on the number of naturally regenerated lodgepole pine seedlings, it had a positive effect on their growth performance. Conversely, planted pine seedlings had lower mortality and better growth in soils that had been mechanically prepared and had the slash removed; however, the growth effects became only apparent 4 years after planting. While slash removal and mechanical soil preparation did increase soil temperatures; the slash removal treatment had a more transient effect on soil temperatures than soil preparation. Differences in soil temperature decreased over time which appeared to be mostly driven by a warming of the soils in the plots with no soil preparation, likely a result of the decomposition of the finer slash and feathermosses. Overall, it appears that surface disturbance on these high elevation sites had a far greater effect on lodgepole pine regeneration and growth than the increased accumulation of slash as a result of cut-to-length harvesting.  相似文献   

2.
Seedlings of different provenances of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl., var. latifolia Engelm.) and Norway spruce (Picea abies (L.) Karst.) were planted in three Scots pine shelterwoods (125, 65 and 43 stems ha−1) and a clear-cut, all in northern Sweden. The sites were mounded and planting took place during 2 consecutive years (1988 and 1989). The solar radiation experienced by the individual seedlings was determined using a simulation model. Height development of the seedlings was examined during their first 6 years after planting. During the final 3 years of the study, height growth of Norway spruce was relatively poor, both in the shelterwoods and the clear-cut area. Height growth of lodgepole pine was significantly greater than that of Scots pine, both in the shelterwoods and the clear-cut. In contrast to Norway spruce, Scots pine and lodgepole pine displayed significantly greater height growth in the clear-cut than in the shelterwoods. For all three species in the shelterwoods, regression analyses showed that height growth was more strongly correlated with the distance to the nearest tree than with the amount of radiation reaching the ground, i.e. growth was reduced in the vicinity of shelter trees. Therefore, we conclude that the significant reduction in height growth of seedlings of Scots pine and lodgepole pine in Scots pine shelterwoods was partially caused by factors associated with the distance to the nearest shelter tree. Because the substrate was a nitrogen-poor sandy soil, we suggest that root competition for mineral nutrients, especially nitrogen, accounts for the reduction in height growth.  相似文献   

3.
Lodgepole pine is native to western North America, but it is also planted as a fast-growing alternative to Scots pine in Sweden. The production of these two species, when grown as native and as exotic species, was compared in a transcontinental two-species provenance experiment. The tests were planted in 1986 on five sites in northwestern Canada and two sites in Sweden, and included full-sib families, half-sib families, seed orchard collections and natural stand seed collections of both species. After 25 years, lodgepole pine produced 48% more volume (m3ha?1) and had 27% higher survival than Scots pine at one Swedish site, and had similar volume production and survival at a second. In the five Canadian sites, Scots pine produced on average 22% more volume than lodgepole pine. The variation between sites was, however, large. This higher volume of Scots pine in Canada could be due to higher survival (+28%) and less frequent damage; but higher top height for lodgepole pine in Canada indicated higher potential productivity. The results indicate that an exotic species may produce more than the native species, possibly thanks to higher survival, but it is also possible to increase production with successful population selection of the native species.  相似文献   

4.
We used manual cutting to manipulate trembling aspen (Populus tremuloides Michx.) density and spatial arrangement in relation to crop lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) on two sites in contrasting dry, cool to cold ecosystems of south-central British Columbia. In the dry, cool interior Douglas-fir ecosystem (IDFdk3), we reduced the density of tall aspen (aspen at least as tall as target pine) to 0 (broadcast removal), 1000, 2500, or 4000 stems/ha when the planted lodgepole pine was 6 years old. Eight years later, pine height/diameter ratio (HDR) was significantly lower in the broadcast removal and 1000 stem/ha treatments than in the control. There were no other significant growth responses and pine survival and vigour were good regardless of treatment. In contrast, in a dry, cold sub-boreal pine spruce ecosystem (SBPSxc) where treatments were applied at a stand age of 11 years, naturally regenerated lodgepole pine stem diameter increased significantly in the broadcast removal treatment relative to the untreated control within 2 years. After 4 years, HDR had declined significantly relative to the control where tall aspen density was ≤1000 stems/ha. There were no significant pine responses where 2500 tall aspen stems/ha were retained or where tall aspen were removed only within a 1-m radius around pine. The greater difference in height (height differential) between aspen and pine at the SBPSxc than the IDFdk3 site may partly explain the differing response of lodgepole pine to treatment. Trends of decreasing sucker density with increasing aspen retention were evident at both sites, but differences were significant (p ≤ 0.05) only at the SBPSxc site.  相似文献   

5.
The community composition of Carabid beetles, some species ofwhich are known predators of pine beauty moth, was examinedwithin a Scottish plantation forest. Sites differing in soiltype and the species of trees planted were sampled with pitfalltraps in most weeks of a 3—year period. There were faunaldifferences between sites with lodgepole pine on deep peat andother sites in the study (lodgepole pine on iron-pan soil, speciesmixture of lodgepole and Scots pine, and pure stands of Scotspine). In general deep peat sites supported fewer species andindividuals of carabids. Three Carabus species were implicatedas likely predators of Panolis flammea pupae and each was lessabundant on the sites with lodgepole pine. It is suggested thatthe susceptibility to pine beauty moth of lodgepole pine growingon deep peat substrates is at least partly attributable to impoverishedpredator faunas.  相似文献   

6.
A combined species – provenance – family experiment with Scots pine and lodgepole pine was planted in Canada and Sweden. One aim of the experiment was to evaluate the two species’ sensitivities to pathogens and insects 25 years after establishment in their non-native continents. In Canada, Scots pine had better average survival than lodgepole pine, but survival rates among trees from the best seed-lots were equal. In Canada only western gall rust infected Scots pine to some extent, and mountain pine beetles attacked and killed Scots pine more frequently than lodgepole pine. At one site in Sweden, lodgepole pine had higher survival rates than Scots pine, whether evaluated as an overall average or with data from only the best surviving seed-lots. At the other Swedish site, the species’ survival rates were equal, largely since moose damage was much more frequent on lodgepole pine than on Scots pine. Adaptation to local conditions seemed to be important in the resistance of stem breakage caused by heavy snowfalls. The exotic species generally seemed to resist the new threats, but more serious damage by mountain pine beetle on Scots pine than on lodgepole pine in Canada demonstrates possible drawbacks when using exotic species which are phylogenetically similar to native.  相似文献   

7.

Rate of growth and wood properties of Sitka spruce (Picea sitchensis (Bong.) Carr.) were investigated in triplet mixtures with lodgepole pine (Pinus contorta Loud.) (Alaskan provenance) and Japanese larch (Larix kaempferi (Lamb.) Carr.), established on nitrogen-deficient, iron pan soils. These ?nursing? mixtures were compared with pure stands of Sitka spruce that had been either regularly or periodically fertilized with nitrogen. Japanese larch promoted a growth rate in Sitka spruce greater than that achieved in the lodgepole pine-nursed spruce and equivalent to the two pure spruce treatments over the duration of the experiment (current age 28 yrs). Growth of regularly fertilized pure Sitka spruce was not significantly greater than that of periodically fertilized pure spruce. Alaskan lodgepole pine controlled branch size on the lower part of the spruce stems more effectively than the other treatments, although this may have been a function of tree size. Branch characteristics of Japanese larch-nursed spruce, however, were similar to those of the pure spruce treatments. Japanese larch caused an imbalance in crown development in the spruce, although it is unclear from the present study whether this will have an influence on stem and wood quality by the end of the rotation. Overall, the evidence from this study suggests that Japanese larch is an effective nurse of Sitka spruce on nitrogen-deficient iron pans, maintaining a rate of growth similar to that of pure Sitka spruce periodically fertilized with nitrogen and higher than that observed in spruce nursed by Alaskan lodgepole pine.  相似文献   

8.
Growth in height, diameter, and volume was measured on 9- to 18-year-old ponderosa pine (Pinus ponderosa) and 10- to 13-year-old lodgepole pine (Pinus contorta) trees growing on or near compacted skid trails in the Yakima Indian Reservation in south-central Washington. Soil bulk density of the 0- to 30.5-cm deep layer was measured with a single-probe nuclear densimeter on two sides of each sample tree and in adjacent undisturbed soil. On three ponderos pine sites logged 23 years before the study, average bulk density on skid trails was 15% greater than on adjacent undisturbed soil. On a lodgepole pine site logged 14 years before the study, soil on skid trails averaged 28% greater bulk density than undisturbed soil.Total growth of ponderosa pine and the last 5 years of growth were significantly related (P = 0.07) by regression analysis to age of trees, site index, basal area of the adjacent overstory, and the percentage of increase in soil bulk density. At the mean increase in soil bulk density, total height, diameter, and volume growth were reduced 5%, 8%, and 20%, respectively.Total growth of lodgepole pine and the last 5 years of height, diameter, and volume growth were significantly related to tree age and the percentage of soil organic matter. Increase in soil bulk density was not significantly related to growth of this species.  相似文献   

9.
This work aimed to compare radial growth–climate relationships among three coexisting coniferous tree species across a wide geographic and climate range from southern British Columbia (BC) to central Yukon, Canada. Tree-ring data were collected from 20 mature stands of white spruce (Picea glauca), lodgepole pine (Pinus contorta var. latifolia), and subalpine fir (Abies lasiocarpa). Linear relationships between annual growth variation and monthly and seasonal climate were quantified with correlation and regression analyses, and variation in climate–growth responses over a climatic gradient were quantified by regressing growth responses against local mean climatic conditions. Temperatures had more consistent and stronger correlations with growth for all three species than precipitation, but growth–climate responses varied among species and among sites. In particular, pine and fir populations showed different responses between BC and Yukon, whereas spruce showed a more consistent response across the study domain. Results indicate that (1) the response and sensitivity of trees to seasonal climate variables vary among species and sites and (2) winter temperatures prior to growth may have significant impacts on pine and fir growth at some sites. The capacity to adapt to climate change will likely vary among the study species and across climatic gradients, which will have implications for the future management of mixed-species forests in Yukon and BC.  相似文献   

10.
Between April and September 1994, six plots within Aberfoyle Forest in Scotland, three of Scots (Pinus sylvestris) and three of lodgepole pine (Pinus contorta), were surveyed for spiders and harvestmen, as these are predators of several forest invertebrate pests.A total of 64 species of spider were trapped in Scots and lodgepole pine; 56 in Scots pine and 32 in Lodgepole pine. The most abundant spiders, both in Scots and Lodgepole pine, were Linyphiidae.Scots pine plots were floristically more diverse and structurally more complex than lodgepole pine plots. More species of spiders and harvestmen (midsummer only) were found at ground level in Scots pine than lodgepole pine plots. More species and a greater numbers of spiders were found in the canopy of Scots pine than in that of lodgepole pine. However, no differences in the abundance of harvestmen were found between the canopies of Scots and lodgepole pine. Spider species diversity was greatest in Scots pine.  相似文献   

11.
The patterns of current‐year shoot, needle and terminal bud elongation in seedlings of three Scots pine (Pinus sylvestris L.) and three lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) provenances were compared during the third and fourth growing seasons after planting. Lodgepole pine produced longer shoots and buds than did Scots pine, mainly because lodgepole pine formed more stem units and elongated at a faster rate. Stem unit length and the duration of shoot and bud elongation differed relatively little between species and provenances. Lammas or polycyclic growth occurred in some lodgepole pine provenances, but not in any Scots pine provenance, and was associated with enhanced shoot elongation. Needle elongation commenced earlier, proceeded at a faster rate, and was greater in lodgepole pine than in Scots pine, but ceased about the same time in all species and provenances. The heat sum required to attain 50% of final length was lower for shoots and needles in lodgepole pine than in Scots pine, and for shoots in northern provenances than in southern ones. Mitotic activity in the apical meristem of the terminal bud, which occurred less than one week after the seedlings were free from snow, started and ceased about the same time in each species, but was higher in lodgepole pine than in Scots pine early in the shoot elongation period.  相似文献   

12.
In the southern Rocky Mountains, current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks and associated harvesting have set millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forest onto new stand development trajectories. Information about immediate, post-disturbance tree regeneration will provide insight on dynamics of future stand composition and structure. We compared tree regeneration in eight paired harvested and untreated lodgepole pine stands in the Fraser Experimental Forest that experienced more than 70% overstory mortality due to beetles. New seedlings colonized both harvested and untreated stands in the first years after the beetle outbreak. In harvested areas the density of new seedlings, predominantly lodgepole pine and aspen, was four times higher than in untreated stands. Annual height growth of pine and fir advance regeneration (e.g., trees established prior to the onset of the outbreak) has doubled following overstory mortality in untreated stands. Growth simulations based on our regeneration data suggest that stand basal area and stem density will return to pre-beetle levels in untreated and harvested stands within 80-105 years. Furthermore, lodgepole pine will remain the dominant species in harvested stands over the next century, but subalpine fir will become the most abundant species in untreated areas. Owing to terrain, economic and administrative limitations, active management will treat a small fraction (<15%) of the forests killed by pine beetle. Our findings suggest that the long-term consequences of the outbreak will be most dramatic in untreated forests where the shift in tree species composition will influence timber and water production, wildfire behavior, wildlife habitat and other forest attributes.  相似文献   

13.
Widespread bark beetle outbreaks are currently affecting multiple conifer forest types throughout western North America, yet many ecosystem-level consequences of this disturbance are poorly understood. We quantified the effect of mountain pine beetle (Dendroctonus ponderosae) outbreak on nitrogen (N) cycling through litter, soil, and vegetation in lodgepole pine (Pinus contorta var. latifolia) forests of the Greater Yellowstone Ecosystem (WY, USA) across a 0-30 year chronosequence of time-since-beetle disturbance. Recent (1-4 years) bark beetle disturbance increased total litter depth and N concentration in needle litter relative to undisturbed stands, and soils in recently disturbed stands were cooler with greater rates of net N mineralization and nitrification than undisturbed sites. Thirty years after beetle outbreak, needle litter N concentration remained elevated; however total litter N concentration, total litter mass, and soil N pools and fluxes were not different from undisturbed stands. Canopy N pool size declined 58% in recent outbreaks, and remained 48% lower than undisturbed in 30-year old outbreaks. Foliar N concentrations in unattacked lodgepole pine trees and an understory sedge were positively correlated with net N mineralization in soils across the chronosequence. Bark beetle disturbance altered N cycling through the litter, soil, and vegetation of lodgepole pine forests, but changes in soil N cycling were less severe than those observed following stand replacing fire. Several lines of evidence suggest the potential for N leaching is low following bark beetle disturbance in lodgepole pine.  相似文献   

14.
We examined 65 lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) sites in Alberta using a dendrochronological approach in order to examine the relationships between climate and growth of lodgepole pine across elevational ecoregions and diameter size classes. The 4 elevational ecoregions sampled included the Boreal Highlands (BH: 13 sites); the Foothills (FH: 36 sites); a grouping of the montane and subalpine zones of the southern Rocky Mountains (RM: 12 sites); and the montane zone of the Cypress Hills (CH: 4 sites). The first diameter size class was comprised of the three largest (top) diameter trees at each site. The tree list of each plot was ranked, then divided into three groups of equal basal area and the tree at the midpoint of each group (small, medium, and large) was selected for the other three size classes. Annual growth in basal area of lodgepole pine was generally sensitive to heat and moisture stress in late summer of the previous year, the degree of winter harshness, and the timing of the start of the growing season. Growth was inhibited by low temperature in all winter months at the most northern BH sites which had the coldest winters, but this effect was interrupted in some of the midwinter months in the more southerly sites in the RM, and we postulated this was due to the damaging influences of Chinook winds. Interannual growth patterns were strongly correlated between top diameter trees and the other classes, and trees of all diameter classes generally responded to climate in the same way, which indicated that it is sufficient to sample only the largest diameter trees in a stand to provide insight into growth–climate relationships. The forecasted growth estimates indicate that future climate warming will negatively impact the productivity of lodgepole pine in the FH, the heart of lodgepole distribution and productivity in Alberta.  相似文献   

15.
Lodgepole pine (Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce (Picea engelmannii [Parry]), and subalpine fir (Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, (Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak.  相似文献   

16.
Tree species response to climate change-induced shifts in the hydrological cycle depends on many physiological traits, particularly variation in water relations characteristics. We evaluated differences in shoot water potential, vulnerability of branches to reductions in hydraulic conductivity, and water source use between Pinus contorta Dougl. ex Loud. var. latifolia Engelm. (lodgepole pine) and Pseudotsuga menziesii (Mirb.) Franco (interior Douglas-fir), and determined the consequences for seasonal changes in photosynthetic capacity. The Douglas-fir site had soil with greater depth, finer texture and higher organic matter content than soil at the lodgepole pine site, all factors that increased the storage of soil moisture. While the measured xylem vulnerability curves were quite similar for the two species, Douglas-fir had lower average midday shoot water potentials than did lodgepole pine. This implied that lodgepole pine exhibited stronger stomatal control of transpiration than Douglas-fir, which helped to reduce the magnitude of the water potential gradient required to access water from drying soil. Stable hydrogen isotope measurements indicated that Douglas-fir increased the use of groundwater during mid-summer when precipitation inputs were low, while lodgepole pine did not. There was a greater reduction of photosynthetic carbon gain in lodgepole pine compared with Douglas-fir when the two tree species were exposed to seasonal declines in soil water content. The contrasting patterns of seasonal variation in photosynthetic capacity observed for the two species were a combined result of differences in soil characteristics at the separate sites and the inherent physiological differences between the species.  相似文献   

17.

The effect of site fertility, spacing and mode of regeneration on the survival and stand development of lodgepole pine, Scots pine and Norway spruce was studied in a series of experiments comprising 22 study areas in Finland. After 13-14 yrs, lodgepole pine had a mean survival of 68% in planted and 61% in seeded plots, while Norway spruce had the highest (92%) and Scots pine the second highest survival (82%). The survival of planted lodgepole pine was better the wider the spacing. Best survival was achieved on subdry and dry sites, both with planting and with direct seeding. Dominant height was not affected by spacing, but both basal area and volume at the age of 13-14 yrs were significantly higher the denser the spacing. The average difference in the value of the estimated site index H 50 was slightly under 3 m for the superiority of lodgepole compared with Scots pine. Seeding resulted in site indices almost as high as those of lodgepole planting.  相似文献   

18.
Abstract

The objective of this study was to compare volume growth and external timber quality properties of lodgepole pine (Pinus contorta Dougl. var. latifolia) stands planted in different spacings (1.41×1.41, 2.00×2.00, 2.83×2.83, 4.00×4.00) in southern Sweden. In northern Sweden lodgepole pine has been grown for a long time and shows superior volume production compared to Scots pine (Pinus Sylvestris L.). The Swedish Forestry Act restricts establishment of lodgepole pine plantations in southern Sweden. However, it is important to increase the knowledge about lodgepole pine and its potential use also in this part of the country. Two experiments in southern Sweden were studied. Each trial was designed as a random block experiment with two blocks. Both investigated stands had an age of 23 years at the time of assessment. The mean diameter and the volume production differed significantly between the spacings. The highest volume production was found in the narrowest spacing, 313% compared to the widest spacing. Significant differences between spacings were also found concerning external quality traits. The frequency of dominant and co-dominant trees without defects was 24% in the most open spacing compared to 46% in the narrowest one. Under current circumstances approximately 2500 seedlings/ha in the initial stand seems to be a reasonable compromise between growth, diameter development and timber quality.  相似文献   

19.
We describe methods and results for broad-scale estimation and mapping of forest biomass for the Canadian province of Alberta. Differences over successive decades provided an estimate of biomass change. Over 1500 permanent sample plots (PSP) were analyzed from across the range of lodgepole pine (Pinus contorta var. latifolia Engelm.), the major forest tree species of Alberta. The PSP network is densest in stands aged between 70 and 100 years and is well-represented by stands of all ages to 150 years of age. Stand biomass (Mg ha(-1)) was estimated for each PSP plot as the sum of the respective biomass components for each tree (live and standing dead). The biomass components for live trees were stem, bark, branches, foliage and roots. The components for standing dead trees excluded foliage. Equations from previous biomass studies were used for biomass component estimation. Biomass estimates of additional non-tree components were attempted, but without much success. Biomass of the soil organic layer was estimated once on 452 PSPs and a mean estimate of total dead fuels on the ground (28.4 Mg ha(-1)) was available only for the entire distribution of lodgepole pine. However, values of these two components were essentially constant over time and therefore did not alter the analysis or conclusions obtained by analyzing total tree biomass alone. We then used this spatial network of 1549 plots as the basis for mapping biomass across Alberta. Mapping methods were based on Australian National University SPLINe (ANUSPLIN) software, Hutchinson's thin-plate smoothing spline in four dimensions (latitude, longitude, elevation and biomass). Total tree biomass (mean = 172 Mg ha(-1)) was dominated by stem biomass (mean = 106 Mg ha(-1)), which was an order of magnitude greater than the mean estimates for the bark (11 Mg ha(-1)), branch (12 Mg ha(-1)) and foliage (12 Mg ha(-1)) components. A close relationship was found between total tree biomass and stand stem volume (R(2) = 0.992 with n = 3585; note that volume and biomass were calculated independently). We compared total tree biomass for two decades, the 1980s and the 1990s. After correcting for changes in harvest removals over time, the mean change in total biomass was positive (0.99 Mg ha(-1) year(-1)) and differed significantly from zero (n = 421; P < 0.001). Estimates ranged from -13.9 to 8.0 Mg ha(-1) year(-1). The heart of the lodgepole pine distribution (primarily the Foothills subregions) showed an increase in biomass, whereas isolated pockets of lodgepole pine in the boreal northern subregion indicated a decline in biomass.  相似文献   

20.
Radiata pine plantations in Chile   总被引:1,自引:0,他引:1  
Toro  Jorge  Gessel  Stanley 《New Forests》1999,18(1):33-44
The landscape of the southcentral part of Chile is dominated by fast-growing plantations of radiata pine (Pinus radiata D. Don), and in lesser extent bluegum eucalyptus (Eucalyptus globulus Labill.), Italian poplar, and willows. Radiata pine was first introduced in 1885 as an ornamental species. During 1940–1960 it was used to control erosion in the Coastal Range. Finally, since the 1960s it has been used for commercial plantations. The present extent of the plantation resource is 1,694,104 ha, of which 80.9 percent is radiata pine. During 1991, 1992, and 1993, this species was planted at rates of 75,416 ha, 81,868 ha, and 71,411 ha, respectively. Even though the soils are eroded to different degrees, exhibit a variety of nutritional disorders, and contain some physical restrictions, the productivity of radiata pine ranges from 18 m3/ha/yr to 35 m3/ha/yr. Additional stress comes from some potentially serious pests; for example, the European pine shoot moth, Rhyacionia buoliana, has presented a real threat to radiata pine. The main products obtained from radiata pine are exported to Japan, Korea, Middle and Far East countries, and Europe. Sawlogs, sawntimber, pulpwood, clearwood, and wood chips are some of the products comprising sales in 1994 of U.S.$1,564 billion. The purpose of this paper is to show how radiata pine silviculture has changed since the last part of the 1980s in Chile. Also we want to show how forestry activities have produced a profound and positive change in the social and economic environment that surrounds the areas where the industry’s main production areas exist. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号