共查询到18条相似文献,搜索用时 62 毫秒
1.
苹果目标的准确识别是苹果机械化采摘需要解决的关键问题之一。为此,基于YUV颜色空间模型,提出了一种结合色差分量与高斯自适应拟合算法的苹果目标分割方法。该方法采用首先将苹果目标由RGB颜色空间转换至YUV颜色空间,并利用色差分量V建立果实与背景分割的高斯分布拟合模型,根据拟合结果自动获取分割阈值,以实现自然场景下苹果目标的准确分割。为了验证文中算法的有效性,利用多幅图像进行了试验并与Otsu自适应阈值分割算法进行了比较。试验结果表明,采用文中算法得到的苹果果实的平均检出率达87.08%,识别率领先Otsu算法9.91%。因此,对于着色度较为均匀的苹果目标,采用高斯自适应拟合方法可以有效提高其识别率。 相似文献
2.
3.
研究了自然环境下的成熟苹果彩色图像,结果表明:成熟苹果颜色与背景色大都存在明显差异。从颜色空间角度来说,目标和背景分布于不同的区域。根据这一特点,提出了基于样本颜色空间的目标提取算法。首先,由苹果样本图像在L*a*b*空间中构建样本颜色空间,并用数学形态学对样本颜色空间进行优化;然后,依据样本颜色空间对苹果彩色图像进行目标识别,对于远景深小目标物和严重遮挡的目标物,在样本空间识别的基础上进行二值化,运用形态学结构元素法进行处理;最后,得到了理想的分割效果,识别率高。 相似文献
4.
5.
为解决凭借人工经验方式对小桐子种子品质进行筛选效率较低、主观性强、错误率高且实时性差等问题,采用数字图像处理技术对小桐子种子图像进行分析,针对其特征对图像进行了R,G,B彩色分量的算术运算融合,采用形态学开运算进行消噪处理,并根据OTSU方法进行自适应的阈值选取将图像处理成二值图像,利用LOG算子实现了图像的边缘提取,且通过计算得到了小桐子种子的部分形态特征参数值.结果表明,与人工分割的方法相对比,90幅具有不同摆放方式的小桐子种子图像的平均分割误差不超过0.63%,最大分割误差为1.07%,均方误差σ不超过0.006 4,能较为准确地实现小桐子种子图像的背景分割和参数检测. 相似文献
6.
针对再生稻收割机视觉导航的稻田图像分割问题,结合再生稻植株的生长特点和再生稻避莊的要求,利用相机于农田采集再生稻图片,结合RGB、HSV、YCr Cb空间中的常用灰度化因子,进行灰度化对比试验并分析其直方图特征,得出在HSV空间的S分量灰度化;采用最大类间方差法(Otsu)得到初步分割阈值T,经进一步分析为保留较完整的不同成熟度再生稻植株特征,加入修正因子-a得到阈值T-a对图像二值化;再通过数学形态学,面积法过滤等后续处理,形成收割机行走的左右边界区域。结果表明:处理1副像素419×310的图像平均耗时0.053 s,可满足今后的实时性要求,分割出的图像基本上反应了再生稻植株的走势特征,与人眼判断植株边缘位置基本相符合。 相似文献
7.
自然场景下苹果图像FSLIC超像素分割方法 总被引:1,自引:0,他引:1
应用Cauchy-Schwarz不等式,推导出一个聚类搜索过程中剥离不必要计算的条件,早期预估后舍掉符合预设条件的候选聚类,提出了基于自然场景的快速简单线性迭代聚类算法(FSLIC算法)。对包含极端恶劣条件下的500幅苹果图像进行了边界召回率检验和运行速度测试;统计了极端恶劣条件下的30幅苹果图像的全局错误率GCE、假阳性率FPR和假阴性率FNR。试验表明,提出的FSLIC算法减小了后续迭代过程中的冗余误差,边界召回率较GB超像素分割算法平均提高了21.7%,速度是GB超像素分割算法的1.83倍;整个图像分割过程中基于超像素的分割算法(GB、FSLIC)的GCE值较常规分割算法(BP、WT、SVM)平均减小了13%,较常规算法的GCE值减小了19%。 相似文献
8.
复杂背景黄瓜叶部病害图像分割方法 总被引:6,自引:0,他引:6
针对具有复杂背景的黄瓜病害图像,设计了一种图像分割方法。该方法首先结合超G和OTSU方法去除彩色图像中的大部分背景,尽可能保留图像中的绿色部分信息;然后根据病害图像RGB模型中红色分量自动建立数据项,并且设定相邻像素间红色分量差值的函数作为平滑项,以上述数据项和平滑项构建基于阈值预处理的图切割算法。利用该方法对4种黄瓜病害(霜霉病、白粉病、靶斑病和炭疽病)彩色图像进行分割。结果表明,该方法能够较为准确地将病斑区域从彩色图像中提取出来,算法的平均正确识别率达到90%以上;平均运行速度为2.12 s,能够满足实时图像分割的要求。 相似文献
9.
农产品品质检测中常用的图像背景分割方法 总被引:4,自引:1,他引:4
利用机器视觉对农产品进行无损检测和自动分级时,对实时拍摄的农产品图像,在进一步的特征提取、模式识别等图像处理之前,采用适当、有效的方法把农产品图像从背景中分剖出来是一个非常重要的预处理步骤。其分割效果的好坏将直接影响到农产品分级的最终效率和准确性。为此,介绍了农产品品质无损检测中常用的图像背景分割方法。 相似文献
10.
对图像中的鱼类目标进行分割是提取鱼类生物学信息的关键步骤。针对现有方法对养殖条件下的鱼类图像分割精度较低的问题,提出了基于目标检测及边缘支持的鱼类图像分割方法。首先,设计了基于目标检测的完整轮廓提取方法,将具有完整轮廓的鱼类目标从图像中提取出来作为分割阶段的输入,使得整幅图像的分割问题转化为局部区域内的分割问题;然后,搭建Canny边缘支持的深度学习分割网络,对区域内的鱼类实现较高精度图像分割。实验结果表明,本文方法在以VGG-16、ResNet-50和ResNet-101作为主干网络的模型上的分割精度为81.75%、83.73%和85.66%。其中,以ResNet-101作为主干网络的模型与Mask R-CNN、U-Net、DeepLabv3相比,分割精度分别高14.24、11.36、9.45个百分点。本文方法可以为鱼类生物学信息的自动提取提供技术参考。 相似文献
11.
12.
基于机器视觉的苹果识别和形状特征提取 总被引:15,自引:1,他引:14
提出了利用色差R-G和色差比(R-G)/(G-B)相结合的苹果识别方法.在顺光、逆光等不同情况下对拍摄的苹果图像进行了识别,并对识别后的图像进行消除噪声、区域填充等预处理,获得苹果的轮廓图像.针对轮廓图像,采用遗传算法进行形状特征提取.采取多次运行遗传算法,并依次转换目标轮廓点为背景点的方法,处理果实图像邻接、重叠问题.实验结果表明:苹果识别方法在一定程度上消除了阴影、逆光、土壤等影响,识别率达97%.基于遗传算法的形状特征提取方法,可对邻接、重叠图像进行有效分割,快速、准确地实现苹果图像圆心坐标和半径的提取. 相似文献
13.
基于机器视觉和信息融合的邻接苹果分割算 总被引:4,自引:3,他引:1
提出了利用亮度和颜色的信息融合来分割邻接苹果的方法.首先使用Lab模型对苹果图像进行分割.然后计算分割后每个区域的面积,并判断其是否为邻接苹果区域.接着在邻接区域内计算亮度信息,利用亮度产生的亮斑对邻接苹果进行分割.这样,在邻接区域以外的部分,亮度信息产生的噪声被Lab模型的信息屏蔽,而邻接区域以内的部分,具有惟一性的亮度信息可以较好分割经Lab模型处理后的邻接苹果.实验表明,此算法对邻接苹果识别非常有效,识别率大于92.89%,而且算法简单快速,平均每幅图片识别时间小于0.5 s. 相似文献
14.
15.
基于改进边缘分割算法的幼苗信息提取 总被引:1,自引:0,他引:1
优化特征空间和改进分割算法是利用面向对象技术准确获取幼苗信息的关键,也是高空间分辨率数据提取目标地物信息迫切需要解决的问题。研究了在多光谱影像进行去噪声处理基础上,采用改进的基于边缘的算法进行影像分割,同时选取纹理、形状、光谱特征构建特征空间,实现幼苗信息提取的方法。结果表明,该方法对幼苗信息提取的总精度达86%,比传统技术提高了12%,KAPPA系数达0.814 5,比传统技术提高了0.115 9。该方法可以对幼苗信息进行准确快速提取,能够为生产或管理部门进行准确监测和决策提供依据,对未来造林情况进行预测和评价有重要意义。 相似文献
16.
17.