首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of soil moisture changes was studied during a cropping season in an alley cropping experiment of maize withLeucaena leucocephala andFlemingia macrophylla at the SADC/ICRAF Agroforestry Research Station in a semiarid region near Lusaka, Zambia (28°2956 East and 15°2132 South). Soil moisture potential was monitored at regular intervals using tensiometers installed at 15, 30 and 45 cm depths in fertilized and unfertilized alleys within the double hedgerow, and the first, second and third rows of maize in the alleys.Soil moisture moved mostly towards the top horizon during very dry conditions. Alleys that had received a combination of fertilizer and hedgerow prunings depleted more moisture than those that had only hedgerow prunings. There were no differences in moisture utilization pattern between leucaena and flemingia hedgerows. The hedgerows depleted the same amount of moisture as the maize plants. However, during dry conditions, there was a higher soil moisture content under the hedgerows than in maize rows, indicating that there was no apparent competition for moisture between the hedgerows and the maize plants.  相似文献   

2.
ABSTRACT

Soil erosion is a major socioeconomic and environmental problem in Turkey. Almost 86% of the land in Turkey has suffered various degrees of soil erosion. The objective of this study was to determine whether differences in tree species affect soil characteristics and microbial activity in degraded soils. Results from this study showed that organic C (Corg) was highest in the black locust soil at 0–20 cm depth and lowest in the bare land. Microbial biomass C (Cmic) increased in the order black locust > Scotch pine > bare land at two soil depths. One-way ANOVA demonstrated that afforested soils contain significantly higher microbial biomass C than those in the bare land soils. Microbial quotient (Cmic/Corg) of soils are positively influenced by afforestation as the bare land soils exhibited lower microbial quotient than the associated Scotch pine and black locust soils. Microbial communities in black locust soils were energetically more efficient—had a lower metabolic quotient (qCO2)—with a higher Cmic/Corg compared to those in Scotch pine soils. However, the microbial quotient in our study was still below range and cannot reach equilibrium again 15 yr after afforestation. Restoration of degraded lands could be a long-term process from microbial activity in the observed regions.  相似文献   

3.
Silvopastures may have the potential to increase forage yields beneath trees compared to open pasture at some sites. This has been attributed to a combination of factors including improved water use efficiency by shaded grass and increased water availability through hydraulic lift by trees. The objectives of this research were to determine if silvopastures changed forage mass production and available soil water, and to determine how these two factors were related. Forage mass and soil water were sampled at 1.0, 2.0, and 3.6 m from the tree stem, or plot center under honey locust (Gleditsia triacanthos L.), black walnut (Juglans nigra L.) and shade cloth in 2006 and 2007. Soil water was measured in the top 10 cm of soil using a capacitance probe, and at 30-cm intervals, from 45 to 105 cm, using a neutron probe. Forage was collected to determine dry mass and annual yield. In 2006, forage mass was greater under black walnuts and honey locusts than under 70% shade cloth. In 2007, with a 50% shade cloth, forage growth was similar in all treatments. In both 2006 and 2007, soil moisture in the top 10 cm was higher under shade cloth compared to honey locust or black walnut trees. Similarities in forage mass between treatments in 2007 indicate that the differences in soil water were not biologically significant for forage growth. Lower forage mass under the 70% shade cloth in 2006 was due to suppressed growth from intense shading. The major implication for pasture managers is that trees in these pastures had no negative effect on soil water availability and forage growth.  相似文献   

4.
Soil moisture depletion during dry seasons by planted hedgerows to lower levels than under natural fallow, would reduce drainage and nutrient losses in the following rainy season when food crops are grown. The volumetric water content of the 0–150 cm soil profile was measured under planted hedgerows (alternating Leucaena leucocephala and Gliricidia sepium) and natural fallow, both either annually cropped to sole maize or in a two-year crop/two-year fallow rotation, in the humid forest zone (annual rainfall 1700 mm) of southern Cameroon during the 1995–1996 and 1996–1997 dry seasons. Hedgerows were cut to 0.05 m height, largely eliminating trees’ water consumption during cropping phases. Differences in total soil water content at 0–150 cm depth, between systems, occurred only in the early phases of the 1996–1997 dry season. In both dry seasons, differences between systems in water content were found in some soil layers, all within 0–60 cm depth, yet, without consistent advantage of any system in exploiting the topsoil water resources. Soil water content was lower under L. leucocephala than G. sepium at 20–40 cm depth only. Below 60 cm depth, no differences in water regimes between systems were found. Under southern Cameroonian conditions it is unlikely that any of the systems has an advantage in accessing or recovering water and thus, if available, nutrients from the sub-soil. None of the systems examined was capable of delaying drainage and thus it appears unlikely that downward displacement of nutrients is delayed after the start of the rains.  相似文献   

5.
Above and below ground interactions in alley-cropping in semi-arid India   总被引:7,自引:0,他引:7  
The influence of micro-environment on the growth and yield of cowpea, castor and sorghum was investigated in a 10 m wide alley cropping system. The alleys were formed by Leucaena hedgerows pruned for both fodder and pole production. Below-ground interaction was examined by installing a polythene root barrier between the root systems of crops and Leucaena and by measurements of both soil moisture and root growth. Microclimate measurements included light, wind speed, humidity and temperature.Growth and yield of crops declined from 150 to 30% of sole crop as the distance from the hedgerows decreased from 5 to 0.3 m. The presence of the root barrier had a marked effect on crop growth and completely eliminated any reduction in crop yield, although shading by the hedgerows reached 30 to 85% of full sunlight. There was some modification of the microclimate in the alleys but the changes were not great enough to significantly influence crop yield. The substantial increase in crop yield in the middle of the alleys was explained by the residual effect of a previous hedgerow, removed 12 months previously, on probably the infiltration rate and nutrient status of the soil. These results clearly showed that alley cropping in the semi-arid tropics induces competition for moisture between the trees and crops which may severely reduce crop yield.  相似文献   

6.
为了研究生态毯覆盖对土壤湿度和养分的影响,首次将生态毯应用于地震滑坡区砾石泥沙堆积区和泥沙堆积区。结果表明:铺设生态毯的土壤含水量均高于裸地的;各层的土壤水分含量随干旱日数的增加呈下降的趋势,生态毯的下降趋势较为平稳;保水效果为椰纤维生态毯秸秆+椰纤维生态毯秸秆生态毯裸地。覆盖生态毯可以提高土壤有机质含量和p H值;土壤速效N、P、K和全N、全P、全K的含量也有一定程度的提高。铺设生态毯能有效固定地震滑坡区的砾石泥沙,改善土壤的水热条件,进而增加根系、微生物的活动和植被有机体的积累,促进枯落物的分解,逐步提高土壤中的养分含量。  相似文献   

7.
Kanzler  Michael  Böhm  Christian  Freese  Dirk 《New Forests》2021,52(1):47-68

The aim of this study was to evaluate the potential of short rotation alley cropping systems (SRACS) to improve the soil fertility of marginal post-mining sites in Brandenburg, Germany. Therefore, we annually investigated the crop alleys (AC) and black locust hedgerows (ABL) of a SRACS field trail under initial soil conditions to identify the short-term effects of tree planting on the storage of soil organic carbon (SOC) and its degree of stabilization by density fractionation. We detected a significant increase in SOC and hot-water-extractable organic C (HWEOC) at ABL, which was mainly restricted to the uppermost soil layer (0–10 cm). After 6 years, the SOC and HWEOC accumulation rates at ABL were 0.6 Mg and 46 kg ha?1 year?1, which were higher than those in the AC. In addition, comparatively high stocks of approximately 4.6 Mg OC and 182 kg HWEOC ha?1 were stored in the ABL litter layer. Density fractionation of the 0–3 cm soil layer at ABL revealed that the majority of the total SOC (47%) was stored in the free particulate organic matter fraction, which was more than twice that of the AC. At the same time, a higher and steadily increasing amount of SOC was stored in the occluded particulate organic matter fraction at ABL, which indicated a high efficiency for SOC stabilization. Overall, our findings support the suitability of black locust trees for increasing the soil fertility of the reclaimed mining substrate and, consequently, the high potential for SRACS to serve as an effective recultivation measure at marginal sites.

  相似文献   

8.
Understanding the changes in soil properties in silvopastoral systems is important in regulating the interactions between tree and understorey pastures. In this study, the effects of understorey management on soil mineral N and moisture availability, soil temperature, soil C, and tree growth were investigated in a seven-year-old silvopastoral agroforestry experiment in Canterbury, New Zealand. The systems included understorey treatments of bare ground and ryegrass (Lolium perenne) pasture. Soil mineral N, moisture content, and temperature were monitored from July 1997 to July 1998 in two positions (0.9 and 3.5 m north of tree rows) and two soil depths (0–10 and 10–20 cm). Soil C and N in the 0–10 cm depth were higher in the ryegrass than in the bare ground plots, reflecting the organic C and N input in the ryegrass plots, as well as greater N loss from the bare ground plots in the form of nitrate leaching and/or denitrification. Soil C was higher in the position 0.9 m than 3.5 m away from the tree rows, possibly caused by the greater C input from decomposing fine tree roots and needle litterfall at the 0.9 m position. Soil moisture availability was greater in the bare ground than in the ryegrass plots in the summer. No effect of understorey management on soil temperature was found. Soil nitrate levels were lower in the ryegrass plots and may be limiting when soil moisture supply was adequate. Tree volume growth from winter 1997 to 1998 was significantly greater in the bare ground treatment, reflecting better soil moisture and N supply conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
通过对松花坝水源区4种主要林分样地的土壤物理性质和贮水量进行测定,同时与裸地进行对比分析,结果表明:4种林分平均土壤的自然含水量比裸荒地高15%,土壤容重、孔隙度、有机质含量和土壤粒度都优于裸荒地;林分的水源涵养功能高于裸荒地,其中圣诞林水源涵养功能最好,华山松林次之,云南松林和滇石栎林稍差。说明培植林分对水源涵养有巨大作用,对水源区生态发展意义重大。  相似文献   

10.
The influence of root pruning and cutting interval ofLeucaena hedgerows on alley croppedrabi sorghum was investigated. Paired (60 cm)Leucaena hedgerows spaced 6.6 m wide were subject to either root pruning, using a country plough during mid-kharif season, or no root pruning. The cutting frequency ofLeucaena hedgerows ranged from one month to six months during therabi cropping period. The effect on soil moisture, crop growth, yield and yield components ofrabi sorghum was examined.Root pruning ofLeucaena hedgerows increased grain and stover yields of the alley croppedrabi sorghum by 33 and 17%, respectively, over root not pruned hedgerows. Similarly, shorter cutting intervals (one and two months) increased crop yields as compared with longer cutting intervals (three and six months). The growth (height and dry matter) of the crop was similarly influenced. Soil moisture studies indicated that the competition between crop and hedgerows was considerably reduced by the root pruning. The results clearly showed that the competition between hedgerows and arable crop can be reduced considerably by root pruning and frequent cutting (at one to two months interval) of the hedgerows.  相似文献   

11.
果园覆草节水效果研究   总被引:1,自引:0,他引:1  
通过在张掖市林果业研究所苹果梨园内进行的果园覆草节水效果的研究,结果表明:果园覆草具有明显的保水作用。0~60cm土层的土壤含水量显著高于清耕对照;不同深度土层以0~20cm土层含水量最高,为10.4%,说明覆草能抑制表面蒸发;覆草能促进苹果梨树体生长,明显提高果实品质,使大果率增加25%,平均单果重增加12.1%。  相似文献   

12.
Soil physical properties were measured on field runoff plots established on a tropical Alfisol in Western Nigeria. Evolution of soil physical properties was assessed over a period of 6 years beginning in 1982 (when soil was cleared off its secondary regrowth) till 1987. Changes in soil physical properties were measured for six systems including plow-till, no-till, contour hedgerows of Leucaena leucocephala established 2- and 4-m apart, and contour hedgerows of Gliricidia sepium established 2- and 4-m apart. Soil physical properties were measured once every year during the dry season following the harvest of second season crops.Over the 6-year period, there were no significant differences in relative contents of textural separates of sand, silt and clay for the surface 0–5 and 5–10 cm layers. The gravel concentration of the surface 0–5 and 5–10 cm layers, however, increased significantly due to plowing and mixing of the surface and subsoil layers. Soil bulk density of 0–5 and 5–10 cm layers, respectively, increased in all treatments from initial values of 1.02 and 1.16 g cm–3 in 1982 to 1.43 and 1.65 g cm–3 at the end of cropping cycle in 1986. The maximum increase in soil bulk density was observed for the no-till treatment. Accordingly, there was an increase in penetration resistance of the surface 0–5 cm layer from an average value of 25.3 kPa in 1982 to 210.7 kPa in 1986. The highest penetration resistance (353 kPa) of 5–10 cm layer was recorded for the no-till treatment. In accord with total porosity, the gravimetric soil moisture retention at zero suction was the lowest for the no-till and the highest for a Gliricidia-based system. There were significant improvements in available water capacity (AWC) of the soil by both Leucaena and Gliricidia-based systems. In comparison with the no-till system, increase in AWC by Leucaena- and Gliricidia-based systems, respectively, was 42 and 56 percent by weight for 0–5 cm depth and 12 and 58 percent by weight for 5–10 cm depth. Alterations in pF curves by agroforestry-based systems were attributed to improvements in soil structure and structural porosity.  相似文献   

13.
以内蒙古大青山前坡38 a生、17 a生油松人工林为研究对象,对林分生长特征、部分立地因子特征进行调查分析,研究造林立地因子对人工林生长的影响.结果表明:(1)38 a生油松人工林平均树高、胸径和冠幅分别为7.36 m、9.8 cm和261.1 cm;17 a生油松人工林平均树高、胸径和冠幅分别为2.86 m、8.1 ...  相似文献   

14.
The cultivation of fast growing trees on agricultural sites is an area undergoing a growth in interest due to the rising demand for woody biomass as a source of bioenergy. Short rotation alley cropping systems (SRACS) represent a promising possibility to combine annual crops for food, fodder or bioenergy with woody plants for biomass production, doing so through an integration of hedgerows of fast growing trees into conventional agricultural sites. Against such developments, the question has arisen as to what extent hedgerows in SRACS can act as an effective windbreak despite their management-related low height of only a few meters. On the basis of multiannual recorded wind velocity data in high resolution at two sites in Germany, it could be shown that the wind speed on crop alleys was reduced significantly by such hedgerows. At the central point of 24 m wide crop alleys, the wind speed decreased on an annual average basis by more than 50 % when compared to the wind speeds of open field. The overall amount of reduction was strongly dependent on the location within the crop alleys, the height of trees, the distance between two hedgerows, and their orientation. In reflection upon these results, it was concluded that the establishment of SRACS could lead to enhanced soil protection against wind erosion and thus to ecological and economic benefits for agricultural sites.  相似文献   

15.
为了解黄土丘陵区不同坡向林地土壤水分的变化规律,在山西中阳县的圪针耳流域内,以不同坡向柠条林地为对象,对其土壤水分动态特征进行了研究。结果表明:土壤水分变化具有明显的时空规律。1)土壤剖面按含水量变化幅度大小分为活跃层、次活跃层和相对稳定层3个层次,3个层次土壤相对含水量的变异系数从上至下呈由大而小变化;2)土壤水分的季节变化可分为明显的3个时期:土壤水分消耗期、土壤水分补偿期、土壤水分消退期。3)降水是影响土壤水分变化的重要因素,土壤水分对降雨具有一定的滞后性。坡向对土壤水分的时空分布有重要影响。  相似文献   

16.
Field experiments were conducted on a tropical Inceptisol at Apia, Western Samoa to evaluate the effects of alley cropping on soil characteristics, weed populations, and taro yield. Taro yields were compared from Calliandra calothyrsus and Gliricidia sipium alleys, spaced at 4 m, 5 m, and 6 m, and a no tree control. Measurements were made for soil moisture and temperature, weed growth, hedge biomass production, and taro growth and yield. Data was analyzed over 4 consecutive years from 1988 to 1991.Hedge biomass yields ranged from 5.1 to 16.1 t/ha/yr dry weight over the 4 years of the trial, with Calliandra and Gliricidia performing equally well. Biomass yields decreased by about 2 mt/ha with increasing alley width from 4 to 6 m alleys. Weed populations were significantly lower in the 4 m alleys compared to the 5 m, 6 m, and control plots. The 6 m alleys supported the significantly highest weed populations. Soil from alley plots held significantly more water in the 0.3 to 1 bar range than soils from the controls. Four years of mulch application measurably improved soil water holding capacity and bulk density. However, no improvement was seen in nitrogen, phosphorus, potassium, calcium, magnesium and organic carbon content in the alley plots compared to the controls. There was no positive yield effect of alley cropping on taro yield. Yields in the 5 m and 6 m alleys were not significantly different from the control, while the 4 m alleys produce significantly lower yields than the control. Thus, alley cropping did not prove a viable alternative to traditional shifting cultivation after 4 years of continuous cropping, in this trial.  相似文献   

17.
Effects of black locust (Robinia pseudoacacia L.) on productivity and N nutrition of barley (Hordeum vulgare L.) were evaluated under various management regimes (2 soil types, 3 levels of N fertilizer, and 3 cropping systems — barley alone, and barley intercropped with trees pruned or unpruned).Intercropping did not affect productivity and N nutrition of barley in 1988 when trees were small. However, there was a significant yield decline in 1989 as the trees grew bigger. On average, productivity of the sole crop was 8% higher in both soil types. Pruning and mulching moderated the yield reduction compared with the unpruned treatment. Competition for soil moisture was considered a major constraint. Nonetheless, the overall productivity (barley+black locust) from the intercropped treatments was 53% higher than sole cropping.In 1989 and 1990, intercropped barley had significantly higher grain and straw N concentrations (%). In 1989, for example, grain N content was 11% higher than in the sole crop. Removal of trees in 1990 resulted in significant increase in productivity and N content of subsequent barley crop relative to continuous sole cropping. From N nutrition viewpoint, barley from previously intercropped treatments showed superior quality and it had, on average, 23% higher grain N content than the sole crop. This was attributed to N2-fixation and N return by black locust. It was estimated that black locust contributed about 36 kg N ha–1 to the system.This study underscores the role black locust is potentially capable of playing in the development of sustainable and low-input agricultural systems in temperate regions. Nonetheless, the study also illustrates the importance of the below and above-ground interactions that occur in intercropped systems and the need for further research in this area.  相似文献   

18.
土壤温度和水分变化对川西云杉幼苗氮和磷含量的影响   总被引:1,自引:0,他引:1  
【目的】研究不同梯度的土壤温度和水分对川西云杉幼苗生长性状和各器官氮和磷含量的影响,以期为全球气候变暖背景下解释川西云杉树线形成的原因提供参考和数据积累。【方法】以5年生川西云杉幼苗为试验材料,采用人工气候室结合嵌套设计,设置5个土壤温度梯度(2、7、12、17、22℃)和3个土壤水分梯度(干旱处理、正常水分含量处理、饱和水分含量处理)。每处理9株幼苗,共135株幼苗。实验处理4个月后,测定并比较分析不同梯度的土壤温度和水分对幼苗的生长性状、各器官干物质含量、各器官全氮、全磷浓度和含量以及土壤全氮和全磷浓度的影响。【结果】土壤温度处理对幼苗基径和株高生长量均无显著影响,而土壤水分处理对幼苗株高生长量有显著影响;在2℃和7℃土壤温度干旱处理下显著降低了幼苗的株高生长量,但随着土壤温度的升高其影响效应不显著。土壤温度处理对土壤氮和磷浓度无显著影响,而干旱处理显著升高了土壤氮和磷浓度。川西云杉幼苗各器官的氮和磷浓度以及当年生叶氮含量随土壤温度降低显著降低;干旱和饱和水分处理显著降低了当年生叶和当年生枝的氮浓度,饱和水分处理显著降低了当年生叶的磷浓度,干旱处理显著降低了当年生枝、茎和根的磷浓度,干旱和饱和水分处理显著降低了当年生叶和根的氮和磷含量,且随着土壤温度升高影响效应更显著。【结论】在短期内,土壤低温对川西云杉幼苗的生长性状没有明显的制约作用,但对川西云杉幼苗各器官的氮和磷浓度及含量影响显著,尤其是当年生叶和根的氮和磷浓度及含量。在川西地区,低温、干旱等极端气候胁迫导致的云杉幼苗氮、磷含量的不足很可能是限制川西云杉垂直分布的重要因素。此外,土壤温度和水分处理存在显著的交互作用,随着土壤温度的降低,水分胁迫对幼苗各器官氮和磷含量的影响由显著变得不再显著,说明随着海拔升高,与水分因子相比,土壤低温成为造成云杉各器官营养元素亏缺的主导因子。  相似文献   

19.
Food production in the densely populated Rwandan highlands is impeded by soil erosion and loss in fertility. Alley cropping leguminous shrubs with food crops on contours is purported to minimize the problem and to provide wood and forage. This study reports the effect of Sesbania prunings plus moderate levels of N and P on bean (Phaseolus sp) and maize (Zea mays) yields in alley cropping. Experimental design was a randomized complete block with split-split plots. Main plots were alley width: 2, 4, 6 and 8 m. Phosphorus (P) at 0, 30 and 60 kg P2O5/ha occupied the subplot and nitrogen (N) at 0, 30 and 60 kg/ha were assigned at the sub-sub plot level. No P was applied to maize during the second cropping season. Crop yield in kg/ha included the land space taken by hedgerows. Bean yield in 6 m alleys (1100 kg/ha) was about twice that in 2 m alleys (500 kg/ha). Bean responded to N and P. Optimum alley width and N for bean yield were 6 m and 30 kg/ha, respectively. Cuttings from alley hedgerows provided stakes for climbing beans. Maize responded to N but not to residual P. The highest maize yield came from 8 m alleys with 40 kg/ha, but yields from 8 and 6 m alleys with the same N treatment were not significantly different. Maize plants in middle rows were significantly taller than plants in rows adjacent to hedgerows. Maize rust development showed significant alley width and row position effect. There were significantly fewer uredinia in the Sebania alleys relative to the control plots without shrub hedgerows. Rust development on maize in middle rows was significantly greater than development in border rows.  相似文献   

20.
An experiment was conducted at ICRISAT Center, Patancheru, India from June 1984 to April 1988 on a shallow Alfisol to determine whether the productivity of annual crop systems can be improved by adding perennial species such as Leucaena leucocephala managed as hedgerows. Except in the first year, crop yields were suppressed by Leucaena due to competition for moisture. The severity of competition was high in years of low rainfall and on long-duration crops such as castor and pigeonpea. Based on total biomass, sole Leucaena was most productive; even on the basis of land productivity requiring both Leucaena fodder and annual crops, alley cropping had little or no advantage over block planting of both components. Application of hedge prunings as green manure or mulch on top of 60 kg N and 30 kg P 2 O 5ha−1 to annual crops did not show any benefit during the experimental period, characterized by below average rainfall. Indications are that (i) alley cropping was beneficial in terms of soil and water conservation with less runoff and soil loss with 3 m alleys than with 5.4 m alleys, and (ii) root pruning or deep ploughing might be effective in reducing moisture competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号