首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the interactions between the inoculation with three arbuscular mycorrhizal fungi, namely, Glomus intraradices, Glomus deserticola and Glomus mosseae, and the addition of a liquid organic amendment at different rates (0, 50, 100 or 300 mg C of liquid amendment per kilogram soil) obtained by alkaline extraction of composted dry olive residue with respect to their effects on growth of Retama sphaerocarpa seedlings and on some microbiological and physical properties of soil. One year after planting, both mycorrhizal inoculation treatments and the addition of amendment had increased plant growth and dehydrogenase, urease and benzoyl argininamide hydrolysing activities. The inoculation with G. mosseae increased plant growth to a greater extent than the addition of the amendment (about 35% greater than plants grown in the amended soil and about 79% greater than control plants) and both treatments produced similar increases in soil aggregate stability (about 31% higher than control soil). The organic amendment produced a very significant decrease in the levels of microbial biomass C and a strong increase in soil dehydrogenase and urease activities, which were proportional to the amendment rate. Only the combined treatment involving the addition of a medium dose of amendment (100 mg C kg−1 soil) and the mycorrhizal inoculation with G. intraradices or G. deserticola produced an additive effect on the plant growth with respect to the treatments applied individually (about 77% greater than plants grown in the amended soil and about 63% greater than inoculated plants).  相似文献   

2.
This study was carried out in a semiarid degraded area to assess the effectiveness of mycorrhizal inoculation with a mixture of native arbuscular mycorrhizal (AM) fungi or an allochthonous AM fungus (Glomus claroideum), on the establishment of Olea europaea subsp. sylvestris L. and Retama sphaerocarpa (L.) Boissier in this area. Associated changes in the soil microbiological properties and aggregate stability related to these AM inocula were also recorded. Eighteen months after planting, G. claroideum had increased available P in the rhizosphere of both shrub species. In general, both inoculation treatments increased water-soluble C and water-soluble and total carbohydrates, G. claroideum being the most effective inoculum, particularly in R. sphaerocarpa. The mixture of native AM fungi was the most effective treatment for increasing the aggregate stability of R. sphaerocarpa soil, while that of O. europaea was increased only by G. claroideum. Increased (dehydrogenase, urease, protease-BAA, acid phosphatase and -glucosidase) enzyme activities, in particular of dehydrogenase and acid phosphatase, were recorded in the rhizosphere of both mycorrhizal shrub species. The mixture of native AM fungi was the most effective treatment for stimulating the growth of O. europaea and R. sphaerocarpa (11.6-fold and 3.3-fold, respectively, greater than control plants). The establishment of mycorrhizal shrub species favoured the reactivation of soil microbial activity, which was linked to an increase in aggregate stability.  相似文献   

3.
Recycling of olive mill wastewaters (OMW) into agricultural soils is a controversial issue since benefits to soil fertility should counterbalance potential short-term toxicity effects. We investigated the short-term effects of OMW on the soil-plant system, regarding the diversity, structure and root colonization capacity of arbuscular mycorrhizal (AM) fungi and the respective growth response of Vicia faba L, commonly used as green manure in olive-tree plantations. A compartmentalized pot system was used that allowed the establishment of an AM fungal community in one compartment (feeder) and the application of three OMW dose levels in an adjacent second compartment (receiver). At 0, 10, and 30 days after OMW treatment (DAT), V. faba pre-germinated seeds were seeded in the receiver compartment. At harvest, shoot and root dry weights, AM fungal root colonization, soil hyphal length and P availability were recorded in the receiver compartment. In addition, OMW effects on AM fungal diversity in plant roots were studied by DGGE. A transient effect of OMW application was observed; plant growth and AM fungal colonization were initially inhibited, whereas soil hyphal length was stimulated, but in most cases differences were absent when seeding was performed 30 DAT. Similarly, changes induced in the structure of the root AM fungal community were of transient nature. Cloning and sequencing of all the major DGGE bands showed that roots were colonized by Glomus spp. The transient effects of OMW on the structure and function of AM fungi could be attributed to OMW-derived phytoxicity to V. faba plants or to an indirect effect via alteration of soil nutritional status. The high OMW dose significantly increased soil P availability in the presence of AM fungi, suggesting efficient involvement of AM fungi in organic-P minerilization. Overall our results indicate that soil application of OMW would cause transient changes in the AM fungal colonization of V. faba plants, which, would not impair their long-term plant growth promoting ability.  相似文献   

4.
It is suggested that the diversity of arbuscular mycorrhizal fungi (AMF) and their association with distinct plants species are crucial in the early stages of revegetation procedures since the AMF roots colonisation plays an important role improving plant establishment and growth. We carried out a study where we analyse the AMF community composition in the roots of Ephedra fragilis, Rhamnus lycioides, Pistacia lentiscus and Retama sphaerocarpa fourteen months after revegetation in a Mediterranean semiarid degraded area of southeast Spain in order to verify whether different plant species can variably promote the diversity of AM fungi in their rhizospheres after planted. We analysed a portion of approximately 795 bases pairs of the small-subunit ribosomal DNA by means of nested PCR, cloning, sequencing and phylogenetic analyses. Eight fungal sequence types belonging to Glomus group A and B and to the genus Paraglomus were identified. The different plant species had different AM fungal community composition. Thus, R. lycioides harboured the highest number of four fungal sequence types while from E. fragilis only two types could be characterized that were specific for this plant species. P. lentiscus and R. sphaerocarpa harboured each one three sequence types and two of them were shared. All AMF sequence types were found in the natural soil. These results show that one effective way of restoring degraded lands is to increase the number of plant species used, which would increase the AMF diversity in the soil and thus the below-ground, positive interactions.  相似文献   

5.
A mesocosm experiment was conducted to investigate whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of native (Piptatherum miliaceum, Retama sphaerocarpa, Psoralea bituminosa, Coronilla juncea, and Anthyllis cytisoides) and for comparison (Lolium perenne) seedlings in a heavy-metal-contaminated, semiarid soil were affected by the application of composted sugar beet waste. We also investigated whether there were relation between AMF diversity and metal concentration (Al, Cd, Cu, Fe, Mn, Pb and Zn) and total P in shoot as well as some soil parameters (total organic carbon and total N) when the SB waste was added to the soil. We analyzed a portion of approximately 795 base pairs of the small-subunit (SSU) rRNA gene by nested PCR, cloning, sequencing, and phylogenetic analyses. Twelve different AMF sequence types were distinguished: seven of these belonged to Glomus group A, one to Glomus group B, one to Diversispora, one to Archaeospora, and two to Paraglomus. The AM fungal populations colonizing roots in a heavy-metal-polluted soil were quite dependent on the host plant, the highest diversity values being obtained in authochtonous plants recognized as metallophytes, such as P. bituminosa, and in an allochtonous, invasive species (L. perenne). No significant correlation was found between AMF diversity and plant metal concentration and soil parameters. Excepting P. bituminosa, when sugar beet waste was added to soil, the populations of AM fungi in roots increased and the shoot metal concentrations decreased in all host plant species studied. Therefore, the addition of sugar beet waste can be considered a good strategy for the remediation and/or phytostabilization of mine tailing sites.  相似文献   

6.
Changes in soil organic carbon, total nitrogen, pH, and the abundance of arbuscular mycorrhizal fungi are examined along a large-scale aridity gradient from southeast to northwest in China. Soil organic carbon and total nitrogen decreased but pH increased with increased aridity. Aboveground plant biomass, spore abundance, and colonization of roots by arbuscular mycorrhizal fungi also declined as the aridity increased. Soil organic carbon and total nitrogen were positively correlated with aboveground plant biomass, and arbuscular mycorrhizal fungal spore number and root colonization were positively correlated with soil organic carbon, total nitrogen, and aboveground plant biomass but were negatively correlated with soil pH. A structural equation model suggested that aridity affected soil organic carbon and total nitrogen by limiting aboveground plant biomass. Aridity exerted a large direct effect and smaller indirect effects (via changes in aboveground plant biomass) on the abundance of arbuscular mycorrhizal fungi. Soil pH also directly influenced arbuscular mycorrhizal fungal abundance. These results suggest that aboveground plant biomass could be a key factor driving the changes of soil organic carbon, total nitrogen, and arbuscular mycorrhizal fungal abundance along this aridity gradient in China.  相似文献   

7.
为探讨多胺对共生条件下丛枝菌根真菌及其宿主植物生长发育的影响,本研究以丛枝菌根真菌(Gigaspora margarita)为试验材料,通过施用不同浓度的多胺(Polyamine,PA)及其生物合成抑制剂[Methylglyoxal bis(guanylhydrazone),MGBG]处理接种丛枝菌根真菌的葡萄微繁苗,研究共生培养条件下外源多胺及多胺合成抑制剂对丛枝菌根真菌孢子萌发、芽管菌丝及其宿主植物生长发育的影响.试验结果表明,共生培养条件下,一定浓度的外源PA对丛枝菌根真菌及其宿主植物的生长发育具显著促进作用,丛枝菌根真菌孢子数、菌丝长度、侵染率、丛枝丰富度及菌根化葡萄幼苗生长势均显著提高.MGBG则表现较强的抑制作用.且该抑制作用可被外源PA部分解除,证明外源多胺对菌根化葡萄微繁苗生长发育的促进作用是通过活化根系土壤中丛枝菌根真菌,促进微繁苗丛枝菌根共生体的良好发育,最大程度地发挥菌根化效应得以表现的.  相似文献   

8.
Exudates of Rhodotorula mucilaginosa, a yeast commonly found in the rhizosphere, increased hyphal length of the arbuscular mycorrhizal (AM) fungi Gigaspora rosea and Gigaspora margarita. Rhodotorulic acid (RA), a siderophore compound obtained from R. mucilaginosa exudates, increased hyphal length and branching. Thus, the increase in the number of entry points and the higher AM root colonization of tomato plants in the presence of RA can at least partially be explained by the positive effect of RA on the pre-symbiotic stages of the AM fungi.  相似文献   

9.
Using an in vitro bioreactor system in which the arbuscular mycorrhizal (AM) fungus Glomus intraradices was grown in a soil devoid of detectable living microbes, we could show that the mycelium of this fungus contributed to the maintenance of water-stable soil aggregates and increased soil water repellency, as measured by water drop penetration time. This is to our knowledge the first demonstration of a causal link between AM fungal growth and water repellency of soil aggregates. Our results also place AM fungal contributions to soil aggregation on a firm mechanistic footing by showing that hyphae are sufficient to produce effects, in the absence of other soil biota, which have always been included in previous studies.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi have been shown to induce the biocontrol of soilborne diseases, to change the composition of root exudates and to modify the bacterial community structure of the rhizosphere, leading to the formation of the mycorrhizosphere. Tomato plants were grown in a compartmentalized soil system and were either submitted to direct mycorrhizal colonization or to enrichment of the soil with exudates collected from mycorrhizal tomato plants, with the corresponding negative controls. Three weeks after planting, the plants were inoculated or not with the soilborne pathogen Phytophthora nicotianae growing through a membrane from an adjacent infected compartment. At harvest, a PCR-Denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments amplified from the total DNA extracted from each plant rhizosphere was performed. Root colonization with the AM fungi Glomus intraradices or Glomus mosseae induced significant changes in the bacterial community structure of tomato rhizosphere, compared to non-mycorrhizal plants, while enrichment with root exudates collected from mycorrhizal or non-mycorrhizal plants had no effect. Our results support that the effect of AM fungi on rhizosphere bacteria would not be mediated by compounds present in root exudates of mycorrhizal plants but rather by physical or chemical factors associated with the mycelium, volatiles and/or root surface bound substrates. Moreover, infection of mycorrhizal or non-mycorrhizal plants with P. nicotianae did not significantly affect the bacterial community structure suggesting that rhizosphere bacteria would be less sensitive to the pathogen invasion than to mycorrhizal colonization. Of 96 unique sequences detected in the tomato rhizosphere, eight were specific to mycorrhizal fungi, including two Pseudomonas, a Bacillus simplex, an Herbaspirilium and an Acidobacterium. One Verrucomicrobium was common to rhizospheres of mycorrhizal plants and of plants watered with mycorrhizal root exudates.  相似文献   

11.
In sustainable agriculture, arbuscular mycorrhizal (AM) fungal inoculation in agronomical management might be very important, especially when the efficiency of native inocula is poor. Here, we assessed the effect of native and exotic selected AM fungal inocula on plant growth and nutrient uptake in a low input Trifolium alexandrinum-Zea mays crop rotation. We evaluated the effects of four exotic AM fungal isolates on T. alexandrinum physiological traits in greenhouse. Then, the field performances of T. alexandrinum inoculated with the exotic AMF, both single and mixed, were compared to those obtained with a native inoculum, using a multivariate analysis approach. Finally, we tested the residual effect of AM fungal field inoculation on maize as following crop. Multivariate analysis showed that the field AM fungal inoculation increased T. alexandrinum and Z. mays productivity and quality and that the native inoculum was as effective as, or more effective than, exotic AM fungal isolates. Moreover, the beneficial effects of AMF were persistent until the second year after inoculation. The use of native AMF, produced on farm with mycotrophic plants species, may represent a convenient alternative to commercial AM fungal inocula, and may offer economically and ecologically important advantages in sustainable or organic cropping systems.  相似文献   

12.
Adequate soil structural stability favours the establishment and viability of a stable plant cover, protecting the soil against water erosion in desertified Mediterranean environments. We studied the effect of soil drying-rewetting, inoculation with a mixture of three exotic arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and addition of a composted organic residue on aggregate stabilisation of the rhizosphere soil of Juniperus oxycedrus. The AM fungi and composted residue produced similar increases in plant growth, independently of the water conditions. Under well-watered conditions, the highest percentages of stable aggregates were recorded in the amended soil, followed by the soil inoculated with AM fungi. Excepting microbial biomass C, the soil drying increased labile C fractions (water soluble C, water soluble and total carbohydrates), whereas the rewetting decreased significantly such C fractions. Desiccation caused a significant increase in aggregate stability of the rhizosphere soil of all plants, particularly in the amended and inoculated plants. In all treatments, the aggregates formed after soil drying were unstable, since, in the rewetting, they disappear, reaching the initial levels before soil drying. Our results suggest that the aggregation mechanisms developed by rhizosphere microbial community of the amended and inoculated plants under water stress can be particularly relevant in desertified soils exposed to long desiccation periods.  相似文献   

13.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

14.
A comprehensive knowledge on the relationship between soil salinity and arbuscular mycorrhizal fungi (AMF) is vital for a deeper understanding of ecosystem functioning under salt stress conditions. The objective of this study was to determine the effects of soil salinity on AMF root colonization, spore count, glomalin related soil protein (GRSP) and community structure in Saemangeum reclaimed land, South Korea. Soil samples were collected and grouped into five distinct salt classes based on the electrical conductivity of soil saturation extracts (ECse). Mycorrhizal root colonization, spore count and GRSP were measured under different salinity levels. AMF community structure was studied through three complementary methods; spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE). Results revealed that root colonization (P < 0.01), spore count (P < 0.01) and GRSP (P < 0.01) were affected negatively by soil salinity. Spore morphology and T-RFLP data showed predominance of AMF genus Glomus in Saemangeum reclaimed land. T-RFLP and DGGE analysis revealed significant changes in diversity indices between non (ECse < 2 dS/m) and extremely (ECse > 16 dS/m) saline soil and confirmed dominance of Glomus caledonium only in soils with ECse < 8 dS/m. However, ribotypes of Glomus mosseae and Glomus proliferum were ubiquitous in all salt classes. Combining spore morphology, T-RFLP and DGGE analysis, we could show a pronounced effect in AMF community across salt classes. The result of this study improve our understanding on AMF activity and dominant species present in different salt classes and will substantially expand our knowledge on AMF diversity in reclaimed lands.  相似文献   

15.
Both arbuscular mycorrhizal (AM) fungi and ammonia oxidizers are important soil microbial groups in regulating soil N cycling. However, knowledge of their interactions, especially the direct influences of AM fungi on ammonia oxidizers is very limited to date. In the present study, a controlled microcosm experiment was established to examine the effects of AM fungi and N supply level on the abundance and community structure of ammonia oxidizing bacteria (AOB) and archaea (AOA) in the rhizosphere of alfalfa plants (Medicago sativa L.) inoculated with AM fungus Glomus intraradices. Effects were studied using combined approaches of quantitative polymerase chain reaction (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The results showed that inoculation with AM fungi significantly increased the plant dry weights, total N and P uptake. Concomitantly, AM fungi significantly decreased the amoA gene copy numbers of AOA and AOB in the root compartment (RC) but not in the hyphal compartment (HC). Moreover, AM fungi induced some changes in AOA community structure in HC and RC, while only marginal variations in AOA composition were observed to respond to N supply level in HC. Neither RC nor HC showed significant differences in AOB composition irrespective of experimental treatments. The experimental results suggested that AM fungi could directly shape AOA composition, but more likely exerted indirect influences on AOA and AOB abundance via the plant pathway. In general, AM fungi may play an important role in mediating ammonia oxidizers, but the AOA community appeared to be more sensitive than the AOB community to AM fungi.  相似文献   

16.
Sečovlje salterns are an important protected area of biotic diversity in the Mediterranean. They represent an extreme environment with high salinity and drought that severely influence the growth of organisms. In the present study, diversity of plant halophytes and their mycorrhizal status were screened at eight different locations, which were mostly dikes and salt ponds, and which were deliberately selected for their distinct properties (e.g. soil salinity ranging from 105 to 2627 μS cm−1, vegetation type and management practice of the salterns).Twelve different halophytic plant species were recorded, of which eleven are designated as vulnerable. With few exceptions, they were found at the abandoned (Fontanigge) and sustained (Lera) locations of the Sečovlje salterns, distributed according to their tolerance to the salinity and waterlogging. The highest diversity of halophytes was listed at Fontanigge, in the abandoned, periodically flooded and gradually overgrown salt ponds. All of the examined species were colonised with either arbuscular mycorrhizal fungi (AMF) and/or dark septate endophytes (DSEs). High levels of colonisation were however detected only for species belonging to the Asteraceae and Plantaginaceae families. Higher root colonisation frequencies were generally seen for plants growing in the abandoned parts, when compared to the managed parts, whereas there was little correlation of the colonisation parameters with physicochemical parameters of rhizospheric soil properties.Molecular analysis by temporal temperature gradient gel electrophoresis (TTGE) of roots of halophytic plant species with confirmed AMF colonisation (arbuscules present) revealed the occurrence of at least six different AMF species, related to Glomus geosporum, Glomus caledonium and Glomus intraradices, and to different Glomus sp. clades and the Diversispora clade. This is to the best of our knowledge the first report of AMF and DSE mycorrhizal status of most of the halophyte plant species examined and of the brother scale identification of AMF species based on molecular analyses of roots of diverse halophytes from high saline environments.  相似文献   

17.
丛枝菌根真菌(AMF)可促进作物营养吸收和提高抗逆性,成为寄主抵御干旱胁迫的有效途径。为探明AMF提高大豆抗旱性的机制,以‘桂春豆103’为材料接种幼套近明囊霉(Claroideoglomus etunicatum,简写为C.e),研究干旱条件下C.e对田间大豆叶抗氧化酶及根围土中C/N/P循环相关酶活性等的影响,并用变性梯度凝胶电泳等方法探索土壤微生物群落结构的变化。结果表明:干旱处理前,接种C.e(+AM)处理大豆SOD、POD活性及游离脯氨酸(FP)含量,磷酸酶、蔗糖酶和脲酶活性,土壤细菌、真菌和放线菌数量及物种多样性、丰富度和群落均匀度指数,大豆生物量和株高均显著高于(-AM)处理(P0.05),MDA含量显著降低(P0.05)。干旱(D)处理后,+AM+D处理的上述各项指标,除MDA含量比-AM+D或+AM处理分别显著降低或升高(P0.05),FP含量比两处理显著提高(P0.05)外,其余指标值及细菌和真菌r DNA条带数均比-AM+D处理显著升高,比+AM处理显著下降(P0.05)。-AM+D与-AM处理的细菌和真菌群落均分别聚类于两不同分支,+AM与+AM+D处理聚于同一分支。可见,+AM+D处理能显著促进大豆抗氧化酶系统活性,维持较强的活性氧清除和渗透调节能力,缓解干旱对土壤酶活性的抑制,保持较高的细胞膜稳定性、土壤微生物数量和群落多样性,有利于C/N/P循环转化,提高抗旱性,最终促进大豆生长。本研究可为促进农业生态系统可持续发展奠定基础。  相似文献   

18.
Plant growth-promoting rhizobacteria and arbuscular mycorrhizal (AM) fungi represent two main groups of beneficial microorganisms of the rhizosphere. The role of different strains of Azospirillum on AM fungi development was evaluated by measuring the percentage of AM colonisation of the root system in durum wheat and maize plants, grown under both greenhouse and field conditions. The effect of wild-type Azospirillum brasilense strain Sp245 and genetically modified (GM) derivatives overproducing indole-3-acetic acid was assessed at greenhouse level in (1) three different cultivars of durum wheat, in the presence of indigenous AM fungi and (2) maize plants artificially inoculated with Glomus mosseae and Glomus macrocarpum. In addition, the establishment of natural AM fungal symbiosis was evaluated using Azospirillum lipoferum CRT1 in maize plants at field level. Despite the stimulatory effect of the different Azospirillum inocula on root growth, no significant differences in AM colonisation were found, independently of the AM fungus involved, either in wheat or in maize plants. Similarly, GM A. brasilense, which strongly stimulates root development, did not affect AM formation. Although these results were obtained in conditions in which the mycorrhization rate was moderate (15–30%), overall considered they indicate that the use of wild-type or GM Azospirillum phytostimulators does not alter mycorrhization.  相似文献   

19.
We investigated how the rate of colonization by indigenous arbuscular mycorrhizal fungi (AMF) affects the interaction between AMF, Sinorrhizobium meliloti and Medicago truncatula Gaertn. To generate a differential inoculum potential of indigenous AMF, five cycles of wheat, each of 1 month, were grown in sieved or undisturbed soil before M. truncatula was sown. The early colonization of M. truncatula roots by indigenous AMF was faster in undisturbed soil compared with sieved soil, but by pod-fill the frequency of hyphae, arbuscules and vesicles was similar in both treatments. At this latter stage, M. truncatula grown in undisturbed soil had accumulated a greater biomass in aboveground tissues, had a greater P concentration and derived more N from the atmosphere than plants grown in disturbed soil, although soil compaction resulted in plants having a smaller root system than those from disturbed soil. The difference in plant P content could not be explained by modifications in hydrolytic soil enzymes related to the P cycle as the activity of acid phosphatase was greater in sieved than in undisturbed soil, and the activity of alkaline phosphatase was unaffected by the treatment. Thus, the results observed were a consequence of the different rates of AMF colonization caused by soil disturbance. Together with earlier results for soybean, this study confirms that soil disturbance modifies the interaction between indigenous AMF, rhizobia and legumes leading to a reduced efficacy of the bacterial symbiont.  相似文献   

20.
The aim of this study was to assess the comparative efficacy of three arbuscular mycorrhizal fungi (AMF) combined with cultivar specific Bradyrhizobium japonicum (CSBJ) in soybean under greenhouse conditions. Soybean seeds of four cultivars namely JS 335, JS 71-05, NRC 2 and NRC 7 were inoculated with three AM fungi (Glomus intraradices, Acaulospora tuberculata and Gigaspora gigantea) and CSBJ isolates, individually or in combination, and were grown in pots using autoclaved alluvial soil of a non-legume cultivated field of Ajmer (Rajasthan). Assessment of the data on nodulation, plant growth and seed yield revealed that amongst the single inoculations of three AMF, G. intraradices produced the largest increases in the parameters studied followed by A. tuberculata and G. gigantea indicating that plant acted selectively on AMF symbiosis. The dual inoculation with AMF + CSBJ further improved these parameters demonstrating synergism between the two microsymbionts. Among all the dual treatments, G. intraradices + B. japonicum brought about the largest increases in the studied characteristics particularly in seed weight per plant that increased up to 115.19%, which suggested that a strong selective synergistic relationship existed between AMF and B. japonicum. The cv. JS 335 exhibited maximum positive response towards inoculation. The variations in efficacy of different treatments with different soybean cultivars indicate the specificity of the inoculation response. These results provide a basis for selection of an appropriate combination of specific AMF and Bradyrhizobium which could further be utilized for verifying the symbiotic effectiveness and competitive ability of microsymbionts under field conditions of Ajmer region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号