首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Disposition and local tolerance of a new oxytetracycline (OTC) long-acting formulation were evaluated in camels by measuring the dynamics of creatine kinase. Six camels (Camelus dromedarius) were administered OTC by IV and IM routes according to a 2-period cross-over, study design. Serum OTC concentration was measured, using a microbiological assay procedure. After IV administration (5 mg/kg of body weight), mean residence time was 7.7 +/- 2.8 hours, steady-state volume distribution was 706.1 +/- 168.6 ml.kg-1 and serum clearance was 75.3 +/- 23.2 ml.kg-1.h-1. After IM administration of the long-acting OTC formulation (10 mg/kg), maximal OTC concentration (3.49 +/- 0.44 micrograms.ml-1) was observed after 7.3 +/- 3.5 hours; the mean systemic availability was near 100%, and serum concentration greater than 0.5 micrograms.ml-1 was maintained for about 72 hours. After IM administration, mean control serum activity of creatine kinase was multiplied by a factor of 3.36 +/- 1.55; at 72 hours after OTC administration, the serum creatine kinase activity returned to control values. It was concluded that OTC is an antibiotic of potential interest in camels and that a dosage regimen of 10 mg.kg-1 deserves attention when using a long-acting formulation that has good local tolerance and near total systemic availability.  相似文献   

2.
Pharmacokinetics of oxytetracycline hydrochloride in rabbits   总被引:1,自引:0,他引:1  
Pharmacokinetics of oxytetracycline HCl (OTC) was studied in rabbits. After 10 mg of OTC/kg of body weight was administered IV, the distribution half-life was 0.06 hour, terminal half-life was 1.32 hours, volume of distribution area was 0.861 L/kg, and total body clearance was 0.434 L/kg/h. After 10 mg of OTC/kg was given IM, the absorption half-life was 2.09 hours, extent of absorption was 71.4%, and total body clearance of the absorbed fraction was 0.576 L/kg/h. Based on these kinetic data, a dosage of 15 mg of OTC/kg, every 8 hours was developed. This dose given IM for 7 consecutive days resulted in observed steady-state maximum and minimum concentrations (mean +/- SD) of 4.7 +/- 0.3 micrograms/ml and 3.2 +/- 0.6 micrograms/ml, respectively. Twice this dose (30 mg of OTC/kg, every 8 hours) given IM caused anorexia and diarrhea.  相似文献   

3.
OBJECTIVE: To determine for two commercial preparations of oxytetracycline (OTC) the pharmacokinetic behaviour, the presence of detectable milk residues and the penetration in milk of OTC administered by intravenous (IV) (conventional formulation [CF]) and intramuscular (IM) routes (CF and long-acting [LA] formulations) in goats producing milk. The effects of these formulations on plasma activity values of creatine kinase (CK) and lactate dehydrogenase (LDH) were also determined as indicators of tissue damage. PROCEDURE: Five healthy lactating goats producing 1.5+/-0.5 L/d milk and weighing 56.0+/-4.8 kg were used. Single doses of OTC chlorhydrate (CF) were administered (20 mg OTC/kg) by IV (Trial 1 IV) and IM (Trial 1 IM) routes and OTC dehydrate (LA) by the IM route. The same goats were first given IV CF, then IM CF followed by IM LA with 3 weeks between each treatment. Blood and milk samples were taken. The quantification of OTC was performed by HPLC and the plasma activities of CK and LDH enzymes were determined by spectrophotometry. The presence of OTC residues in milk was determined by a commercial reagent. The plasma pharmacokinetic parameters were calculated using a two-compartment model. RESULTS: Estimates of kinetic variables following IV administration were: Vss= 400.0+/-120.0 mL/kg and CL= 110.0+/-14.0 (mL/h)/kg. The t(fi) for IV= 3.0+/-0.3 h; IM, CF = 10.5+/-2.1 h and IM, LA = 15.1+/-3.1 h. The concentration of OTC in milk at 48 h was: IV= 0.6+/-0.4; IM CF= 1.1+/-0.2 and at 72 h (IM LA)= 0.6+/-0.1 microg/mL and the penetration in milk of OTC was: IV= 70.0+/-18.0; IM CF= 79.0+/-14.0 and IM LA= 66.0+/-6.0%. The areas under the curve of CK and LDH activities in plasma were calculated by the trapezoidal method. Values of CK and LDH IM, LA were greater (P < 0.05) than those observed for IM, CF at 2 and 3 days after administration of the antibiotic. Finally, the bioavailability of OTC CF = 92.0+/-22.0 and LA= 78.0+/-23.0% was suitable for its usage by the IM route in lactating goats. CONCLUSION: Plasma concentration-time values of OTC administered parenterally in production dairy goats showed similar bioavailability for the two pharmaceutical preaprations. The presence of detectable residues in milk indicates that milk should not be used for human consumption for 2 and 3 days after administration of conventional and long-acting formulations, respectively. The increments in CK and LDH activities after the IM administration of LA are consistent with the presence of tissue damage provoked by the pharmaceutical preparations at the injection site.  相似文献   

4.
OBJECTIVE: To compare physiologic and analgesic effects of morphine when given by IV constant-rate infusion or by IM injection to dogs undergoing laparotomy and to determine pharmacokinetics of morphine in dogs following IV constant-rate infusion. DESIGN: Prospective randomized controlled trial. ANIMALS: 20 dogs. PROCEDURE: Dogs undergoing laparotomy were treated with morphine beginning at the time of anesthetic induction. Morphine was administered by IV infusion (0.12 mg/kg/h [0.05 mg/lb/h] of body weight) or by IM injection (1 mg/kg [0.45 mg/lb]) at induction and extubation and every 4 hours thereafter. Treatments continued for 24 hours after extubation. RESULTS: Blood gas values did not indicate clinically significant respiratory depression in either group, and degree of analgesia (determined as the University of Melbourne Pain Scale score) and incidence of adverse effects (panting, vomiting, defecation, and dysphoria) were not significantly different between groups. Dogs in both groups had significant decreases in mean heart rate, rectal temperature, and serum sodium and potassium concentrations, compared with preoperative values. Mean +/- SEM total body clearance of morphine was 68 +/- 6 ml/min/kg (31 +/- 3 ml/min/lb). Mean steady-state serum morphine concentration in dogs receiving morphine by constant-rate infusion was 30 +/- 2 ng/ml. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that administration of morphine as a constant-rate IV infusion at a dose of 0.12 mg/kg/h induced effects similar to those obtained with administration at a dose of 1 mg/kg, IM, every 4 hours in dogs undergoing laparotomy. Panting was attributed to an opioid-induced resetting of the hypothalamic temperature set point, rather than respiratory depression.  相似文献   

5.
The plasma disposition of ciprofloxacin was studied in carp, African catfish and trout after intravenous (IV) and intramuscular (IM) administration at a dose rate of 15 mg/kg. Pharmacokinetic analysis of IV data showed that ciprofloxacin was well distributed (distribution volume Vd(area): 3.08-5.59 litre/kg) and exhibited a similar elimination half-life of about 14 h in these 3 fish species. After IM administration to carp and trout a rapid absorption was noticed; the maximum ciprofloxacin plasma concentrations (mean: 3.49 and 2.37 micrograms/ml, respectively), were achieved within 1 h after injection. At the dose level applied, ciprofloxacin has potential therapeutic value for 2-5 days especially against gram-negative bacterial fish pathogens.  相似文献   

6.
Oxytetracycline (OTC) concentration in plasma and tissues, plasma pharmacokinetics, depletion from tissue, and toxicity were studied in 30 healthy calves after IM administration of a long-acting OTC preparation (40 mg/kg of body weight) at double the label dosage (20 mg/kg). Plasma OTC concentration increased rapidly after drug administration, and by 2 hours, mean (+/- SD) values were 7.4 +/- 2.6 micrograms/ml, Peak plasma OTC concentration was 9.6 +/- 2.6 micrograms/ml, and the time to peak plasma concentration was 7.6 +/- 4.0 hours. Plasma OTC concentration decreased slowly for 168 hours (elimination phase) after drug administration, and the elimination half-life was 23.9 hours. Plasma OTC concentration exceeded 3.8 micrograms/ml at 48 hours after drug administration. From 168 to 240 hours after drug administration, plasma OTC concentration decreased at a slower rate than that seen during the elimination phase. This slower phase was termed the depletion phase, and the depletion half-life was 280.7 hours. Tissue OTC concentration was highest in kidneys and liver. Lung OTC concentration exceeded 4.4 micrograms/g of tissue and 2.0 micrograms/g of tissue at 12 and 48 hours after drug administration, respectively. The drug persisted the longest in kidneys and liver. At 42 days after drug administration, 0.1 micrograms of OTC/g of kidney was detected. At 49 days after drug administration, all OTC tissue concentrations were below the detectable limit. Reactions and toxicosis after drug administration were limited to an anaphylaxis-like reaction (n = 1) and injection site swellings (n = 2).  相似文献   

7.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

8.
OBJECTIVE: To determine the pharmacokinetics after SC administration of an experimental, long-acting parenteral formulation of doxycycline hyclate in a poloxamer-based matrix and after IV and IM administration of an aqueous formulation of doxycycline hyclate in goats. ANIMALS: 30 clinically normal adult goats. PROCEDURES: Goats were allocated to 3 groups (10 goats/group). One group of goats received doxycycline hyclate (10 mg/kg) IM, a second group received the same dosage of doxycycline hyclate IV, and the third group received the long-acting parenteral formulation of doxycycline hyclate SC. Serum concentrations of doxycycline were determined before and at various intervals after administration. RESULTS: The long-acting parenteral formulation of doxycycline hyclate had the greatest bioavailability (545%); mean +/- SD maximum serum concentration was 2.4 +/- 0.95 microg/mL, peak time to maximum concentration was 19.23 +/- 2.03 hours, and elimination half-life was 40.92 +/- 4.25 hours. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the long-acting parenteral formulation of doxycycline hyclate distributed quickly and widely throughout the body after a single dose administered SC, and there was a prolonged half-life. Bioavailability of the longacting parenteral formulation of doxycycline hyclate after SC administration was excellent, compared with bioavailability after IV and IM administration of an aqueous formulation of doxycycline hyclate. Although no local tissue irritation and adverse effects were detected, clinical assessment of drug-residues and toxicologic evaluations are warranted before this long-acting parenteral formulation of doxycycline hyclate can be considered for use in goats with bacterial infections.  相似文献   

9.
Single and multiple dose gentamicin regimens were compared in sheep to determine the relevant pharmacokinetic differences. Seven mature sheep were given 10 mg/kg of gentamicin by IV bolus. Serum concentrations were monitored for 19 days. Four weeks after the initial bolus, gentamicin was administered IM (3 mg/kg every 8 hours) for 7 days. Ewes were euthanatized and necropsied at 1, 8, and 15 days after termination of the IM regimen and the tissues were assayed for gentamicin. Serum concentrations were analyzed using a triexponential equation. The IV kinetic studies revealed an alpha half-life (t1/2) of 0.31 +/- 0.14 hours, beta t1/2 of 2.4 +/- 0.5 hours, and gamma t1/2 of 30.4 +/- 18.9 hours. Multiple IM dose kinetic studies revealed a beta t1/2 of 2.8 +/- 0.6 hours and gamma t1/2 of 82.1 +/- 17.8 hours. After multiple dosing, gamma t1/2 was significantly longer than after the single IV bolus (P less than 0.05). Twenty-four hour urine collection accounted for 75% to 80% of the total IV dose. Renal cortical gentamicin concentration reached 224 micrograms/g of tissue and then decreased, with a 90-hour t1/2. Renal medullary gentamicin concentration reached 18 micrograms/g with a 42-day t1/2. After multiple dosing, liver gentamicin concentration reached 11 micrograms/g and skeletal muscle concentrations were less than or equal to 0.6 micrograms/g. Route or duration of administration significantly affected the gamma-phase serum concentrations, which may influence gentamicin nephrotoxicosis. The present study also illustrated the complexities in predicting aminoglycoside withdrawal times for food-producing animals before slaughter.  相似文献   

10.
Norfloxacin was given to 6 healthy dogs at a dosage of 5 mg/kg of body weight IV and orally in a complete crossover study, and orally at dosages of 5, 10, and 20 mg/kg to 6 healthy dogs in a 3-way crossover study. For 24 hours, serum concentration was monitored serially after each administration. Another 6 dogs were given 5 mg of norfloxacin/kg orally every 12 hours for 14 days, and serum concentration was determined serially for 12 hours after the first and last administration of the drug. Complete blood count and serum biochemical analysis were performed before and after 14 days of oral norfloxacin administration, and clinical signs of drug toxicosis were monitored twice daily during norfloxacin administration. Urine concentration of norfloxacin was determined periodically during serum acquisition periods. Norfloxacin concentration was determined, using high-performance liquid chromatography with a limit of detection of 25 ng of norfloxacin/ml of serum or urine. Serum norfloxacin pharmacokinetic values after single IV dosing in dogs were best modeled, using a 2-compartment open model, with distribution and elimination half-lives of 0.467 and 3.56 hours (harmonic means), respectively. Area-derived volume of distribution (Vd area) was 1.77 +/- 0.69 L/kg (arithmetic mean +/- SD), and serum clearance (Cls) was 0.332 +/- 0.115 L/h/kg. Mean residence time was 4.32 +/- 0.98 hour. Comparison of the area under the curve (AUC; derived, using model-independent calculations) after iv administration (5 mg/kg) with AUC after oral administration (5 mg/kg) in the same dogs indicated bioavailability of 35.0 +/- 46.1%, with a mean residence time after oral administration of 5.71 +/-2.24 hours. Urine concentration was 33.8 +/- 15.3 micrograms/ml at 4 hours after a single dose of 5 mg/kg given orally, whereas concentration after 20 mg/kg was given orally was 56.8 +/- 18.0 micrograms/ml at 6 hours after dosing. Twelve hours after drug administration, urine concentration was 47.4 +/- 20.6 micrograms/ml after the 5-mg/kg dose and 80.6 +/- 37.7 micrograms/ml after the 20/mg/kg dose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Five healthy adult dogs were given a single IV dose (40 mg/kg of body weight) of ticarcillin disodium. Serum concentrations were measured serially over a period of 12 hours. Five days later, the drug was administered IM to the dogs at the same dose rate, and serum concentrations were measured serially for 12 hours. The mean peak serum concentration after IM administration was 120.5 micrograms/ml at 1.5 hours. Pharmacokinetic values following IV administration were (i) elimination rate constant = 0.8/hour-1, (ii) half-life = 0.8 hour, (iii) serum clearance = 292 ml/hr/kg, and (iv) apparent volume of distribution = 347 ml/kg. Estimated values after IM administration were (i) elimination rate constant = 0.6/hour, (ii) half-life = 1.1 hours, (iii) serum clearance = 218 ml/hr/kg, and (iv) apparent volume of distribution = 345 ml/kg; only the elimination rate constants were significantly different between the 2 routes of administration.  相似文献   

12.
Pharmacokinetics and bioavailability of enrofloxacin were determined after single intravenous (IV) and intramuscular (IM) administrations of 5 mg/kg body weight (BW) to 5 healthy adult Angora goats. Plasma enrofloxacin concentrations were measured by high performance liquid chromatography. Pharmacokinetics were best described by a 2-compartment open model. The elimination half-life and volume of distribution after IV and IM administrations were similar (t1/2beta, 4.0 to 4.7 h and Vd(ss),1.2 to 1.5 L/kg, respectively). Enrofloxacin was rapidly (t1/2a, 0.25 h) and almost completely absorbed (F, 90%) after IM administration. Mean plasma concentrations of enrofloxacin at 24 h after IV and IM administration (0.07 and 0.09 microg/mL, respectively) were higher than the minimal inhibitory concentration (MIC) values for most pathogens. In conclusion, once-daily IV and IM administration of enrofloxacin (5 mg/kg BW) in Angora goats may be useful in treatment of infectious diseases caused by sensitive pathogens.  相似文献   

13.
The pharmacokinetics of tramadol in camels (Camelus dromedarius) were studied following a single intravenous (IV) and a single intramuscular (IM) dose of 2.33 mg kg(-1) bodyweight. The drug's metabolism and urinary detection time were also investigated. Following both IV and IM administration, tramadol was extracted from plasma using an automated solid phase extraction method and the concentration measured by gas chromatography-mass spectrometry (GC/MS). The plasma drug concentrations after IV administration were best fitted by an open two-compartment model. However a three-compartment open model best fitted the IM data. The results (means+/-SEM) were as follows: after IV drug administration, the distribution half-life (t(1/2)(alpha)) was 0.22+/-0.05 h, the elimination half-life (t(1/2)(beta)) 1.33+/-0.18 h, the total body clearance (Cl(T)) 1.94+/-0.18 L h kg(-1), the volume of distribution at steady state (Vd(ss)) 2.58+/-0.44 L kg(-1), and the area under the concentration vs. time curve (AUC(0-infinity)) 1.25+/-0.13 mg h L(-1). Following IM administration, the maximal plasma tramadol concentration (C(max)) reached was 0.44+/-0.07 microg mL(-1) at time (T(max)) 0.57+/-0.11h; the absorption half-life (t(1/2 ka)) was 0.17+/-0.03 h, the (t(1/2)(beta)) was 3.24+/-0.55 h, the (AUC(0-infinity)) was 1.27+/-0.12 mg h L(-1), the (Vd(area)) was 8.94+/-1.41 L kg(-1), and the mean systemic bioavailability (F) was 101.62%. Three main tramadol metabolites were detected in urine. These were O-desmethyltramadol, N,O-desmethyltramadol and/or N-bis-desmethyltramadol, and hydroxy-tramadol. O-Desmethyltramadol was found to be the main metabolite. The urinary detection times for tramadol and O-desmethyltramadol were 24 and 48 h, respectively. The pharmacokinetics of tramadol in camels was characterised by a fast clearance, large volume of distribution and brief half-life, which resulted in a short detection time. O-Desmethyltramadol detection in positive cases would increase the reliability of reporting tramadol abuse.  相似文献   

14.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

15.
Serum concentrations of cefepime (BMY-28142) were determined for four dosing regimes, 10 mg/kg or 20 mg/kg, given as single subcutaneous (SC) or intramuscular injections (IM) to dogs. Serial serum samples were analyzed for the presence of cefepime by high-performance liquid chromatography. In experiment 1, the overall mean (+/- SEM) serum concentration (for a 12-hour period) after a dose of 20 mg/kg for SC and IM routes (4.9 +/- 0.74 micrograms/ml and 5.5 +/- 0.63 micrograms/ml, respectively) was twice that for the 10 mg/kg dose given either SC or IM (2.2 +/- 0.31 micrograms/ml and 2.8 +/- 0.47 micrograms/ml, respectively). There was no significant difference (p greater than 0.05) in mean serum concentrations for SC and IM routes of administration at the same dosage. In subsequent experiments, 5 doses of cefepime (20 mg/kg) were administered IM at 12-hour (experiment 2) or 24-hour (experiment 3) intervals. The mean (+/- SEM) peak serum concentration was 12.1 +/- 1.59 micrograms/ml, 2 hours after the 2nd injection in experiment 2. In experiment 3, the mean (+/- SEM) peak serum concentration was 10.9 +/- 1.34 micrograms/ml, 4 hours after the 1st injection. Mean trough concentrations in experiment 2 were greater than or equal to 0.5 microgram/ml and less than or equal to 0.5 in experiment 3. Multiple IM doses produced transient edema at the injection site and mild lameness in all dogs. Cefepime was highly active against single canine isolates of Staphylococcus intermedius, Pseudomonas aeruginosa and Escherichia coli, with minimum inhibitory concentrations of 0.125 microgram/ml, 1 microgram/ml and 0.3 microgram/ml, respectively.  相似文献   

16.
OBJECTIVE: To assess bioequivalence after oral, IM, and IV administration of racemic ketoprofen in pigs and to investigate the bioavailability after oral and IM administration. ANIMALS: 8 crossbred pigs. PROCEDURES: Each pig received 4 treatments in a randomized crossover design, with a 6-day washout period. Ketoprofen was administered at 3 and 6 mg/kg, PO; 3 mg/kg, IM; and 3 mg/kg, IV. Plasma ketoprofen concentrations were measured by use of high-performance liquid chromatography for up to 48 hours. To assess bioequivalence, a 90% confidence interval was calculated for the area under the time-concentration curve (AUC) and maximum plasma concentration (C(max)). RESULTS: Equivalence was not detected in the AUCs among the various routes of administration nor in C(max) between oral and IM administration of 3 mg/kg. The bioavailability of ketoprofen was almost complete after each oral or IM administration. Mean +/- SD C(max) was 5.09 +/- 1.41 microg/mL and 7.62 +/- 1.22 microg/mL after oral and IM doses of 3 mg/kg, respectively. Mean elimination half-life varied from 3.52 +/- 0.90 hours after oral administration of 3 mg/kg to 2.66 +/- 0.50 hours after IV administration. Time to peak C(max) after administration of all treatments was approximately 1 hour. Increases in AUC and C(max) were proportional when the orally administered dose was increased from 3 to 6 mg/kg. Conclusions and Clinical Relevance: Orally administered ketoprofen was absorbed well in pigs, although bioequivalence with IM administration of ketoprofen was not detected. Orally administered ketoprofen may have potential for use in treating pigs.  相似文献   

17.
Six healthy adult horse mares were each given a single injection of sodium cephapirin (20 mg/kg of body weight, IV), and serum cephapirin concentrations were measured serially over a 6-hour period. The mean elimination rate constant was 0.78 hour-1 and the elimination half-life was 0.92 hours. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.17 L/kg and 598 ml/hour/kg, respectively. Each mare was then given 4 consecutive IM injections of sodium cephapirin (400 mg/ml) at a dosage level of 20 mg/kg. Cephapirin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 14.8 micrograms/ml 25 minutes after the 4th injection. The highest mean synovial and peritoneal concentrations were 4.6 micrograms/ml and 5.0 micrograms/ml, respectively, 2 hours after the 4th injection. The highest mean endometrial concentration was 2.2 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 7,421 micrograms/ml. Cephapirin did not readily penetrate the CSF. When cephapirin was given IM at the same dose, but in a less concentrated solution (250 mg/ml), serum concentrations peaked at 25.0 micrograms/ml 20 minutes after injection, but the area under the serum concentration-time curve was not significantly different (P greater than 0.05). The bioavailability of the drug was greater than or equal to 95% after IM injection.  相似文献   

18.
Pharmacokinetics of cefotaxime in the domestic cat   总被引:1,自引:0,他引:1  
Cefotaxime was administered as single IV or IM dose for the purpose of examining its pharmacokinetics in healthy cats. The mean predicted plasma concentration of cefotaxime in 6 cats at 0 time after a single IV dosage of 10 mg/kg of body weight was 88.9 micrograms/ml. The mean plasma concentrations decreased to 10.8 micrograms/ml at 2 hours, 3.7 micrograms/ml at 3 hours, and 0.5 microgram/ml at 6 hours. The half-life was 0.98 +/- 0.25 hour (mean +/- SD), and the total body clearance was determined to be 2.76 +/- 1.25 ml/min/kg. After a single IM injection of 10 mg/kg of body weight, the mean maximum observed plasma concentration was 36.2 micrograms/ml at 0.75 hour. The mean absorption half-life was 0.24 hour. In 2 animals, the bioavailability of an IM injection was 98.2% and 93.0%.  相似文献   

19.
Clindamycin phosphate was administered to dogs at dosage of 11 mg/kg of body weight via IV and IM routes. The disposition curve for IV administration was best represented as a 2-compartment open model. Mean elimination half life was 194.6 +/- 24.5 minutes for IV administration and 234.8 +/- 27.3 minutes for IM administration. Bioavailability after IM administration was 87%. Dosage of 11 mg/kg, IV, given every 8 hours, provided serum concentration of clindamycin that exceeded the minimal inhibitory concentration for all Staphylococcus spp, as well as most pathogenic anaerobes, throughout the dosing interval. Intramuscular administration induced signs of pain and cannot be recommended.  相似文献   

20.
Four pigs were used in a 2 X 2 crossover study to determine plasma oxytetracycline (OTC) concentration and OTC pharmacokinetic variables after IM administration of 2 OTC preparations--long acting OTC and a 100-mg of OTC/ml solution (OTC-LA and OTC-100, respectively)--at a dosage of 20 mg/kg of body weight. In a second study, 3 additional pigs were given ad libitum access to feed containing pure OTC (0.55 g/kg of feed). The mean (+/- SD) peak plasma OTC concentration after OTC-LA administration was 6.0 +/- 2.2 micrograms/ml at 30 minutes; the mean peak plasma OTC concentration after OTC-100 administration was 6.7 +/- 3.4 micrograms/ml at 90 minutes. Mean plasma OTC concentration after oral OTC administration in feed peaked at 0.4 micrograms/ml 48 hours after access to OTC-medicated feed and decreased to 0.25 micrograms/ml by the end of that study. Mean plasma OTC concentration was maintained at greater than 0.5 micrograms/ml for less than 48 hours after OTC-LA administration and for less than 36 hours after OTC-100 administration. Mean plasma OTC concentration decreased to less than 0.2 micrograms/ml by 72 hours after IM administration of either product. Calculation of area under the plasma OTC concentration-time curve (AUC) did not reveal significant difference between the 2 OTC formulations. There also was not significant difference (between OTC-LA and OTC-100) in the value of the disappearance rate constant after administration of either OTC formulation. The data did not indicate significant pharmacologic advantage of OTC-LA, compared with OTC-100, when either formulation was administered IM at a dosage of 20 mg/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号