首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eight purified diets were fed to juvenile white sturgeon, Acipenser transmontanus Rick, for 9 weeks to investigate the effect of dietary lipids on the fatty acid composition of phospholipids and triglycerides from muscle, liver and brain. The diets contained 150 g kg?1 of oils from canola, corn, cod liver, lard, linseed, soybean, safflower, or a control mixture (corn oil/cod liver oil/lard, 1:1:1, by wt). Dietary lipids significantly (P≤ 05) affected the composition of tissue triglycerides and phospholipids. Tissue triglyceride fatty acid composition ranged widely, in parallel with the dietary lipids, while phospholipids changes were more conservative. Brain phospholipid fatty acid composition was less responsive to diet compared with that in muscle and liver. Considerable amounts of n-6 and n-3 long chain polyun-saturated fatty acids (> C20) were found in triglycerides and phospholipids with all diets, demonstrating that white sturgeon can desaturate and elongate linoleic acid (18:2n–6) and linolenic acid (18:3n–3). Further, the products of the Δ6 desaturase, i.e. 18:3 n–6 and 18:4n–3, were relatively abundant in triglyceride, suggesting that the Δ6 desaturase might not be a limiting step in the process in white sturgeon. Nevertheless, accumulation of both EPA and DHA was greater in the sturgeon fed fish oil than those fed linseed oil, indicating that muscle triglyceride EPA and DHA levels are best enhanced by diets rich in preformed EPA and DHA.  相似文献   

2.
The importance of long-chain polyunsaturated fatty acids, especially the eicosanoid precursors, is addressed in this paper. It has been generally recognized that eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are of significant importance in fish reproduction while arachidonic acid (AA, 20:4n-6) has often been overlooked. The ratio between C20 fatty acids EPA and AA might be important for many physiological functions depending on the species evolution and its requirements. Arctic char (Salvelinus alpinus) has a much more pronounced freshwater history and therefore different fatty acid requirements than the other commonly farmed salmonids such as salmon (Salmo salar), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Therefore there is reason to formulate a feed that is more suitable for farming of this freshwater species. In this study, freshwater wild-origin char eggs were compared to farmed eggs of char. The ratio n-3/n-6 of total phospholipids of eggs was much lower in the wild fish, 3.5 versus 13.5, and the hatching rate of eggs from natural environment was much higher (20–70% vs. >80%). We conclude that feed based on marine raw product does not fulfill the requirements for essential fatty acids for freshwater char and we suggest that AA is supplemented to the broodstock diet and that at least linoleic acid (18:2n-6) is included in the on-growth diet formulas to lower the n-3/n-6 fatty acid ratio.  相似文献   

3.
This is the first comprehensive study on the effect of dietary polyunsaturated fatty acid (PUFA) levels on the expression of fatty acid elongase 5 (AJELOVL5), PUFA composition, and growth in juvenile sea cucumbers. The specific growth rate (SGRw) was improved in n‐3 PUFA‐rich diets compared to low n‐3 PUFA diets. AJELOVL5 expression was apparently upregulated in juveniles fed lower PUFA diets relative to higher PUFA diets, with higher expression in the body wall and respiratory tree of juveniles fed diets without ɑ‐linolenic acid (ALA, 18:3n‐3) compared to juveniles fed higher ALA level diets; similar results were also detected in juveniles fed diets with lower eicosapentaenoic acid (EPA, 20:5n‐3), docosahexaenoic acid (DHA, 22:6n‐3), and none of ALA, EPA, or DHA respectively. The concentrations of ALA, EPA, and DHA in tissues were positively related to the content of dietary corresponding PUFA, with higher ALA content in juveniles fed diet ALA12.71 than in the ALA7.46 and ALA0 groups. Similar results were also obtained in sea cucumber fed diets enriched with either EPA or DHA. Interestingly, considerable levels of EPA and DHA were found in the tissues of juveniles fed diets of CK0 and DHA0, with no specific input of EPA or DHA, showing that the sea cucumber was capable of biosynthesizing EPA and DHA from their corresponding precursors as ALA and linoleic acid (LA, 18:2n‐6).  相似文献   

4.
虹鳟、金鳟亲鱼成熟群体卵质比较研究   总被引:9,自引:2,他引:7  
对相同饲养条件下经产虹鳟和初产金鳟亲鱼自然成熟产卵群体生物学特性及其成熟鱼卵中四种不饱和脂肪酸(亚油酸,亚麻酸,EPA,HDA)组成含量进行分析比较,结果表明:两种鱼成熟产卵期和成熟卵粒重相近;成熟鱼卵四种脂肪酸组成含量(mg/g鲜样)均依次为亚油酸>DHA>EPA>亚麻酸,相关明显(R=0.97),虹鳟鱼卵四种脂肪酸总和(6.68),必需脂肪酸(3.83),DHA(2.534)含量明显高于金鳟(3.93,2.21,1.14)。金鳟受精卵发眼率较低,可能与鱼卵EFA,DHA含量低有关。  相似文献   

5.
This paper describes the lipid composition of the commercial bivalve Donax trunculus and the differences originated when the animals were fed with two phytoplankton species (Tetraselmis suecica and Chaetoceros sp.) in a hatchery. We also analysed sex‐related differences in lipid classes and fatty acid profile. Total lipids were higher in females than in males. Triglycerides and phospholipids were the major lipid components, and the former dominated in females and the latter in males. The main fatty acids in both sexes were 16:0, 20:5n‐3 (eicosapentaenoic acid) and 22:6n‐3 (docosahexaenoic acid). Females showed higher percentages of saturated and monounsaturated fatty acids and lower levels of polyunsaturated fatty acids than males. Significant differences in total lipid, lipid classes and fatty acid profiles were also found due to diet. Docosahexaenoic acid decreased and total lipids, free fatty acids, arachidonic acid and EPA increased in both sexes. Despite these differences, the condition of the species was maintained and the broodstock even maturated.  相似文献   

6.
Formation and deposition of fatty acids in carp maintained on diets differing in total fat as well as linolenic acid content was investigated by following the incorporation of (1-14C)-acetate into liver total- and phospholipid fatty acids at two extreme temperatures (5° and 25°C). Excess dietary linolenic acid was deposited in triglycerides but not in phospholipids. The formation and level of phospholipid docosahexenoic acid was, however, dependent on the amount of linolenic acid in the diet. Despite the vast quantities of ingested linolenic acid, the carp on diets containing sufficient essential fatty acid maintained similar membrane fluidities as judged from the ratio of saturated to unsaturated fatty acids. Decrease of the environmental temperature brought about a reduction in the rate of formation of palmitic acid and an increase in the rate of formation of docosahexenoic acid in carp receiving sufficient essential fatty acid. Consequently, the level of palmitic acid decreased and that of docosahexenoic acid increased in the liver phospholipids in carp and a number of other fish species. Essential fatty acid deficient carp were unable to increase the rate of production of long chain polyunsaturated fatty acids upon exposure to cold. The results are discussed from the point of view of adaptation of membrane fluidity to the temperature by fish, and the importance of docosahexenoic acid in this process is emphasized.  相似文献   

7.
This study evaluated the nutritional value of dietary n‐3 and n‐6 polyunsaturated fatty acids (PUFA) such as linoleic (LOA) and linolenic (LNA) acids, and highly unsaturated fatty acids (HUFA) such as arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids for juvenile Litopenaeus vannamei, based on their effects on growth, survival, and fatty acid composition of hepatopancreas and muscle tissue. Diets contained 5% total lipid. A basal diet contained palmitic and stearic acids each at 2.5% of diet. Five diets contained 0.5% dry weight of LOA, LNA, AA, EPA, or DHA. An additional diet evaluated HUFA in combination by supplementing at 0.5% of diet, a mixture of n‐3 HUFA. All HUFA showed higher nutritional value than PUFA for shrimp and produced significantly (P < 0.05) higher final weight, weight gain, and total lipid in shrimp muscle. Fatty acid profiles of shrimp tissues reflected the composition of the dietary lipids. In general, saturated fatty acids were more abundant in the neutral factions, while PUFA and HUFA were more abundant in the polar fractions of tissues. Under these experimental conditions, HUFA had much greater nutritional value than PUFA for juvenile L. vannamei; moreover, dietary requirements for PUFA were not demonstrated.  相似文献   

8.
Nile tilapia (Oreochromis niloticus) juveniles were fed diets containing 13 g/kg total polyunsaturated fatty acids (PUFAs) at different n‐3/n‐6 dietary ratios (0.2, 0.5, 0.8, 1.3 and 2.9) for 56 days, at 28°C. Subsequently, fish were submitted to a winter‐onset simulation (22°C) for 33 days. PUFA n‐3/n‐6 dietary ratios did not affect fish growth at either temperature. At 28°C, tilapia body fat composition increased with decreasing dietary PUFA n‐3/n‐6. Winter‐onset simulation significantly changed feed intake. The lowest dietary n‐3/n‐6 ratio resulted in the highest feed intake. At both temperatures, body concentrations of α‐linolenic acid, docosahexaenoic acid, eicosatrienoic acid and docosapentaenoic acid decreased as dietary n‐3/n‐6 decreased. Body concentrations of eicosapentaenoic acid (EPA, 20:5 n‐3) increased with decreasing concentrations of dietary EPA. The n‐6 fatty acids with the highest concentrations in tilapia bodies were linoleic acid and arachidonic acid (ARA, 20:4 n‐6). At 28°C, SREBP1 gene expression was upregulated in tilapia fed the lowest n‐3/n‐6 diet compared to tilapia fed the highest n‐3/n‐6 ratio diet. Our results demonstrate that a dietary PUFA of 13 g/kg, regardless of the n‐3/n‐6 ratio, can promote weight gains of 2.65 g/fish per day at 28°C and 2.35 g/fish per day at 22°C.  相似文献   

9.
Nile tilapia juveniles (8.35 ± 0.80 g) were fed on four levels (0.0%; 0.5%; 1.0%; 2.0%, 4.0%) of Aurantiochytrium sp. meal (ALL‐G‐RICH?), a source of docosahexaenoic acid (DHA). The 1% Aurantiochytrium sp. meal diet was compared to a control diet, which contained the same amount of DHA as cod liver oil (CLO) at 1.7% diet. Groups of 25 fish were stocked in 100 L tanks and fed twice daily until apparent satiation, for 57 days, at 28°C. Increasing dietary Aurantiochytrium sp. meal reduced the body retention of DHA and n‐3 polyunsaturated fatty acids (n‐3 PUFA) but increased the body retention of alpha‐linolenic (α‐LNA), linoleic (LOA) and n‐6 polyunsaturated fatty acids (n‐6 PUFA). Fatty acid profile in tilapia muscle was affected by increasing dietary inclusions of Aurantiochytrium sp. meal, with an increase in DHA, α‐LNA, n‐3 PUFA and n‐3 long chain‐polyunsaturated fatty acids (n‐3 LC‐PUFA) but a decrease in monounsaturated fatty acids (MUFA), n‐6 PUFA and n‐6 long‐chain polyunsaturated fatty acids (n‐6 LC‐PUFA). There was a larger body retention of DHA, α‐LNA, LOA, n‐3 PUFA and n‐6 PUFA fatty acids and a higher percentage of DHA, n‐3 PUFA and n‐3 LC‐PUFA in muscle fatty acid profile in fish fed on CLO diets than in those fed on 1% Aurantiochytrium sp. Therefore, Aurantiochytrium sp. meal is an alternative source of DHA for Nile tilapia diets.  相似文献   

10.
ABSTRACT

The proximate content, fatty acids composition, and nutritional quality index (NQI) of Macrobrachium nipponense at three habitats in the Anzali wetland in Iran were investigated as a potential source for human consumption. The highest amounts of protein, lipid, ash, and energy contents in muscle of M. nipponense were showed in autumn (non-reproductive season) (p < 0.05). The main monounsaturated fatty acids (MUFA) were oleic acid (C18:1 n9 C, C18:1 ω9 T) and palmitoleic acid (C16:1). Moreover, the main polyunsaturated fatty acids (PUFA) were docosahexaenoic acid (DHA, C22:6 n3), eicosapentaenoic acid (EPA, C20:5n3), arachidonic acid (ARA, C20:4 n6), linoleic acid (LA, C18:2 ω6), and α-linolenic acid (ALA, C18:3 n3). The predominant individual saturated fatty acid (SFA) was palmitic acid (0.07–13.4%), while oleic acid (14.7–26.3%), EPA (3.5–12.7%) and linoleic acid (0.04–14.9%) represented the most abundant individual MUFA and PUFA in M. nipponense. The highest mean value of EPA+DHA (14.0), n3/n6 (1.02), ΣMUFA/ΣSFA (1.05), ΣPUFA/ΣSFA (1.04), and EPA/DHA (3.8) ratios in M. nipponense was in autumn. The range of atherogenicity index (AI) and thrombogenicity index (TI) was much lower, from 0.42 to 0.6 and from 0.33 to 0.57, respectively, in terms of season. The results obtained in the present study show that M. nipponense is an excellent nutritional food source in the Anzali wetland.  相似文献   

11.
Twelve algal strains representing the classes Cyanophyceae, Prymnesiophyceae, Bacillariophyceae, Rhodophyceae, Cryptophyceae, Chlorophyceae, Xantophyceae and Eustigmatophyceae were selected mainly from the culture collection of the Norwegian Institute for Water Research (NIVA). The algae were grown as continuous cultures in a 1.8 l. reactor, internally illuminated with an 11 W fluorescent tube. The retention time was adjusted in the range 2–4 days to fit the growth rate of the algae. The growth responses and fatty acid composition were analysed. The maximum production rate was obtained with Pseudokirchneriella subcapitata (0.63 g 1−1 day−1) and the lowest with Porphyridium cruentum 0.13 g 1−1 day−1. Arachidonic acid (AA) and eicosapentaenoic acid (EPA) were the dominating polyunsaturated fatty acids (PUFAs) in P. cruentum, while only EPA accumulated in Phaeodactylum tricornutum. Docosahexaenoic acid (DHA) was the major PUFA in Isochrysis galbana, while Pavlova sp. had both EPA and DHA. This is the first report on the fatty acid profiles of Nannochloropsis oceanica, Chroococcus sp., Synechococcus sp. and Tribonema sp.  相似文献   

12.
The dietary requirements of Penaeus monodon for eicosapentaenoic (20:5n‐3; EPA) and docosahexaenoic (22:6n‐3; DHA) acids were examined. These requirements were examined when dietary levels of linoleic (18:2n‐6; LOA) and linolenic acids (18:3n‐3; LNA) were also provided at previously established optimal levels of 14 and 21% respectively of the total lipid fatty acids. A 5 × 5 factorial design was used with incremental amounts (0, 4, 8, 12 and 16% of total fatty acids) of EPA and/or DHA. An additional diet containing cod‐liver oil was provided as a reference diet. The total lipid content of all of the 25 treatments and reference diets was maintained at the same level of 75 g kg?1. Growth of prawns fed with the reference diet after 50 days was 244 ± 21%. The greatest response to singular additions of EPA or DHA was with a 12% inclusion of either fatty acid, resulting in 287 ± 21 and 293 ± 18% weight gain, respectively. Growth was generally better when combinations of EPA and DHA were used, the optimal combination being EPA 4% and DHA 4%, resulting in 335 ± 25% weight gain. Addition of high levels of either of the highly unsaturated fatty acids (HUFA) in the diet had a negative effect on growth. Digestibilities of the total neutral lipid and specific fatty acids were examined during the growth trials. The digestibility of total neutral lipid was usually higher when either or both HUFA were present, however there were few significant differences between treatments that contained either or both HUFA. Following the growth trials, digestive glands (DG) of prawns fed with the various diets were analysed to determine the total lipid content and fatty acid composition. Total lipid in the digestive gland increased with the inclusion of DHA, but was not significantly affected by the addition of EPA. The fatty acid composition of the digestive gland lipid generally reflected that of the diet. However, the maximum retention of EPA (11.1% of total DG fatty acids) and DHA (10.7% of total DG fatty acids), was not directly proportional to the amount of either fatty acid present in the diet. These results demonstrate that both EPA and DHA have considerable growth promoting capacity. This growth promoting capacity is enhanced when an optimal balance of both fatty acids are incorporated into the diet.  相似文献   

13.
Golden pompano Trachinotus ovatus is an important farmed carnivorous marine teleost. Although some enzymes for long‐chain polyunsaturated fatty acid (LC‐PUFA) biosynthesis have been identified, the ability of T. ovatus for endogenous biosynthesis is unknown. Here, we evaluated in vivo LC‐PUFA synthesis in a 56‐day culture experiment using six diets (D1–D6) formulated with linseed and soybean oils to produce dietary linolenic/linoleic acid (ALA/LA) ratios ranging from 0.14 to 2.20. The control diet (D0) used fish oil as lipid source. The results showed that, compared with the corresponding indices of fish fed D0, the weight gain rate and specific growth rate as well as the contents of eicosapentaenoic (EPA) and docosahexaenoic acids in tissues (liver, muscle, brain and eye) of D1–D6 groups were significantly lower (p < .05). These data suggested that T. ovatus could not synthesize LC‐PUFA from C18 PUFA or such ability was very low. However, tissue levels of 20:4n‐3 in fish fed diets D1–D6 were higher than that of D0 fish (p < .05), and positively correlated with dietary ALA/LA ratio, while levels of EPA showed no difference among the D1–D6 groups. These results indicated that Δ5 desaturation, required for the conversion of 20:4n‐3 to EPA, may be lacking or very low, suggesting incomplete LC‐PUFA biosynthesis ability in T. ovatus.  相似文献   

14.
We evaluated the effects of dietary vitamin E on growth, immunity and regulation of the hepatopancreas in male oriental river prawn, Macrobrachium nipponense. Shrimps were fed 0, 40, 80, 160, 320 or 640 mg vitamin E/kg for 60 days. The 80 mg/kg group had the highest weight gain rate, specific growth rate and lowest feed conversion rate while there were no significant differences in survival rate and hepatosomatic index. The highest crude fat and lowest crude protein content were observed in the 160 mg/kg group. In the hepatopancreas, lysozyme, acid phosphatase and alkaline phosphatase activities were highest in the 160 mg/kg group, while superoxide dismutase, catalase and glutathione peroxidase activities decreased with increasing vitamin E levels. Malondialdehyde content initially decreased then increased with vitamin E levels, whereas the reverse was seen with total antioxidant capacity. Linoleic acid, DPA, DHA, total n‐3 polyunsaturated fatty acid and total polyunsaturated fatty acid first increased then decreased, while EPA and total saturated fatty acid rose with vitamin E levels. Total n‐6 polyunsaturated fatty acid content declined while there were no significant differences in linolenic and total monounsaturated fatty acid content. Following a toxicity test with Aeromonas hydrophila, hepatopancreas ultrastructure revealed that appropriate vitamin E levels promote an increase in mitochondria, endoplasmic reticulum and Golgi bodies, but excess vitamin E can damage cell structure. These results provide evidence that 80–160 mg/kg dietary vitamin E has a positive impact on growth, immunity and regulation of the hepatopancreas in male shrimp.  相似文献   

15.
The morphological characters, fillet texture, and nutrient contents of the F3 generation of Barbless carp (Cyprinus pellegrini,BC) female × Heilongjiang carp (Cyprinus carpio,HLC, geographical population of common carp) male hybrid, which were named as High‐quality carp F3 (HQC F3), were studied. The main morphological characteristics of HQC F3 were between BC and HLC, but closer to the BC. The fillet amino acids and crude protein showed significant differences between HQC F3 and BC. But, only fillet crude fat showed significant differences between HQC F3 and HLC. HQC F3's fillet had significantly different with BC's on the contents of myristic acid, linolenic acid, and stearic acid, and with HLC's on the contents of linoleic acid, linolenic acid, EPA, palm oleic acid, and 20 carbon‐dilute acid. HQC F3 broodstocks were selected with high intramuscular fat and effective population size. HQC F4 were bred and showed improved intramuscular fat content compared to F3. The intramuscular fat of 2‐year‐old HLC F4 was significantly (p < 0.05) correlated with body weight/standard length. Intramuscular fat is a stable trait that can be continuously passed on to the next generation. This study will lay a foundation for further carp selective breeding study to improve fillet quality.  相似文献   

16.
The effects of feeding different sources of brine shrimp nauplii with different fatty acid compositions on growth, survival, and fatty acid composition of striped bass, Morone saxarilis and palmetto bass (M. saxatilis x M. chrysops) were determined. The sources of brine shrimp were Chinese (CH), with a high percentage of 20:5(n-3), eicosapentaenoic acid (EPA), and Colombian (COL), San Francisco Bay (SFB), and Great Salt Lake (GSL), with low percentages of EPA but high percentages of 18:3(n-3), linoienic acid. None of the brine shrimp sources contained a measurable amount of 22:6(n-3), docosahexaenoic acid (DHA). After enrichment with menhaden oil to increase the content of EPA and DHA, the GSL brine shrimp nauplii were also fed to hybrid striped bass.Growth and survival of fish larvae fed brine shrimp nauplii with high percentages of EPA and DHA (CH and GSLE) were higher (P < 0.05) than those of fish fed brine shrimp with a low percentage of EPA (COL, SFB, and GSL). The ratio of 20:3(n-9) eicosatrienoic acid (ETA), to DHA in polar lipids (phospholipids) of fish, traditionally used as an indicator of essential fatty acid (EFA) sufficiency of the diet, was not a reliable indicator of essential fatty acid sufficiency of diets for larval striped bass and hybrid striped bass. However, the ratio of ETA to EPA appears to be an appropriate indicator. An ETA-to-EPA ratio in phospholipids of less than 0.10 is consistent with an EFA sufficient diet.  相似文献   

17.
Abstract:   The total lipid content and fatty acid composition were determined in the flesh and skin of wild and cultured rainbow trout in Turkey. The effect of diet content was also investigated on cultured trout. Gas chromatography-mass spectrometry (GC-MS) was used for fatty acid analyses. Total lipid content of skin was higher than flesh in both types and when compared appreciably higher in cultured fish. The predominant fatty acid was palmitic acid (C16:0) in saturated fatty acids and oleic acid (C18:1n-9) in monounsaturated fatty acids. The amount of eicosapentaenoic acid was double in wild and docosahexaenoic acid (DHA) 1.5 times higher in cultured fish flesh. The n-3/n-6 ratio was higher in cultured fish than wild fish. The levels of palmitic, oleic, linoleic (C18:2n-6) and palmitoleic (C16:1n-7) acids were high in skin. The level of EPA was the same in skin of wild fish but 5.5 times higher in cultured fish, whereas the proportion of DHA in skin was lower for wild and 3.5 times higher in cultured fish. Wild fish had a high level of linoleic, arachidonic (C20:4n-6) and linolenic (C18:3n-3) acids. The total amount of n-3 and n-6 polyunsaturated fatty acids was higher in flesh of wild fish than cultured fish, contrary to skin of cultured fish. The data obtained demonstrated that fatty acid composition of cultured fish did not depend on that of feed.  相似文献   

18.
In this study, lipid classes and fatty acid composition were determinedin eggs of P. vannamei as a function of survival to zoeaIII stage. Spawns were reared individually to zoea III and grouped, accordingtotheir final survival to this larval stage, into spawns of high and lowsurvival.Eggs of individual spawns were analyzed for lipid and fatty acid composition ofneutral and polar lipids and the results were then grouped according tosurvivalto zoea III. The lipids within each group (high and low survival to zoea III)were pooled for the separation of phospholipids and the analysis of their fattyacid composition.Higher levels of triglycerides, carotenoids, and linoleic (18:2n-6) acid ineggs were associated with improved survival to zoea III. Linoleic acid washigher in spawns from the high survival group in both neutral and polarfractions and in most of the phospholipid classes analyzed. Docosahexanoic acid(DHA) was not related to survival to zoea, probably because its content washighenough (> 15% of total fatty acids) to satisfy embryo and early larvaldevelopment needs. A high content of eicosapentaenoic acid (EPA) was found inphosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylserine, andphosphatidylinositol compared to other phospholipid classes, suggesting aspecific role of EPA in these lipids. These results describe the specificphospholipid composition of penaeid eggs and could (potentially) be used aspredictive indicators of larval quality for research and production purposes.  相似文献   

19.
Lipid classes and fatty acid levels were analyzed in freshly fertilized eggs, early and late embryo development, and freshly hatched larvae obtained from wild and captive silverside Chirostoma estor estor broodstock, as well as in plankton, Artemia, and pelleted feed. The concentration of triglycerides (TGs) and highly unsaturated fatty acids (HUFAs) in neutral lipid fraction significantly decreased during early development and especially after hatching, whereas phospholipids and HUFA in polar lipid fraction remained constant. These results indicate that TGs rather than PLs are used as energy sources and that all HUFAs [20:4n-6/arachidonic acid (ARA), 20:5n-3/eicosapentaenoic acid (EPA), and 22:6n-3/docosahexaenoic acid (DHA)] of polar lipids are selectively conserved during early development. High levels of DHA (30%, on average, of total fatty acids) and low levels of EPA (4%) were observed in eggs, embryos, and larvae and did not reflect the proportions of these fatty acids in food. Preferential accumulation of DHA from food consumed by broodstock, and then transference to eggs, was probably occurring. The main difference between eggs from both origins was a low level of ARA in eggs from captive fish (4% of total fatty acids) compared to wild fish (9%). This could be associated with a deficiency in the diet that is not compensated for by desaturation/elongation of 18:2n-6 and, possibly, with greater stress in captive fish. In any case, particular requirements of ARA should be determined to optimize the culture of C. estor.  相似文献   

20.
The fatty acid composition of pikeperch (Sander lucioperca) was determined according to their physiological status, during starvation (10 days) and feeding (28 days). In starved larvae, polyunsaturated, monounsaturated and saturated fatty acids were utilized as metabolic substrates until day 9. At day 10, all fatty acid levels remained stable or, at least, increased in larval body. Among fatty acids, docosahexaenoic acid 22:6 n-3 was used preferentially (20.3% from total fatty acids utilized) followed by palmitoleic acid 16:1 n-7 (13.9%) and then by oleic 18:1 n-9 (12.3%), linoleic 18:2 n-6 (10.1%), linolenic 18:3 n-3 (9.7%) and eicosapentaenoic 20:5 n-3 (9.1%) acids. On the other hand, arachidonic acid 20:4 n-6 was utilized very lowly (0.3%). In fed larvae, no utilization of body fatty acids was observed during the experiment. It seems that energy requirements (and others) of fed larvae were satisfied by feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号