首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
针对车身部件声学特性优化中计算设计灵敏度复杂和传统响应面法准确度较低的问题,提出用支持向量回归机方法构造响应面.支持向量机根据结构风险最小原理,具有小样本学习性能.本文用最小二乘支持向量机(LS-SVM)构造汽车地板部件的模态频率、域点声压的响应面,对其优化找到最优点.结果表明:与最小二乘法相比,支持向量机构造的响应面更接近仿真试验,优化结果与实际最优解更为接近.  相似文献   

2.
基于支持向量机模型的财务预警应用研究   总被引:3,自引:0,他引:3  
应用上市公司财务比率数据,采用支持向量机模型(SVM)对上市公司财务危机进行预警,给出了财务预警指标及量化方法,分析了基于支持向量机模型的中长期预警能力。研究结果表明了支持向量机应用于财务预警的可行性和实用性,最后提出了以多模式分类标识财务预警警度的可能性。  相似文献   

3.
介绍了支持向量机的原理,研究了基于支持向量机的农业数据分类,结果表明应用支持向量机可以有效地提高农业数据的分类性能。  相似文献   

4.
针对传统支持向量机对噪声点敏感问题,提出一种改进的支持向量机.其基本思想是根据样本对分类贡献不同赋予相应的隶属度,贡献大的分配较大的隶属度,贡献小的分配较小的隶属度.与传统支持向量机比较,减小了噪声点对分类的影响,提高了SVM的泛化能力.并将其应用到车型识别中,结果显示该方法的有效性.  相似文献   

5.
介绍了支持向量机、信息向量机和相关向量机的理论与算法。利用最优化对偶理论,阐述了支持向量机的三种主要算法:硬间隔支持向量机、软间隔线性支持向量机和二次软间隔支持向量机的理论推导过程。对基于高斯过程模型,详细说明了信息向量机和相关向量机算法的实现过程。  相似文献   

6.
该文提出一种基于边界支持向量的自适应增量支持向量机,对每轮训练的样本集提取其边界支持向量,从而减少训练向量数目,提高训练效率。通过自适应调整参数,可以更好地适应新增样本。采用 UCI(University of California Irvine)机器学习数据库和Statlog数据库对本文方法进行验证,实验结果表明本文方法的训练时间优于标准支持向量机和一般增量支持向量机。其分类精度也明显优于一般增量支持向量机,在训练数据较少时,其分类精度与标准支持向量机相差不大,但随着训练数据的增加,分类精度逐渐超越标准支持向量机。该文的方法更适合大规模数据集的增量学习。  相似文献   

7.
杨枢  郭茂龙 《安徽农业科学》2010,38(21):11506-11507,11547
提出一种温室环境智能控制模型。该模型从模式识别的角度解决温室环境最优控制问题。具体算法是根据作物生长模型、当前外界环境条件等,创建温室环境控制目标;对控制目标与温室内外环境条件的差值等特征参数模糊化;通过支持向量机的多分类方法进行分类决策,选择适宜的温室环境调控措施,达到对温室环境最优控制的目的。将采用该模型的温室环境控制系统应用于安徽蚌埠地区的Venlo温室。结果表明,该系统具有良好的控制效果。  相似文献   

8.
针对Lasso方法与支持向量机两者的联系与各自的优势,给出了基于Lasso与支持向量机的串联型、并联型和嵌入型三种组合预测,并将它们运用到我国粮食价格预测中.实证结果表明,与单一预测方法的预测结果相比,基于Lasso方法与支持向量机的串联型组合预测和嵌入型组合预测具有更高的预测精度.  相似文献   

9.
对灰色、神经网络和支持向量机的三个预测模型进行研究,以某某类科技图书1993-2000年的年发行量为例,对科技图书市场进行预测,经过比较,支持向量机的预测方法精度较高。本方法可推广应用于其他类图书市场的预测。  相似文献   

10.
传统的油田开发动态生产预警采用独立性指标阈值判别方法,从而带来预警结果不准确、异常事件发生时报警而不是预警等问题。本课题提出一种油田生产预警模型,该方法将支持向量回归机(Support Vector Regression,SVR)用于油田生产预警中,通过分析历史生产动态数据,找到它们的变化规律,总结出生产异常警报形成模式,在油田异常事件的初期给出预警信号,提前分析处理潜在隐患,以便保证油田采收效率的稳定性。实验结果证明模型对于油田生产中发生的异常情况具有较高的预测准确性。  相似文献   

11.
针对路面结构特征,提出一种颜色与纹理特征相融合并结合模糊支持向量机的路面分类识别方法。提取路面图像的HSV颜色空间的颜色矩作为颜色特征,采用灰度共生矩阵法提取纹理特征,融合路面图像的颜色特征与纹理特征,采用模糊支持向量机进行支持向量特征训练,通过训练得到能尽可能多的满足每一种图像的样本数据特征的特征向量。通过实验,对比了采用传统的支持向量机与模糊支持向量机对路面分类识别的正确率。实验表明本研究所提出方法的有效性。  相似文献   

12.
针对林业资金投资变化的定量预测,提出一种基于改进支持向量机的预测方法.利用滑动时间窗口方法将历年林业资金投资数据构造成时间序列,将其做为数据样本集并由改进支持向量机加以训练以得到预测模型.通过某省近20年的林业资金投资数据实验验证了预测方法的有效性,实验结果表明:与传统预测方法相比,基于改进支持向量机的预测方法明显提高了投资变化预测精度.  相似文献   

13.
【目的】建立混沌时间序列的支持向量机预报模型,为地下水动态提供新的可行的预报方法。【方法】以重构相空间理论为基础,探讨了混沌时间序列的支持向量机预报模型的建模思路、特点及参数的选取,借助G-P算法、C-C方法和Wolf方法,计算了武威盆地3眼观测井地下水位埋深序列的Lyapunov指数,并利用自适应方法对支持向量机的参数进行了选择;基于高斯径向基核函数,建立了混沌时间序列的支持向量机预报模型。【结果】武威盆地地下水位埋深序列的Lyapunov指数均大于0,表明该时间序列具有混沌特性;所建立的混沌-支持向量机模型可以用于武威盆地地下水位埋深预报,经过检验,武威盆地3眼观测井的预报精度分别为0.98,0.92和0.86,表明建立模型预报精度较为理想。【结论】建立了混沌-支持向量机模型,该模型可用于地下水位埋深动态预报。  相似文献   

14.
基于BP神经网络和支持向量机的农用地分等方法研究   总被引:1,自引:0,他引:1  
为建立农用地(耕地)质量评价模型,客观准确地进行农用地(耕地)分等,减少现行农用地分等方法中的人为因素影响,提高农用地分等的精度。以福建省长泰县丘陵山地区为实证研究区,通过无监督网络——自组织特征映射网络(SOM)筛选出2 602组典型样本,分别进行有监督网络——BP神经网络和支持向量机(SVM)的学习训练,将分等指标作为输入变量,以农用地自然质量等指数和等别作为输出变量,分别建立BP神经网络农用地分等模型与SVM农用地分等模型并对其精度进行分析。BP神经网络模型的评价正确率为89%,精度较高;支持向量机(SVM)模型的评价结果正确率为99%,达到高精度等级。2种模型均能满足农用地分等的精度要求,但SVM模型较BP神经网络效果更好,更适合应用于农用地分等工作。  相似文献   

15.
提出了一种基于β因子历史样本淘汰机制的在线学习算法.对UCI标准数据集中的部分样本集的测试结果表明:该机制有效地淘汰了一些样本,在保持了分类精度和泛化能力的情况下,大大加快了增量学习的训练速度.  相似文献   

16.
针对传统支持向量机方法中存在的野值噪声敏感问题,提出了一种基于紧密度的Grey-Sigmoid核函数支持向量机,不仅考虑样本与所属类中心之间的关系,还考虑了各个样本之间的距离。通过样本之间的紧密度来描述各个样本之间的关系,利用包围同一类样本的最小超球半径来衡量样本间的紧密度,样本灰度依据样本在球中的位置确定。通过对田间小麦全蚀病的遥感图像分类的实验验证,证明Grey-Sigmoid核函数和传统的Sigmoid核函数相比,计算速度更快,且精度没有明显损失。  相似文献   

17.
[目的]应用参数优化支持向量机对水稻施氮水平进行准确分类预测,为水稻精准施肥和高产管理提供科学依据.[方法]以水稻品种金优458为试验材料,设4个施氮水平(从高至低折合纯氮用量分别为225、150、75和0 kg/ha),通过叶绿素测量仪SPAD-502获取水稻第6~9叶序叶片的SPAD值(即叶尖、叶中和叶枕的SPAD值),并分别应用网格搜索算法和粒子群算法参数优化支持向量机对4个施氮水平下的水稻叶片SPAD值进行训练和预测分类.[结果]对于第7、8叶序、第7~9叶序及第6~8叶序叶片组合,粒子群算法参数优化支持向量机对水稻施氮水平的分类识别效果均优于网格搜索算法,其准确率均高于75.000%,对归一化处理后的第7、8叶序叶片组合识别率最高,达88.889%.[结论]基于粒子群算法参数优化支持向量机适用于水稻施氮水平分类预测,能满足农学研究的需求.  相似文献   

18.
城市空气质量评价中的模糊支持向量机方法   总被引:2,自引:0,他引:2       下载免费PDF全文
传统的评价方法不能处理带有模糊信息的城市空气质量的评价问题。基于结构风险最小化原则建立了带有模糊信息的支持向量分类模型和算法,在此基础上提出基于模糊支持向量机的城市空气质量评价方法;根据空气中的总悬浮颗粒物、二氧化硫、二氧化氮、空气综合污染指数4个指标,对我国50个主要城市2003年空气质量进行了综合评价,选择10个城市的评价结果进行了测试,结果表明:根据2003年数据采用本方法得到的邢台、张家口和沧州的空气污染指数与河北省环保专家提供的数据误差小于0.1;西宁、银川、乌鲁木齐、汕头、南京、大连、武汉的综合空气污染指数与国家环保总局提供的数据误差均小于0.5。  相似文献   

19.
Locusts are agricultural pests around the world. To cognize how locust distribution density and community structure are related to the hydrothermal and vegetation growth conditions of their habitats and thereby providing rapid and accurate warning of locust invasions, it is important to develop efficient and accurate techniques for acquiring locust information. In this paper, by analyzing the differences between the morphological features of Locusta migratoria manilensis and Oedaleus decorus asiaticus, we proposed a semi-automatic locust species and instar information detection model based on locust image segmentation, locust feature variable extraction and support vector machine(SVM) classification. And we subsequently examined its applicability and accuracy based on sample image data acquired in the field. Locust image segmentation experiment showed that the proposed GrabCut-based interactive segmentation method can be used to rapidly extract images of various locust body parts and exhibits excellent operability. In a locust feature variable extraction experiment, the textural, color and morphological features of various locust body parts were calculated. Based on the results, eight feature variables were selected to identify locust species and instars using outlier detection, variable function calculation and principal component analysis. An SVM-based locust classification experiment achieved a semi-automatic detection accuracy of 96.16% when a polynomial kernel function with a penalty factor parameter c of 2 040 and a gamma parameter g of 0.5 was used. The proposed detection model exhibits advantages such as high applicability and accuracy when it is used to identify locust instars of L. migratoria manilensis and O. decorus asiaticus, and it can also be used to identify other species of locusts.  相似文献   

20.
本文分析总结了支持向量机从提出,兴起到现在的研究成果,并重点关注算法方面的进展.对各个方向的研究都做了相应分析.并适当编程实现了性能优越的序贯最小优化(SMO)算法.最后给出了针对各种应用问题,较为理想的算法选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号