首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new cytoplasmic male-sterile (CMS) lines have been developed in Brassica juncea using the bridgecross hybrids (Diplotaxis erucoides×Brassica campestrisB. juncea and (Diplotaxis berthautii×B. campestrisB. juncea. These were backcrossed ×ve times with pollen of B. juncea. The CMS line (D. erucoides) B. juncea segregated into tall and short true breeding types; both resembled the cultivar B. juncea in vegetative and floral morphology and in cytology, except for a greater number of secondary branches and smaller anthers with empty sterile pollen in the CMS line. Female fertility was as good in the CMS line as in the cultivar. The other CMS line (D. berthautii) B. juncea resembled the cultivar in vegetative morphology and cytology. Four true breeding floral types were isolated as follows: (1) smaller and indehiscent anthers containing empty, sterile pollen, (2) all six stamens petaloid, (3) one petaloid stamen and five stamens antherless, and (4) apetalous flowers with all six stamens antherless.  相似文献   

2.
3.
S. Prakash    I. Ahuja    H. C. Upreti    V. Dinesh  Kumar  S. R. Bhat    P. B. Kirti  V. L. Chopra   《Plant Breeding》2001,120(6):479-482
An alloplasmic mustard, Brassica juncea, has been synthesized by placing its nucleus into the cytoplasm of the related wild species Erucastrum canariense to express cytoplasmic male sterility. To achieve this, the sexual hybrid E. canariense (2n=18, EcEc) ×Brassica campestris (2n= 20, AA) was repeatedly backcrossed to B. juncea (2n= 36, AABB). Cytoplasmic male‐sterile (CMS) plants were recovered in the BC4 generation. These plants are a normal green and the flowers have slender, non‐dehiscing anthers that contain sterile pollen. Nectaries are well developed and female fertility is > 90%. The fertility restoration gene was introgressed to CMS B. juncea from the cytoplasmic donor E. canariense through pairing between chromosomes belonging to B. juncea with those of the E. canariense genome. The restorer plants have normal flowers, with well‐developed anthers containing fertile pollen. Meiosis proceeds normally. Pollen and seed fertility averaged 90% and 82%, respectively. F1 hybrids between CMS and the restorer are fully pollen fertile and show normal seed set. Preliminary results indicate that restoration is achieved by a single dominant gene. The constitution of the organelle genomes of the CMS, restorer and fertility restored plants is identical, as revealed by Southern analysis using mitochondrial and chloroplast probes atp A and psb D, respectively.  相似文献   

4.
In Brassica oleracea, production of F1 hybrid seeds mainly makes use of the improved Ogura cytoplasmic male sterile (CMS) line. However, reliance on one particular line is a risk, and it would be advantageous to develop other CMS lines. In this study, we transferred Diplotaxis erucoides cytoplasm to B. oleracea cultivars using an alloplasmic B. rapaCMS line as a bridge plant to avoid incompatibility between donor and recipient plants. The new B. oleraceaCMS lines, which were derived by four generations of backcrossing, had small rudimentary anthers with no pollen grain and showed complete male sterility. There was no functional defect in other floral organs, and the ability to receive normal pollen did not appear to be impaired. Moreover, the B. oleraceaCMS lines carrying D. erucoides cytoplasm had larger leaf areas and a normal plastochron. As a consequence, the B. oleraceaCMS lines carrying D. erucoides cytoplasm have the potential to be valuable alternatives for use in commercial B. oleracea hybrid seed production.  相似文献   

5.
R. Delourme  F. Eber  A. M. Chevre 《Euphytica》1989,41(1-2):123-128
Summary Intergeneric hybrids (F1) Diplotaxis erucoides (DeDe) x Brassica napus (AACC) and the first backcross to B. napus (BC1) have been obtained through in vitro culture of excised ovaries. The chromosome numbers of F1 and BC1 plants proved the occurrence of unreduced gametes. The study of metaphase I chromosome pairing showed that autosyndesis in De genome and allosyndesis between De and A/C genomes might exist. The male fertility of the F1 plants was low. Some male-sterile plants were found in F1 and BC1 progeny. The possibilities of creating addition lines B. napus-D. erucoides and of obtaining a new cytoplasmic male sterility in B. napus are discussed.  相似文献   

6.
N. N. Roy 《Euphytica》1978,27(1):145-149
Summary F1 behaviour and F2 variation in disease reaction were studied in the interspecific cross Brassica juncea x B. napus. Gene(s) for adult resistance to blackleg (Leptosphaeria maculans) were found to be present in the A genome of B. juncea and could be transferred to B. napus. Gene(s) for complete (seedling plus adult) resistance in B. juncea appeared to be located in the B genome. The chance of their transfer to the oilseed rapes (B. napus or B. campestris) would therefore seem to be remote.  相似文献   

7.
Brassica genotypes representing four different species viz. B. nigra and B. campestris (both primary diploids), B. juncea and B. carinata (both allotetraploids) were examined for photosynthesis rate (Pn), ribulose-1,5-bisphosphate carboxylase (RuBPC) activity, leaf soluble protein and chlorophyll content. B. nigra is the male and female parent of B. juncea and B. carinata, respectively. B. campestris is the maternal parent of B. juncea. Pn was significantly higher in B. nigra and B. carinata compared to the other two species. These two species also sustained Pn of the leaves for a longer period during ontogeny. When B. nigra was the male parent, the higher Pn of B. nigra was not inherited in B. juncea. On the other hand, the Pn and pattern of ontogenetic changes in B. campestris and B. juncea were more or less similar. In specific RuBPC activity on soluble protein basis, chlorophyll and soluble protein content B. carinata also followed B. nigra whereas, B. juncea followed B. campestris. These results indicated the possible maternal(cytoplasmic) influence on the inheritance of these traits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Pollen grain embryogenesis in anther cultures of Brassica juncea cv. PR-45 was considerably enhanced by treating the donor plants with 4 mll-1 (v/v) of ethrel or delayed sowing of the donor plants, the latter treatment being superior. The anthers derived from plants sown about two months after the normal sowing period showed 18% androgenesis as compared to 3.5% in the control.Pollen grain embryos normally showed very poor germination (10%) on B5 or B5 containing GA3. However, ABA or cold treatment promoted normal germination of these embryos. Exposure of the embryos to 4°C for 6 days, which proved to be the best treatment, induced 66% germination of the embryos.  相似文献   

9.
Summary Wide hybridizations between M. arvensis and Brassica amphidiploid species (B. napus and B. juncea) were carried out in order to incorporate desirable traits of M. arvensis into Brassica crops. Crossing barriers between them were present without the use of in vitro techniques. F1 hybrids have been produced through ovary culture, when M. arvensis were used as a female parent. Higher hybrid embryo productivity (3.07 embryos per pollination) was obtained in the cross of M. arvensis x B. napus than in that of M. arvensis x B. juncea (0.79 embryos). The hybridity was confirmed by morphology, cytology, isozyme and Southern analyses. The first backcrossing progenies and open pollinated ones were produced.  相似文献   

10.
Genetic diversity among the 88 entries including eighty F4 derivatives i.e., 20 each selected from Brassica crosses viz., B. juncea × B. napus, B. juncea × B. rapa var. toria, B. juncea ×B. rapa var. yellowsarson and B. tournefortii × B. juncea, and eight parent genotypes was assessed through multivariate analysis (D2 statistic). Significant differences among the family groupsas well as within the family were recorded for all the 14 characters studied. The D2 analysis revealed enormous diversity among the interspecific cross derivatives. The genetic distances calculated among different Brassica species revealed that B. tournefortii had maximumdiversity with B. juncea followed by B. napus, B.rapa var. toria and B. rapa var. yellow sarson.Amongst interspecific crosses, maximum diversity was noticed indescendants of cross B. tournefortii × B. juncea followed byB. juncea × B. napus, B. juncea × B.rapa var. toria and the least in the cross B. juncea ×B. rapa var. yellow sarson. These results indicated that the derivatives selected from cross of diverse parents revealed greater diversity. The clustering pattern showed that many derivatives of the cross fell into the same cluster but in many cases in spite of common ancestry many descendants of the cross spread over different clusters. The characters, namely, plant height, secondary branches per plant, days to flowering and1000-seed weight were contributed maximum towards genetic divergence. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
H.H. Gu  W.J. Zhou  P. Hagberg 《Euphytica》2003,134(3):239-245
Brassica rapa (syn. Brassica campestris) ssp. chinensis is an important vegetable crop, but it is relatively recalcitrant to microspore culture. One genotype each of B. rapa ssp. chinensis var. communisand var. utilis were used formicrospore culture. Embryo production of3.8–42.4 embryos/bud was obtained. A high rate of plant regeneration directly from microspore-derived embryos without subculture was achieved by an improved protocol involving replacement of culture media and reduction of sucrose concentrations after 48 h of induction,among other modifications. More than 70%of regenerated plants were spontaneous diploids. Some spontaneous tetraploid plants were also obtained from isolated microspores of both genotypes tested. These tetraploids may be directly exploited a snew varieties in a Brassica rapabreeding programme. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A new cytoplasmic male-sterility system was developed in an oilseed Brassica, viz. B. juncea var. ‘Pusa Bold’ with the cytoplasmic background of a wild species, Diplotaxis siifolia, obtained through wide hybridization. The synthetic alloploid (D. siifolia×B. juncea: 2n = 56, D3D3AABB) was repeatedly backcrossed to B. juncea to achieve cytoplasmic substitution. The CMS plants resembled the cultivar in growth and morphology. The flowers had narrow sepals and petals and short, shrivelled anthers which failed to dehisce. The meiotic process appeared to be normal. The microspores degenerated at an early stage after tetrad formation. Female fertility in the CMS plants was as good as in the cultivar. Female transmission of sterility confirmed it to be cytoplasmically encoded.  相似文献   

13.
T. J. Zhao  J. Y. Gai 《Euphytica》2006,152(3):387-396
Most of the cytoplasmic-nuclear male-sterile (CMS) lines of soybean were developed only from a limited cytoplasm sources and performed not as good as required in hybrid seed production, therefore, to explore new male-sterile cytoplasm sources should be one of the effective ways to improve the pollination and hybridization for a better pod-set in utilization of heterosis of soybeans. In the present study, total 80 crosses between 70 cultivated and annual wild soybean accessions and three maintainers (N2899, N21249, and N23998) of NJCMS1A were made for detecting potential new sources with male-sterile cytoplasm. The results showed that in addition to the crosses with N8855.1 (the cytoplasm donor parent of NJCMS1A) and its derived line NG99-893 as cytoplasm parent, there appeared three crosses, including N21566 × N21249 and N23168 × N21249, with male-sterile plants in their progenies. According to the male fertility performance of backcrosses and reciprocal crosses with the tester N21249, the landrace N21566 and annual wild soybean accession N23168 were further confirmed to have male-sterile cytoplasm. Accordingly, it was understood that the source with male-sterile cytoplasm in soybean gene pool might be not occasional. The results also showed that the genetic system of male sterility of the newly found cytoplasm source N21566 was different from the old cytoplasm source N8855.1, while N23168 was to be further studied. Based on the above results, the derived male-sterile plants from [(N21566 × N21249) F1 × N21249] BC1F1 were back-crossed with the recurrent parent N21249 for five successive times, and a new CMS line and its maintainer line, designated as NJCMS3A and NJCMS3B, respectively, were obtained. NJCMS3A had normal female fertility and stable male sterility. Its microspore abortion was mainly at middle uninucleate stage, earlier than that of NJCMS1A and NJCMS2A. The male fertility of F1s between NJCMS3A and 20 pollen parents showed that 7 accessions could restore its male fertility and other 13 could maintain its male sterility. The male sterility of NJCMS3A and its restoration were controlled by one pair of gametophyte male-sterile gene according to male fertility segregation of crosses between NJCMS3A and three restorers. The nuclear gene(s) of male sterility in NJCMS3A appeared different from the previously reported CMS lines, NJCMS1A and NJCMS2A. The development of NJCMS3A demonstrated the feasibility to discover new CMS system through choosing maintainers with suitable nuclear background.  相似文献   

14.
Summary Ovary culture has been employed for the production of interspecific hybrids of a partially compatible cross of Brassica juncea (2n=36) × Brassica campestris (2n=20). Five to seven days old ovaries cultured on White's medium supplemented with casein hydrolysate (300 mg/l) and sucrose (5%) produced more seeds than any other media tried, but seed development was better on media fortified with plant hormones. The seed yield was better in B. juncea × B. campestris than their reciprocal cross. The plants obtained from ovary-derived seeds were transferred to the field; they were intermediate in some morphological characters and chromosome number (2n=28) as compared to their parents. The flower buds generally did not open and had poorly developed anthers with mostly sterile pollen. The pod size/setting was very much reduced, but healthy seeds were obtained.  相似文献   

15.
Black rot is a bacterial disease of Brassica oleracea caused by Xanthomonas campestris pv. campestris. Resistance to the major black rot races 1 or 4 has been identified in related Brassica species including B. carinata and B. napus. In this study, two B. juncea accessions (A 19182 and A 19183) that are resistant to races 1 and 4 of Xcc were used as maternal and paternal parents to generate interspecific hybrids with B. oleracea cultivars. Interspecific hybrids were recovered using the embryo rescue technique and confirmed through inheritance of paternal molecular markers. Twenty-six interspecific hybrid plants were obtained between A 19182 and B. oleracea cultivars, but no interspecific hybrids were obtained using A 19183. Although interspecific hybrid plants were male sterile, they were used successfully as maternal parents to generate backcross plants using embryo rescue. All hybrid and BC1 plants were resistant to black rot races 1 and 4.  相似文献   

16.
This study was conducted to assess the cytoplasm effects of Brassica napus and B. juncea on the some characteristics of B. carinata, as well as the phylogenetic distances separating the three species. Alloplasmic lines of B. carinata were developed from B. napus × B. carinata and B. juncea × B. carinata hybrids by recurrent backcrossing to the BC7 generation. Sixteen populations from three generations were compared for a number of characteristics. Plants with the cytoplasm of B. napus flowered later, had shorter filaments and longer pistils, lower pollen amount, lower seed set, lower petal length and width and different petal color; plants with the cytoplasm of B. juncea had shorter pistils and filaments, and lower petal length and width than their corresponding euplasmic sibs, respectively. The results suggest that the cytoplasm is involved in the development of flower organs. The natural species, B. carinata showed a balance between the nucleus and cytoplasm. The cytoplasm from B. napus showed a stronger disturbing effect than that of B. juncea, suggesting that B. carinata might be genetically closer to B. juncea than to B. napus. The significant difference in the alloplasmic effect of the cytoplasms of B. napus and B. juncea also suggests that in B. carinata the B genome may play a greater role than the C genome. An erratum to this article can be found at  相似文献   

17.
Brassica carinata A. Braun is a highly productive oilseed crop in the Ethiopian highlands, but the seed has a high 2-propenyl glucosinolate content, which is undesirable. The objective of this study was to introgress, through interspecific crosses, genes for low 2-propenyl glucosinolate content from the B genome of B. juncea and C genome of B. napus into the B. carinata B and C genomes and thus develop low glucosinolate B. carinata. The cross [(B. carinata×B. juncea) ×B. carinata] yielded plants that contained only ~ 20 μmoles of 2-propenyl glucosinolate, which was an 85% reduction compared with levels in B. carinata seed. Plants of the [(B. carinata×B. napus) ×B. carinata] cross had normal high concentrations of 2-propenyl glucosinolate. Backcross plants of both interspecific crosses also contained 3-butenyl and 2-hydroxy-3-butenyl glucosinolates. The results of these crosses suggested that genes for glucosinolate synthesis were located on B genome chromosomes of B. carinata because B. napus C genome introgressions did not result in reductions of total glucosinolate contents. The total alkenyl glucosinolate content of one F3 family of the B. juncea backcross was similar to that of the B. juncea parent. It was concluded that through further selection in this family, B. carinata plants could be identified that would be basically free of 2-propenyl glucosinolate, and have a low total alkenyl glucosinolate content.  相似文献   

18.
The effect of the parental genotypes and colchicine treatment on the androgenic response of wheat (Triticum aestivum L.) F1 hybrids was studied. For this, anthers from three F1 hybrids and their parents were cultured on W14 initiation medium and W14 supplemented with 0.03% colchicine. The number of responding anthers, microspore‐derived structures/100 anthers, green plants/embryos cultured, green plants/100 anthers and albino plants/100 anthers were recorded. It was observed that embryo formation and plant regeneration ability were genetically controlled and genotype dependent. In both treatments the variety Kavkaz had a significantly higher percentage of responding anthers, microspore‐derived structures and green plants/100 anthers than the other genotypes. On the other hand, the variety Myconos also demonstrated high microspore‐derived structure production and green plant regeneration when treated with colchicine. The good response observed in these two varieties indicates the importance of colchicine treatment only for certain genotypes. Green plant production capacity of the hybrids was intermediate to that of the parental varieties. As one parent with a high or even an intermediate response to anther culture could lead to the production of sufficient (for breeding purposes) green plants from the F1 hybrids, it was concluded that screening the inbred lines for the response to anther culture with and without colchicine treatment could contribute to utilization of breeding material with a low response to anther culture via the proper hybrid combinations.  相似文献   

19.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
To select superior seed parents for vegetable hybrid seed production, we conducted interspecific crosses between male sterile Brassica juncea (2n = 36, AABB) and eight inbred lines of Brassica rapa (2n = 20, AA). Alloplasmic lines of B. rapa with the cytoplasm of B. juncea were developed from B. juncea × B. rapa hybrids by repeated backcrossing using B. rapa as the recurrent male parent until the BC3 generation. Seed fertility, male sterility and chlorophyll content were investigated in these plants cultivated under four different temperature conditions (5, 10, 12 and 20°C). At 10°C, the alloplasmic lines of B. rapa with the cytoplasm of B. juncea were male sterile with partly chlorotic leaves. The alloplasmic B. rapa had lower chlorophyll a, chlorophyll b and carotenoid contents than those of the original B. rapa. The leaves recovered from chlorosis when the plants were cultivated at 20°C. An alloplasmic line of B. rapa (A6) is available as a seed parent for vegetable hybrid seed production and contributes seed fertility, slight chlorosis and stable male sterility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号