首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trials were conducted in southern Queensland, Australia between March and May 2003, 2004 and 2005 to study patterns of hourly and daily release of the secondary conidia of Claviceps africana and their relationships with weather parameters. Conidia were trapped for at least one hour on most (> 90%) days in 2003 and 2004, but only on 55% of days in 2005. Both the highest daily concentration of conidia, and the highest number of hours per day when conidia were trapped, were recorded 1–3 days after rainfall events. Although the pattern of conidial release was different every day, the highest hourly conidial concentrations occurred between 10·00 hours and 17·00 hours on 73% of all days in the three trials. Hours when conidia were trapped were characterized by higher median values of temperature, windspeed and vapour pressure deficit, lower relative humidity, and leaf wetness values of 0%, than hours when no conidia were recorded. The results indicate that fungicides need to be applied to the highly ergot-susceptible male sterile (A-) lines of sorghum in hybrid seed production blocks and breeders' nurseries as soon as possible after rainfall events to minimize ergot severity.  相似文献   

2.
Phakopsora meliosmae-myrianthae, the causal agent of Asian grapevine leaf rust, significantly reduces the photosynthetic efficiency of grapevine leaves in green symptomless tissues surrounding lesions. This study took a close look at grapevine leaf colonization kinetics by Pmeliosmae-myrianthae and compared it to Ppachyrhizi–soybean and Uromyces appendiculatus–bean colonization. It is already known from the literature that soybean rust, similar to grapevine rust, has a negative effect on leaf photosynthesis greater than would be expected based on visual lesions. However, in contrast to soybean and grapevine rusts, the effect of bean rust on leaf photosynthesis is proportional to the diseased leaf area. Colonization progress was monitored by fungal biomass assessed via histological staining and quantitative polymerase chain reaction (qPCR). Individual lesions of Pmeliosmae-myrianthae on grapevine, Ppachyrhizi on soybean and Uappendiculatus on common bean leaves were evaluated every 3–4 days, and the number of uredinia was counted. Staining showed that mycelial colonization did not extend beyond the lesion border. The number of Ppachyrhizi and Pmeliosmae-myrianthae uredinia within the lesions increased over time (on average 14-fold), whereas the number of Uappendiculatus uredinia remained the same. These findings were corroborated by qPCR, which revealed a greater increase in fungal biomass for Phakopsora spp. than for Uappendiculatus until 12 days post-inoculation. The high number of satellite uredinia within lesions might be directly related to the impact of this pathogen in photosynthetic efficiency on symptomless areas of diseased grapevine leaves. This study identified accelerated formation of satellite uredinia as an important feature of grapevine colonization by Pmeliosmae-myrianthae.  相似文献   

3.
This study aimed to evaluate the effect of silicon (Si) rates on some components of sorghum resistance to anthracnose. Two 2×5 factorial experiments, consisting of two sorghum lines (BR005 and BR009, resistant and susceptible, respectively) and five Si application rates (0, 0.06, 0.12, 0.24 and 0.30 g Si kg−1 of soil) were arranged in a completely randomised design with three replications. Plants from both lines were inoculated with a conidial suspension of Colletotrichum sublineolum (1×106 conidia ml−1) 30 days after emergence. The incubation period (IP), latent period (LP60), area under relative infection efficiency progress curve (AURIEPC), area under anthracnose index progress curve (AUAIPC), final disease severity (FDS), percentage of pigmented leaf area (PLA), and percentage of necrotic leaf area (NLA) were evaluated. Silicon and calcium (Ca) content in leaf tissue of both lines was also determined. The content of Si in leaf tissue increased relative to the control by 55 and 58%, respectively, for the susceptible and resistant lines. There was no significant change in Ca content in leaf tissue for either of the lines; therefore the variations in Si accounted for differences in the level of disease response. The IP for the resistant line was not affected by Si application rates. The LP60 was not evaluated in the resistant line due to the absence of acervuli. For the resistant line, Si application rates had no significant effect on AUAIPC, FDS, percentage of PLA, and percentage of NLA. On the susceptible line, a quadratic regression model best described the effect of Si application rates on IP, LP60, AURIEPC, AUAIPC, FDS, percentage of PLA, and percentage of NLA. The correlation between Si content in leaf tissue of the susceptible line and the AURIEPC, AUAIPC, FDS, PLA, and NLA was negatively significant (r = −0.57, −0.37, −0.40, −0.67, and −0.77, respectively). There was no correlation between Si content and IP or LP60. The correlation between the percentage of PLA with the percentage of NLA was negatively significant (r = −0.74). In conclusion, the results from this study underscore the importance of Si in sorghum resistance to anthracnose particularly for the susceptible line.  相似文献   

4.
In order to develop a method to measure resistance to Alternaria brassicicola (cause of dark leaf spot disease) in Brassica rapa, the effects of inoculum concentration, leaf stage, leaf age and incubation temperature of inoculation on infection were studied under controlled conditions using several B. rapa genotypes. Three inoculation methods (cotyledon, detached leaf and seedling inoculation) were evaluated for this purpose. The detached leaf inoculation test was the most suitable for screening B. rapa genotypes because clear symptoms were observed on the leaves in less than 24 h, and there was a significant positive correlation between the results from the detached leaf inoculation test and the seedling inoculation test, an established method considered to yield reliable results. In addition, it was very easy to screen plants for resistance on a large scale and to maintain standard physical conditions using detached leaves. For successful infection, inoculum concentration should be adjusted to 5 × 104 conidia ml−1, and incubation temperature should be between 20 °C and 25 °C. The 3rd/4th true leaves from 30 day-old plants were optimal for inoculation. In a screening test using 52 cultivars of B. rapa, the detached leaf test effectively discriminated between various levels of partial resistance among cultivars. As a result, we identified two cultivars, viz Saori and Edononatsu, as highly resistant and five cultivars, viz Tokinashi Taisai, Yajima Kabu, Purara, Norin-F1-Bekana and Tateiwa Kabu, as having borderline resistance.  相似文献   

5.
Resistance of cultivars of Anthurium andraeanum to systemic infection by Xanthomonas axonopodis pv. dieffenbachiae , the causal organism of bacterial blight disease of anthurium, was investigated using a bioengineered bacterial strain containing p519ngfp plasmid. Successful infection establishment in anthurium was found to be cultivar and inoculum density dependent, but independent of plant age. Injection of cut petioles (stage-2 leaf) with 100  µ L inoculum (109 CFU mL−1) resulted in 100% infection establishment in susceptible cultivars on a repeatable basis, and differentiated between various levels of observed field resistance. Time to death (weeks) and proportion of dead plants best differentiated between levels of resistance and cultivars were placed in four groups based on these criteria. The susceptible group (32 cultivars) rapidly declined within 6–12 weeks of inoculation (WAI) and resulted in 100% plant death; the moderately resistant group (10 cultivars) declined within 12 WAI, but resulted in less than 100% plant death; the resistant category had less than 100% plant death with a slow decline taking over 20 weeks; and the highly resistant category (15 cultivars) showed 0% infection. The correlation coefficient between green fluorescent protein (GFP)-fluorescence and eventual death of plants was 0·90, indicating that the final death of individual plants can be reasonably well predicted based on GFP-fluorescence data at 5 WAI. Hence GFP data at 5 WAI can be used for early detection of latently infected plants and may assist screening for resistance in segregating populations of anthurium.  相似文献   

6.
1997~2000年间 ,鉴定了 332份我国新育成的水稻品种 (材料 )对稻瘟病、白叶枯病、细菌性条斑病、白背飞虱和褐飞虱的抗性 ,并分析其米质。筛选出中抗上述一种水稻病虫害的品种 (材料 )共计 397份·次 ,双抗和三抗的品种 (材料 )分别为 76、19个 ,四抗品种有K89-B5 ,五丰占 2号 ,中组 74 ,中组 75 ,中组 84和中鉴 96-3共 6个 ;4项主要优质米指标均达到了农业部部标准优质二级米以上有 33个。优质一级米的品种 (材料 )有巨丰占 ,CR99,92-34,94-308,辽 947,吉 98-2806和龙粳 8号 7个。改进或完善了水稻育种新品种 (材料 )的抗病虫性鉴定方法 ,制订了相应的评价标准和指标 ,还讨论了改良水稻品种的抗病虫性与提高稻米品质等问题。  相似文献   

7.
Streptomycin has been used for decades in Chile to control Clavibacter michiganensis subsp. michiganensis (Cmm), the causal agent of tomato bacterial canker. The aim of this work was to evaluate streptomycin resistance and to analyse the presence of resistance-related genes in Cmm strains from Chile. A collection of 25 Cmm strains isolated from different localities in central Chile between 1996 and 2015 was analysed. Minimum inhibitory concentration (MIC) of streptomycin was determined. A search of streptomycin resistance-related genes was carried out in Cmm genomes, and the presence of these genes was studied in all Chilean strains using PCR and sequencing techniques. MIC results showed that four of 25 strains were highly sensitive to streptomycin, with MIC values <2 μg mL−1. The remaining 21 strains possessed MIC of streptomycin ≥100 μg mL−1. The strB gene, encoding an aminoglycoside 6-phosphotransferase that inactivates streptomycin, was detected in all Chilean strains, including sensitive and resistant strains. In the 21 resistant strains, a mutation in codon 43 of the rpsL gene was determined, conferring high streptomycin resistance. Interestingly, the four streptomycin-sensitive Cmm strains did not possess this mutation. This study proposes that the continuous use of streptomycin leads to emergence of resistant Cmm strains, challenging researchers to look for novel alternatives to control this plant pathogenic bacterium.  相似文献   

8.
9.
Bacterial wilt incidence was reduced by 38.1% and 100% in silicon-treated plants of the moderately resistant tomato genotype King Kong 2 and the resistant genotype Hawaii 7998 grown in peat substrate. At 5 days post inoculation the bacterial population was significantly reduced in stems and roots of genotype Hawaii 7998, and in stems of King Kong 2 in silicon-treated plants compared to non-treated plants, indicating a silicon-induced resistance, since silicon accumulated in roots, but not in stems, while a tolerance effect was observed in the susceptible genotype L390. Characterization of possible molecular mechanisms involved in silicon-mediated resistance by immuno-histochemical analysis of stem cell walls indicated silicon-induced changes in the pectic polysaccharide structure. After infection homogalacturonan with non-blockwise degradation of methyl-esters was increased in vessel walls in non-silicon-treated plants, but not in silicon-treated plants, possibly indicating the action of pathogen pectinmethylesterase. Also the staining of vessel walls for arabinogalactan-protein in infected, non-silicon-treated plants was not observed in silicon-treated plants. In inoculated, silicon-treated plants, staining for arabinan side chains of rhamnogalacturonan I (RG I) was increased in some vessel walls, and fluorescence of antibodies for galactan side chains of RG I overall increased in the xylem parenchyma compared to non-silicon-amended plants. These observations suggest an induced basal resistance on cell wall level after silicon treatment, while the yellow or brown autofluorescence occurring in inoculated, non-silicon-treated plants disappeared.  相似文献   

10.
Reactions to strains of the bean halo-blight pathogen Pseudomonas syringae pv. phaseolicola (Pph) strain 1448A and the Arabidopsis and tomato pathogen P.s. pv. tomato (Pst) strain DC3000 were examined by transmission electron microscopy. Wild-type and hrpL mutant strains of Pph failed to multiply in the accession Columbia (Col)-5, but did not cause a hypersensitive reaction (HR). Symptomless non-host resistance to 1448A and the hrpL mutant was associated with the progressive alteration of the plant cell wall adjacent to bacteria, following the accumulation of membrane bound vesicles within the cytoplasm at reaction sites. Large papillae containing callose accumulated within challenged plant cells. Papillae also formed in the pmr41 mutant of Col-0 which lacks an inducible callose synthase but immunocytochemical labelling demonstrated that they contained very little β-1, 3 glucan. Some papillae formed in Col-5 in response to the virulent pathogen DC3000, but they dispersed during cell collapse and lesion formation. Transconjugants of Pph expressing the avirulence genes avrPpiA and avrPphB matching the RPM1 and RPS5 resistance genes, caused rapid and slow HR development, respectively. Although corpse morphology was observed our observations suggest that in Arabidopsis, plant cell death during the HR is programmed but represents a variant of necrosis rather than apoptosis. Cerium chloride staining revealed the accumulation of H2O2 at reaction sites. The strongest H2O2 response was found during the HR activated by avrPpiA but localised generation of peroxide was also found at sites of papilla deposition next to 1448A or the hrpL mutant. Accumulation of H2O2 during the HR, but not during wall alterations, was strongly suppressed by inhibition of NADPH oxidase. The differential effect of the inhibitor suggests an alternative source of H2O2 to modify the plant wall. Extension of peroxide-driven cross-linking reactions to bacterial cell walls may contribute to the restriction of bacterial multiplication. The lowest level of H2O2 occurred during the compatible reaction to DC3000. Characterisation of the cellular co-ordination of basal (non-host) resistance has revealed several potential targets for bacterial effector proteins.  相似文献   

11.
Controlling bacterial plant diseases remains a challenge, as direct chemical control is usually not possible. Obtaining new biocontrol methods, in particular efficient biomolecules able to boost defence reactions and limit infection or symptom development, is therefore of major importance. This study screened extracts from leaves of two Mediterranean plants rich in bioactive phenolic compounds, olive and carob, for their ability to reduce soft rot severity and to trigger phenylalanine ammonia‐lyase (PAL) activity in potato tuber slices. Extracts from olive leaves significantly reduced disease severity caused by Pectobacterium atrosepticum or Pectobacterium carotovorum, whereas carob leaf extracts significantly increased it. Olive extracts and its main phenolic components, oleuropein and hydroxytyrosol, also significantly increased PAL activity 7.5 h after application. None of the extracts or purified molecules reduced bacterial growth in vitro. Furthermore, the effect of these extracts varied according to potato cultivars. These data therefore open new ways for the biological control of soft rot bacteria, but stress the importance of understanding the causes of response difference in different potato varieties in order to obtain optimal efficacy.  相似文献   

12.
Fusarium culmorum (Fc) and F. graminearum (Fg) belong to the predominant causal agents of fusarium crown and root rot (FCR) in wheat. While many studies have been done to investigate crown rot, including stem base infection, root colonization and mycotoxin production associated with root rot is not well understood. In this study the impact of mycotoxins on the colonization of wheat roots and stem bases was analysed by using Fc and Fg isolates that varied in both quantity and types of trichothecenes they produce. Seedling inoculations in growth chambers with a high deoxynivalenol (DON)- and 3-acetyldeoxynivalenol (3ADON)-producing isolate led to more severe symptoms and 20-times greater colonization of the stem base, as measured by Fc DNA accumulation, than isolates that produced less DON/3ADON. In contrast to stem base colonization, in vitro inoculations of roots with a Tri5 deletion mutant deficient in Fg trichothecene production led to three-times higher colonization than the wildtype. Furthermore, an Fc isolate that produced low levels of zearalenone resulted in twice the level of colonization of a high DON/3ADON-producing isolate included in the study. When root inoculation with a low DON/3ADON-producing Fc isolate was supplemented with exogenous DON, DON production decreased by more than half per unit weight of Fc DNA, and root colonization doubled compared to the untreated control. Therefore, in contrast to its potential role as an aggressiveness factor in stem base infection, trichothecene production by Fc and Fg is detrimental to the early stages of wheat root colonization in FCR.  相似文献   

13.
 细菌通过IV型分泌系统(Type IV Secretion System, T4SS)的接合系统、效应物转运系统和释放/吸收系统3个子家族进行DNA、蛋白质及毒素的分泌和转运。十字花科黑腐病菌(Xanthomonas campestris pv. campestris, Xcc)是一种重要的植物病原菌,也是研究植物病原细菌与植物相互作用机理的模式细菌之一。本研究通过检测Xcc 8004野生型菌株和T4SS突变体在不同条件下的生长、诱导情况及对过敏反应的影响发现:T4SS不影响在培养基中的生长,与野生型菌株相比,T4SS突变体在非寄主辣椒ECW-10R上的过敏反应减弱;T4SS相关基因受基本培养基MMX诱导表达,且与Ni2+、H2O2、Phenol等抗逆相关。推测T4SS相关基因在该病原菌的接触、识别阶段起作用。  相似文献   

14.
BACKGROUND: A single nucleotide polymorphism in the mitochondrial cytochrome b gene confers resistance to strobilurin (QoI) fungicides in phytopathogenic fungi. Recent studies have revealed worrying levels of resistance to strobilurins in Podosphaera fusca (Fr.) U Braun & N Shishkoff comb. nov. [ = Sphaerothecafusca (Fr.) S Blumer], the main causal agent of cucurbit powdery mildew in Spain. In the present study the underlying resistance mechanism to QoI fungicides in the Spanish populations of P. fusca was investigated. RESULTS: Analysis of the Q(o) domains of cytochrome b in a collection of isolates revealed that none of the typical mutations conferring resistance to QoI, including the G143A and F129L substitutions, was present in the QoI-resistant isolates. Moreover, although different amino acid polymorphisms were observed in the two regions spanning the Q(o) site, none of them consistently distinguished QoI-resistant from QoI-sensitive strains. Exposure to salicylhydroxamic acid (SHAM), a specific inhibitor of alternative oxidase, in the presence of trifloxystrobin did not have any effect on QoI resistance, ruling out alternative respiration as the mechanism of resistance. Sensitivity tests to a battery of respiration inhibitors revealed high levels of cross-resistance to all Qo-inhibitors tested but not to Qi-inhibitors, these features resembling those of a target-site-based resistance. CONCLUSIONS: The results indicate that the mechanism responsible for QoI resistance in P. fusca is not linked to typical mutations in cytochrome b gene and that the absence of the G143A substitution cannot be explained by an intron following codon 143. These are important observations, especially in relation to the possible molecular diagnosis of resistance.  相似文献   

15.
Extensive herbicide usage has led to the evolution of resistant weed populations that cause substantial crop yield losses and increase production costs. The multiple herbicide‐resistant (MHR) Avena fatua populations utilised in this study are resistant to members of all selective herbicide families, across five modes of action, available for A. fatua control in US small grain production, and thus pose significant agronomic and economic threats. Resistance to acetolactate synthase and acetyl‐CoA carboxylase inhibitors is not conferred by known target site mutations, indicating that non‐target site resistance (NTSR) mechanisms are involved. Understanding the inheritance of NTS MHR is of upmost importance for continued agricultural productivity in the face of the rapid increase in resistant weed populations worldwide. As few studies have examined the inheritance of NTSR in autogamous weeds, we investigated the inheritance and genetic control of NTSR in the highly autogamous, allohexaploid species A. fatua. We found that NTSR in MHRA. fatua is controlled by three separate, closely‐linked nuclear genes for flucarbazone‐sodium, imazamethabenz‐methyl and pinoxaden. The single‐gene NTSR inheritance patterns reported here contrast with other examples in allogamous species and illustrate the diversity of evolutionary responses to strong selection.  相似文献   

16.
Vulpia bromoides is a grass species naturally tolerant to acetolactate synthase (ALS) and acetyl-coenzyme A carboxylase (ACCase) inhibiting herbicides. The mechanism of tolerance to ALS herbicides was determined as cytochrome P450-monooxygenase mediated metabolic detoxification. The ALS enzyme extract partially purified from V. bromoides shoot tissue was found to be as sensitive as that of herbicide susceptible Lolium rigidum to ALS-inhibiting sulfonylurea (SU), triazolopyrimidine (TP), and imidazolinone (IM) herbicides. Furthermore, phytotoxicity of the wheat-selective SU herbicide chlorsulfuron was significantly enhanced in vivo in the presence of the known P450 inhibitor malathion. In contract, the biochemical basis of tolerance to ACCase inhibiting herbicides was established as an insensitive ACCase. In vitro ACCase inhibition assays showed that, compared to a herbicide susceptible L. rigidum, the V. bromoides ACCase was moderately (4.5- to 9.5-fold) insensitive to the aryloxyphenoxypropionate (APP) herbicides diclofop, fluazifop, and haloxyfop and highly insensitive (20- to >71-fold) to the cyclohexanedione (CHD) herbicides sethoxydim and tralkoxydim. No differential absorption or de-esterification of fluazifop-P-butyl was observed between the two species at 48 h after herbicide application, and furthermore V. bromoides did not detoxify fluazifop acid as rapidly as susceptible L. rigidum. It is concluded that two co-existing resistance mechanisms, i.e., an enhanced metabolism of ALS herbicides and an insensitive target ACCase, endow natural tolerance to ALS and ACCase inhibiting herbicides in V. bromoides.  相似文献   

17.
18.
A genetic cross between a Triticum isolate (pathogenic on wheat) and a Setaria isolate (pathogenic on foxtail millet) of Magnaporthe oryzae yielded several F1 cultures that were virulent on both wheat and foxtail millet at the primary leaf stage. To estimate whether these cultures survive in nature, they were sprayed onto 1-, 2-, and 3-week-old wheat and foxtail millet. As the age of the inoculated plants increased, the lesion number and size were greatly reduced. The F1 cultures were almost nonpathogenic on both wheat and foxtail millet at the 3-week-old stage. Cytological analysis revealed that the low pathogenicity of the F1 cultures on older plants was primarily associated with a reduced ability to penetrate the cuticle. When placed on wounded leaf surfaces, the F1 cultures produced large lesions on 4-week-old wheat and foxtail millet. These results indicate that hybridization between species-specific pathotypes results in a reduction of aggressiveness. We therefore suggest that, even if such hybrids were produced in nature, they might not survive in the natural environment.  相似文献   

19.
20.
The same mutant allele of eukaryotic initiation factor 4E (eIF4E) that confers resistance to Pea seed-borne mosaic virus (sbm-1) and the white lupine strain of Bean yellow mosaic virus (wlv) also confers resistance to Clover yellow vein virus (ClYVV) in pea. The eIF4E genes from several pea lines were isolated and sequenced. Analysis of the eIF4E amino acid sequences from several resistant lines revealed that some lines, including PI 378159, have the same sequence as reported for sbm-1 and wlv. When eIF4E from a susceptible pea line was expressed from a ClYVV vector after mechanical inoculation of resistant PI 378159, the virus caused systemic infection, similar to its effects in susceptible line PI 250438. The resistance to ClYVV in line PI 378159 was characterized through a cross with PI 193835, which reportedly carries cyv-2. Mechanical inoculation of the F1 progeny with ClYVV resulted in no infection, indicating that the resistance gene in PI 378159 is identical to cyv-2 in PI 193835. Furthermore, particle bombardment of pea line PI 193835 with infectious cDNA of ClYVV (pClYVV/C3-S65T) resulted in the same resistance mode as that described for PI 378159. These results demonstrate that the resistance to ClYVV conferred by cyv-2 is mediated by eIF4E and that cyv-2 is identical to sbm-1 and wlv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号