首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用静态法,以文蛤(Meretrix meretrix)为受试生物,研究了不同盐度(16、18、20、22和24)和pH(6.7、7.7、8.7、9.7和10.7)对文蛤滤水率和摄食率的影响.结果显示,在16-24盐度范围内,文蛤滤水率和摄食率随盐度增加均呈先升后降的变化趋势,盐度为20组(对照组)文蛤的滤水率和摄食率均为最大值,分别为1.51 L/g·h、6.65 mgPOM/g·h,显著高于盐度为16、18、22、24实验组(P<0.05),推测文蛤最适生长盐度范围为20左右.pH在6.7-10.7范围内,文蛤滤水率和摄食率均随pH增加呈先升后降的变化趋势,pH=8.7(对照组)文蛤的滤水率和摄食率均为最大值,分别为1.04 L/g·h、11.91 mgPOM/g.h,显著高于6.7、9.7、10.7实验组(P<0.05),而与pH=7.7实验组差异并不显著(P>0.05),推测文蛤最适生长pH范围为7.7-8.7.研究结果可为文蛤池塘健康养殖提供参考.  相似文献   

2.
以文蛤(Meretrix meretrix)为受试生物,采用静态法研究了不同pH和盐度下文蛤耗氧率、排氨率、排磷率及氧氮比(O∶N)的变化规律。结果表明:pH为8.7试验组文蛤耗氧率、排氨率及排磷率显著高于6.7、7.7、9.7及10.7试验组(P0.05),pH为7.7和8.7试验组O∶N值显著高于6.7、9.7及10.7试验组(P0.05);pH在6.7~10.7范围内,文蛤耗氧率、排氨率、排磷率及O∶N均随pH的升高呈先升后降的变化趋势,pH为8.7时文蛤耗氧率、排氨率、排磷率以及O∶N均为最大值,依次为5.46 mg·(g·h)-1、0.17 mg·(g·h)-1、0.19 mg·(g·h)~(-1)、27.17。盐度为20试验组文蛤耗氧率、排氨率、排磷率及O∶N显著高于16、18、22及24试验组(P0.05);盐度在16~24范围内,文蛤耗氧率、排氨率、排磷率及O∶N均随盐度的增加呈先升后降的变化趋势,盐度为20时文蛤耗氧率、排氨率、排磷率及O∶N均为最大值,分别为5.66 mg·(g·h)~(-1)、0.20 mg·(g·h)~(-1)、0.30 mg·(g·h)~(-1)和27.40。本实验研究范围内,文蛤生长的最适pH在8.7左右,最适盐度在20左右,为文蛤的人工养殖提供了重要的数据支持。  相似文献   

3.
为探讨池塘养殖文蛤的适宜盐度和pH范围,以β-actin为内参基因,采用实时荧光定量聚合酶链式反应技术,检测不同盐度(16、18、20、22、24)和pH(6.7、7.7、8.7、9.7、10.7)梯度下文蛤肌肉、鳃、外套膜中HSP70基因mRNA的表达水平。结果显示,盐度16、18、22、24处理组肌肉中HSP70基因的表达量显著高于盐度20的对照组(P0.05);除盐度18组鳃和盐度24组外套膜HSP70基因的表达量与对照组差异不显著外(P0.05),16、18、22、24盐度组鳃和外套膜中HSP70基因的表达量均显著高于对照组(P0.05)。pH 6.7、7.7、9.7、10.7处理组肌肉、鳃、外套膜中HSP70基因的表达量与pH为8.7的对照组差异显著(P0.05)。试验结果表明,超出一定盐度、pH范围,可显著诱导文蛤肌肉、鳃、外套膜中HSP70基因的过量表达,研究结果可为池塘文蛤的健康养殖提供参考。  相似文献   

4.
采用实验生态学方法研究了温度、盐度、pH和饵料密度对皱肋文蛤清滤率的影响,旨在为该贝养殖容量、摄食行为和能量学研究提供基础数据,以及为该贝在我国南方海域的健康养殖和推广提供依据。实验结果表明,皱肋文蛤清滤率随温度(13~33℃)、盐度(13~33)、pH(7~9)和饵料密度(2.5×104~10×104cell/ml)的变化而呈现峰值变化,各种环境因子对3种规格皱肋文蛤清滤率均具有极显著性影响(P<0.01)。当温度、盐度、pH和饵料密度分别为28℃、23、8和10×104cell/ml时,大、中、小规格皱肋文蛤清滤率均达到最大值,分别为1.06、1.78和2.42 L/g.h,0.35、0.65和1.05 L/g.h,1.26、1.67和2.02 L/g.h,1.29、2.07和2.29 L/g.h,表明温度为28℃、盐度为23、pH为8、饵料密度为10×104cell/ml是皱肋文蛤最适宜的摄食环境条件。大、中、小规格皱肋文蛤清滤率对温度、盐度、pH和饵料密度敏感性均表现为大规格<中规格<小规格,揭示皱肋文蛤在适宜的环境条件下,中、小规格个体摄食活动频繁,生长旺盛。  相似文献   

5.
以辽宁盘锦蛤蜊岗四角蛤蜊与光滑河蓝蛤为研究对象,采用室内静水系统对其滤水率和摄食率进行测定。试验结果表明,不同盐度(16、18、20、22、24、26、28、30、32、34)梯度下,两种贝类的滤水率和摄食率均随盐度的升高呈先升后降趋势。盐度32时,四角蛤蜊滤水率最大,为(0.265±0.032)L/(个·h),盐度(x)与滤水率(y)关系为y=-0.0041x2+0.0681x-0.0181(r2=0.9893);盐度30时,摄食率最大,为(3.12±0.89)mg/(个·h),盐度(x)与摄食率(y)关系为y=-0.0481x2+0.7965x-0.1862(r2=0.9975)。盐度30时,光滑河蓝蛤的滤水率和摄食率均最大,分别为(0.112±0.029)L/(个·h)和(1.91±0.49)mg/(个·h),盐度与滤水率关系为y=-0.0016x2+0.0262x-0.0010(r2=0.9940),盐度与摄食率关系为y=-0.0326x2+0.5038x-0.0247(r2=0.9816)。试验结果表明,盐度对两种贝类的滤水率和摄食率有显著影响。  相似文献   

6.
利用静水清滤法研究了盐度与温度对大珠母贝(Pinctada maxima)和合浦珠母贝(Pinctada fucata)稚贝滤水率及摄食率的影响。试验分为4组,大1组:大珠母贝壳长(1.02±0.07)cm,大2组:大珠母贝壳长(2.94±0.17)cm;合1组:合浦珠母贝壳长(1.15±0.21)cm、合2组:合浦珠母贝壳长(3.08±0.36)cm。结果表明,随着盐度或温度的增加,4个组的滤水率和摄食率均先升高,到达最大值后又降低;其中,大1组在盐度27有最大滤水率(0.274±0.079)L/h,合1组在盐度30有最大滤水率(0.325±0.011)L/h,二者无显著性差异(P0.05),大2组与合2组均在盐度33时有最大滤水率,分别为(0.660±0.027)L/h和(0.329±0.021)L/h,二者有显著性差异(P0.05)。大珠母贝稚贝在盐度30时摄食率最大,合浦珠母贝在盐度33时摄食率最大,二者有显著性差异(P0.05)。2种稚贝在26℃时,滤水率和摄食率达到最大值,二者的最大滤水率和最大摄食率之间均有显著性差异(P0.05);随着贝体生长,大珠母贝的滤水率和摄食率显著高于合浦珠母贝,因此饵料需求量也更大;饵料不足可能是大珠母贝稚贝死亡的重要因素。  相似文献   

7.
利用静水清滤法研究了盐度和温度对大珠母贝(Pinctada maxima)与合浦珠母贝(Pinctada fucata)稚贝滤水率和摄食率的影响。试验分为4组,大1组:大珠母贝壳长(1.02±0.07)cm,大2组:大珠母贝壳长(2.94±0.17)cm;合1组:合浦珠母贝壳长(1.15±0.21)cm、合2组:合浦珠母贝壳长(3.08±0.36)cm。结果表明,随着盐度或温度的增加,4个组的滤水率和摄食率均先升高,到达最大值后又降低;其中,大1组在盐度27有最大滤水率(0.274±0.079) L/h,合1组在盐度30有最大滤水率(0.325±0.011) L/h,二者无显著性差异(P>0.05),大2组与合2组均在盐度33时有最大滤水率,分别为(0.660±0.027)L/h,(0.329±0.021)L/h,二者有显著性差异(P<0.05)。大珠母贝稚贝在盐度30时摄食率最大,合浦珠母贝在盐度33时摄食率最大,二者有显著性差异(P<0.05)。两种稚贝在26℃时,滤水率和摄食率达到最大值,二者的最大滤水率之间或最大摄食率之间均有显著性差异(P<0.05);随着贝体生长,大珠母贝的滤水率和摄食率显著高于合浦珠母贝,因此饵料需求量也更大;饵料不足可能是大珠母贝稚贝死亡的重要因素。  相似文献   

8.
为比较文蛤红壳色选育系与江苏野生群体在不同条件下滤水率的差异并找出文蛤最佳滤水率条件,采用了试验生态学方法和响应面法对文蛤红壳色选育系幼贝进行滤水率的研究。试验结果显示,在一定范围内,文蛤幼贝滤水率随盐度、温度和藻类密度的增加而增大,超过一定范围,幼贝滤水率随盐度、温度和藻类密度的增加而减小;在同等条件下,文蛤红壳色选育系幼贝与野生群体滤水率无显著差异,但文蛤红壳色选育系生长速率显著高于野生群体;通过响应面法优化,文蛤红壳色选育系幼贝的最佳滤水率条件为:盐度21.82、温度27.40℃、藻类密度9.96×10^4个/mL,此条件下滤水率的预测值为1.62 mL/(个·min)。  相似文献   

9.
为探明魁蚶(Scapharca broughtonii)的摄食规律,采用室内生态学试验方法,研究了水温(20、24、28、32 ℃)、盐度(16、20、24、28、32)和体质量对魁蚶滤水率的影响。结果表明,在水温20~32 ℃范围内,魁蚶滤水率随温度的升高呈先升后降的趋势,24 ℃时滤水率达到最大,显著高于其他温度(P<0.05),温度(x)与滤水率(y)间的关系可拟合为:y=0.054 8+0.045 0x-0.009 9x2,R2=0.734 3;在盐度16~32范围内,魁蚶滤水率随盐度的升高呈先升后降的变化趋势,盐度28时滤水率达到最大,为(0.341 8±0.026 6)L/(g·h),与盐度24时,滤水率差异不显著(P>0.05),但显著高于其他盐度(P<0.05),盐度(x)与滤水率(y)的关系可拟合为:y=0.021 0+0.171 2x-0.029 7x2,R2=0.955 1;魁蚶的滤水率与软体干质量呈负幂函数关系,滤水率随体质量的增加而增大,单位干组织质量的滤水率随体质量的增加而减小。  相似文献   

10.
2011年11~12月,以扁藻(Platymonas subcordiformis)为饵料,在实验室条件下采用静水法测定了不同饵料密度、体重和盐度下黄边糙鸟蛤(Trachycardium flavum)的滤水率。结果表明:饵料密度、体重以及盐度对黄边糙鸟蛤滤水率均存在显著性影响。在实验饵料密度范围内,当饵料密度小于10×104cell·mL-1时,黄边糙鸟蛤的滤水率随着饵料浓度的增加而增大,饵料浓度与滤水率之间呈现正相关的幂函数关系;体重对滤水率的影响呈幂函数关系,个体滤水率随着体重的增加而增大;在一定盐度范围内,滤水率随着盐度的升高而增大,在盐度为32.7时滤水率达到最大值0.249 L·(g·h)-1,随后随着盐度的升高滤水率呈下降趋势。  相似文献   

11.
环境因子对缢蛏滤水率的影响   总被引:34,自引:2,他引:34  
潘鲁青 《水产学报》2002,26(3):226-230
采用实验生态学方法研究环境因子对缢蛏(Sinonovacula constricta)滤水率的影响规律。结果表明:温度、盐度和pH对缢蛏的滤水率有极显著影响(F>F0.01)。当温度、pH值分别在15-30℃和6-9时,缢蛏的滤水率呈一个峰值变化,当温度为20℃、pH值为8时,其滤水率分别达到最大值;当盐度在6-30时,随着盐度的增大缢蛏的滤水率亦逐渐增高。  相似文献   

12.
温度和盐度对企鹅珍珠贝清滤率、滤食率、吸收率的影响   总被引:3,自引:1,他引:2  
采用实验生态学方法研究了温度和盐度对企鹅珍珠贝清滤率、滤食率、吸收率的影响,结果表明,(1) 在盐度28.3~29.1条件下,温度对企鹅珍珠贝的清滤率、滤食率和吸收率产生极显著的影响(P<0.01);在实验温度(14~32 ℃)范围内,随温度的升高,企鹅珍珠贝的清滤率、滤食率和吸收率增大,29 ℃时均达峰值,分别为0.87 L/h、4.17 mg POM/h和84.01%;温度为32 ℃时,企鹅珍珠贝的清滤率、滤食率和吸收率较29 ℃时均下降,但3个生理指标仍处于较高水平,表明企鹅珍珠贝属典型热带和亚热带品种,表现出对高温的较强适应性;23~32 ℃为企鹅珍珠贝较适宜摄食温度,29 ℃左右为该贝的最佳摄食温度。(2) 在温度27.4~27.8 ℃条件下,盐度对企鹅珍珠贝的清滤率、滤食率和吸收率影响极显著(P<0.01);在实验盐度(19~37)范围内,随盐度的升高,企鹅珍珠贝的清滤率、滤食率和吸收率增大,盐度为31时均达最大值,分别为0.36 L/h、1.87 mg POM/h和76.95%;盐度为34和37时均下降;盐度为34时,3个摄食生理指标仍呈现较高水平,表明企鹅珍珠贝属典型的狭盐性贝类,表现出对高盐的较强适应性;企鹅珍珠贝较适宜的摄食盐度范围为25~34,最佳摄食盐度为31左右。  相似文献   

13.
采用三因素三水平中心组合试验设计方案,研究光照度、盐度、pH及三者交互作用对大竹蛏幼贝滤水率的影响,并进行响应面分析,探寻大竹蛏幼贝最适生长条件组合,构造大竹蛏幼贝滤水率模型。试验期为30d,试验光照梯度为2000lx、1000lx、0,盐度梯度为30、25、20,pH梯度为9.00、8.00、7.00。结果显示,光照度、盐度及pH三者对大竹蛏幼贝滤水率有显著交互作用(P0.05)。通过Design-Expert 8.0软件对数据进行二次多元回归,拟合得到大竹蛏幼贝滤水率y对编码自变量A(光照度)、B(盐度)和C(pH)的二次多元回归方程:y=1.62+0.084A+0.04B-0.14C-0.38A2-0.65B2-0.68C2(r2=0.9821),软件模拟最适大竹蛏幼贝生长的条件组合为光照度1109.17lx,盐度25.12,pH7.89。  相似文献   

14.
研究环棱螺与河蚬的摄食率、滤水率及对小球藻的清除率,为其在水体水质调控和生态修复方面的应用提供理论基础。环棱螺和河蚬均采集于湖南省益阳市大通湖,小球藻购于武汉水生生物研究所淡水藻种库,试验在18个2L的烧杯内进行,试验期间温度(20.0±1.0)℃,pH 6.5~7.0,试验时间7.5 h。结果显示:环棱螺和河蚬摄食率的峰值分别为10.15、4.40μg/(kg·min),滤水率峰值分别为744.08、647.57 mL/(kg·min),对小球藻的清除率峰值分别为91.31%、 65.38%;除0.5、 2.5 h外,环棱螺摄食率、滤水率及对小球藻的清除率均显著高于河蚬(P0.05)。环棱螺和河蚬均具有较强的小球藻清除能力,但环棱螺对小球藻的清除能力要高于河蚬,作为贝类控藻方面的生态修复工具种具有较大的潜力。  相似文献   

15.
凸壳肌蛤(Arcuatula senhousei)是虾蟹等养殖品种的优质饵料生物,也是极具养殖潜力的贝类品种。为了深入了解其生理代谢,利用室内静水法对不同温度(7℃、15℃、23℃、31℃)凸壳肌蛤的摄食率、排粪率、耗氧率、排氨率等生理指标进行了研究,并建立了能量收支方程。结果显示,23℃时的滤水率、摄食率、耗氧率、同化效率均显著高于其他温度梯度(P0.05),分别达到了1.09 L/(g·h)、24.46 mg/(g·h)、3.50 mg/(g·h)和62.93%;7℃时的滤水率、摄食率、耗氧率、排粪率、排氨率均低于其他温度梯度,分别为0.24 L/(g·h)、6.04 mg/(g·h)、1.02 mg/(g·h)、4.20 mg/(g·h)、2.33μmol/(g·h)。且滤水率、摄食率、耗氧率、同化效率随着温度升高都呈先升高后下降的趋势,在23℃时均达到最高值。不同温度下的能量收支方程为:100C=58.12F+46.74R+2.54U–7.40P(7℃);100C=44.28F+29.14R+1.85U+24.73P(15℃);100C=17.18F+41.81R+6.64U+34.37P(23℃);100C=53.35F+28.26R+14.66U+3.73P(31℃)。能量收支研究表明,生长能(P)、呼吸能(R)、排泄能(U)和粪便能(F)占摄食能(C)的比例分别为–7.4%~34.37%、28.26%~46.74%、1.85%~14.66%、17.18%~58.12%,23℃时生长能占摄食能的比例显著高于其他温度梯度(P0.05),达到了34.37%;7℃时最低,为–7.40%。研究结果为深入了解凸壳肌蛤的生理能量学提供了数据支撑。  相似文献   

16.
盐度和饵料密度对栉孔扇贝稚贝滤水率的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
采用静水法研究了恒定温度(24±0.5℃)、饵料密度(3.0×104cell/ml)、不同盐度(20、25、30和35)和恒定温度(24℃±0.5℃)、盐度30、不同饵料密度梯度(3.0×104、4.5×104和 6.0×104cell/ml)对栉孔扇贝稚贝(壳长1.177~2.017 mm)滤水率的影响.结果表明,栉孔扇贝稚贝的滤水率(FRS)开始随着盐度的升高而升高,在25~30之间存在最大值,然后随盐度的升高而下降,与盐度(S)间的相关关系为FRS =-30.893S2+1 691.5S-19 610 (r =0.847,以整体干重计算)或FRS=-0.022S2+1.223 6S-14.522 (r = 0.928,以个体数量计), 通过公式推算在盐度27.8时FRS达到最大值,为3.54L/g*dw*h(2.49×10-3 L/ h*ind);投饵密度(Q)对栉孔扇贝稚贝的滤水率(FRQ)有显著影响(P< 0.05),二者之间的相关关系为FRQ=-0.069 3Q2+0.648 4Q-1.083 5(r = 0.722),其变化趋势亦呈现先升高后下降的抛物线趋势,推算金藻密度为4.7×104cell/ml时滤水率最大,为0.43×10-3 L/ h*ind.  相似文献   

17.
为了从生理学角度探讨长牡蛎壳金选育系的快速生长机制,本研究以两种规格长牡蛎(Crassostrea gigas)第4代壳金选育系(简称金1和金2)和两种普通养殖群体(简称对照1和对照2)为材料,比较了不同温度(16℃、20℃、24℃、28℃、32℃)和盐度(15、20、25、30、35)条件下各实验组的滤水率(FR)和耗氧率(OCR)。结果显示:(1)摄食实验中,4个组长牡蛎的滤水率均随温度或盐度增加先上升后下降,在温度28℃时出现最大值;对照1的滤水率在盐度25时达到最大值,其他3组滤水率在盐度30时达到最大值;方差分析结果显示,温度、群体,盐度、群体对长牡蛎的滤水率均有显著性影响,长牡蛎壳金选育系的滤水率均显著大于普通养殖群体(P0.05)。(2)呼吸实验中,较大规格长牡蛎壳金选育系的耗氧率受温度或盐度变化的影响更小。方差分析结果显示,温度、群体,盐度、群体均对长牡蛎耗氧率有显著性影响。实验温度范围内,金1的耗氧率显著小于对照1,但金2的耗氧率显著大于对照2(P0.05)。实验盐度范围内,壳金选育系的耗氧率均显著大于普通群体(P0.05)。(3)同一壳色群体中,个体越大,单位软体部干重滤水率和耗氧率越低。研究表明,较大规格长牡蛎壳金选育系F4更能适应外部环境的变化,该选育系的快速生长可能是由其较高滤食行为导致的。  相似文献   

18.
观察研究了10个盐度梯度(7、12、17、22、27、32、37、42、47和52)对条纹锯(Centropristis striata)仔鱼的活力、开口和摄食情况的影响,记录分析其在不同盐度条件下不投饵存活系数、开口率、摄食率及摄食强度等指标。结果显示,盐度对条纹锯仔鱼的活力、摄食及存活有明显影响,其存活和摄食的适宜盐度范围为12–37,最适盐度范围为27–32。盐度低于12时,仔鱼存活率、开口率和摄食强度随盐度的降低而降低,盐度高于37时,仔鱼存活率、开口率及摄食强度则随盐度的升高而降低。不同盐度条件下,条纹锯仔鱼SAI值的波动范围为0.034–6.401,盐度为12–37的实验组与7、42、47、52实验组的SAI值存在显著性差异(P0.05),盐度为32时,仔鱼的SAI值最大,为6.041,SAI值与盐度之间符合三次曲线函数关系,其表达式为y=–5.894+1.155x–0.034x~2+0.000x~3,R~2=0.895,其中,y代表SAI,x代表盐度。盐度为7、42、47和52时,仔鱼的存活率均低于50%,盐度为52、47时,仔鱼在第3、4天存活率分别降为0。盐度为22、27、32时,培育至第5天,仔鱼的存活率均在80%以上。盐度在17–37范围内,仔鱼开口率为60%–85%,且仔鱼均能较好摄食,盐度为32时,仔鱼开口率达到最大值,为85%,仔鱼摄食亦达到最佳状态,摄食率为85%,8日龄仔鱼摄食强度为5.45个轮虫/尾。  相似文献   

19.
在实验室条件下测定了盐度对柄海鞘滤水率的影响。柄海鞘滤水率随盐度的升高有缓慢增加趋势,当盐度达到 31-35时,滤水率达到最大值,随后随盐度的增加开始下降。在各盐度下柄海鞘的平均滤水率与体重之间的回归方程经F 检验盐度与体重对柄海鞘滤水率的影响均达极显著水平。  相似文献   

20.
采用封闭流水式实验方法,研究了不同温度(12、16、20、24、28、32℃)、盐度(5、10、15、20、25、30)和pH(7.2、7.7、8.2、8.7、9.2、9.7)对体质量(0.21±0.03)g的鲻(Mugil cephalus)幼鱼耗氧率和排氨率的影响.结果表明,温度(X)对鲻幼鱼耗氧率(Yo)和排氨率(YN)的影响显著,其两两间的相关关系可分别用一元二次方程Yo=-0.0256x2+0.2191X-0.1054(P<0.05)和YN=-0.0054X2+0.044 1X-0.0082(P<0.01)表示.随着温度的升高,鲻的耗氧率和排氨率呈现相同的变化趋势,均为先升高后降低,在24℃时,耗氧率和排氨率都达到最大值.经单因素方差分析得出盐度对鲻幼鱼耗氧率的影响极显著(P<0.01),当盐度在5~30时,随着盐度的升高,耗氧率先下降再升高,然后再下降;排氨率则先升高后降低.经方差检验,盐度对鲻幼鱼排氨率的影响差异极显著,两者之间的相关关系式为YN=-0.0013X2+0.0027X+0.047(P<0.01).pH对鲻幼鱼耗氧率的影响差异极显著,随着pH的升高,耗氧率呈先升高后下降的趋势,两者之间的关系可用一元二次方程Yo=-0.02583X2+0.198X+0.0775(P<0.01)表示;pH对鲻排氨率的影响差异极显著,两者之间的相关关系式为YN=-0.0032X2+0.0217X+0.003(P<0.01).温度和pH对鲻幼鱼窒息点的影响极显著(P<0.0),盐度对鲻幼鱼窒息点的影响显著(P<0.05),但对鲻的窒息时间没有显著影响(P>0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号