首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
基于小波和径向基函数神经网络的滚动轴承故障模式识别   总被引:6,自引:2,他引:6  
利用振动信号对滚动轴承的状态监测和故障诊断是工程中面临的难题之一,传统的基于平稳信号假设的方法不适于故障轴承的非平稳信号,有效提取故障轴承的故障特征和将故障特征准确分类是解决问题的两个关键。小波分析具有良好的时-频局部化特征,因而非常适于对瞬态或时变信号进行分类, 而人工神经网络可完成非线性系统辨识和模式分类。利用上述原理根据滚动轴承振动信号的频域变化特征,首先采用小波包分析对其建立频域能量特征向量,然后利用径向基函数神经网络完成滚动轴承故障模式的识别。试验结果表明,系统不仅能够检测到轴承故障的存在,而且能够比较准确地识别轴承的内外环故障模式,可以满足工程中的需要。  相似文献   

2.
针对遗传算法的不足 ,利用改进的遗传算法 ,结合性能优于 BP网络的径向基函数神经网络 ,并进行网络优化 ,建立了黄河流域需水预测模型 ,拟合预测结果表明 ,该模型能有效提高预测精度。  相似文献   

3.
当前我国地下水污染情况已经非常严重。与地表水资源相比,地下水由于其本身的隐蔽性以及污染处理滞后性等特征,其治理恢复难度更大。通常情况下,在对区域地下水资源污染情况进行治理之前,技术人员必须事先对地下水污染源进行科学识别,以此采用一种合理的方式进行水资源质量分析,最终制定科学的污染修复治理方案。正是在此背景下,通过采用径向基函数的替代模型,对我国新疆某区域水质分析中地下水溶质运移模型进行替代分析。  相似文献   

4.
基于小波分析和BP神经网络的触电信号检测模型   总被引:2,自引:6,他引:2  
针对从农村低压电网总泄漏电流中检测和判断触电电流信号的难题,该文提出一种基于小波变换和BP神经网络的触电信号检测方法。首先用触电物理实验平台对动物触电信号进行实测,选择合适的小波基和分解尺度对触电实验中总泄漏电流及触电电流进行小波多分辨分析,实现原始信号的预处理;再将预处理后的波形作为样本进行神经网络学习和训练,建立从总泄漏电流波形中提取触电电流波形的神经网络耦合模型,并用此模型对未训练的样本进行触电信号的检测,检测值与实际值的平均相对误差为3.93%,说明该方法能够从总泄漏电流中检测出触电电流信号,对于  相似文献   

5.
近年来提出的替代模型方法是一种连接数值模拟模型与优化模型的有效途径,替代模型质量的好坏取决于采样方法和替代模型种类。以金泉工业园区地下水水源地为研究区,基于拉丁超立方抽样方法,结合研究区地下水数值模拟模型,获取输入(抽水量)输出(水位降深)数据集,运用人工神经网络方法,建立径向基函数神经网络模型,作为地下水数值模拟模型的近似替代模型。经验证,径向基函数神经网络模型输出得到的水位降深均值与模拟模型计算结果的拟合平均相对误差为0.038;水位降深剩余标准差的拟合平均相对误差为0.042。拟合平均相对误差较小,表明径向基函数神经网络模型能够有效地替代地下水数值模拟模型,为日后替代模型的深入研究提供了科学依据。  相似文献   

6.
针对农村低压电网中广泛应用的剩余电流保护装置,只能检测到剩余电流有效值的大小作为唯一动作判据,不能自动识别剩余电流与触电故障类型之间所具有的非线性映射规律的难题,提出了一种基于小波包变换和量子神经网络的触电故障类型识别模型。首先应用小波包变换明确了生物体触电故障时,剩余电流中312.475 Hz以下低频带的能量谱波动明显,其中39.062 5~78.125 Hz和119.2~156.25 Hz两频带的波动幅度达9.05和9.00,提取了剩余电流的小波包能量谱8维度特征向量,同时应用特征频带能量占有比之差的平均变化率,实现了生物体发生触电故障的准确检测。然后以小波包能量特征向量为有效信息源,利用量子计算的态叠加思想和神经网络计算的自适应性结合,建立了一种量子神经网络作为触电故障类型识别模型,该网络采用多个量子能级的量子神经元,在学习1 437次时误差精度达到0.000 998 92,快速高效地实现了触电故障类型的识别,其仿真试验准确率达100%。该研究对于研发新一代基于生物体触电电流分量动作的自适应型剩余电流保护装置具有重要的参考价值。  相似文献   

7.
基于局部均值分解的触电故障信号瞬时参数提取   总被引:2,自引:3,他引:2  
针对如何快速、准确地提取生物体触电故障暂态信号中的电力参数问题,提出了一种基于局部均值分解(local mean decomposition, LMD)的生物体触电时总泄漏电流信号瞬时参数提取方法,该方法首先利用局部均值分解将生物体触电时的总泄漏电流信号分解为一组乘积函数分量之和,每个乘积函数(product function, PF)分量可以表示为一个调幅信号和一个调频信号的乘积,然后由调幅信号和调频信号分别计算得到信号的瞬时幅值和瞬时频率。与采用希尔伯特黄变换方法相比,LMD具有瞬时频率曲线波动小和瞬时幅值函数端部失真小等优点。仿真信号分析结果表明:对测试信号进行LMD和经验模态分解(empirical mode decomposition, EMD)分解分别得到3个PF分量和5个IMF(intrinsic mode function)分量,分解前后信号的能量变化值分别为0.2851、0.5633,且LMD比EMD所需分解时间短0.0743s,与Hilbert变换相比,该文方法计算的瞬时幅值和瞬时频率更为平滑,在一定程度上避免了Hilbert 变换计算过程中的负频率和端点效应现象。试验信号分析结果表明:对消噪后的总泄漏电流信号进行LMD和EMD分解,分别得到5和6个分量,分解前后信号的能量变化值各为0.5574、0.8896,所用分解时间分别为0.0835、0.2479 s;在求取瞬时频率方面,LMD方法求取的主导分量瞬时频率可判定生物体触电时刻,而经Hilbert变换求取的瞬时频率不仅无法判定生物体触电时刻,还出现了负的频率值,无法解释其物理意义;在求取瞬时幅值方面,该文方法与Hilbert变换求取的触电前总泄漏电流信号的瞬时幅值的平均值分别为11.3240、12.3728 mA,与原生物体无触电时总泄漏电流的幅值11.3538 mA的绝对误差分别为0.0298、1.0190 mA,另外,2种方法求取的生物体触电后总泄漏电流信号的瞬时幅值与原生物体触电后总泄漏电流的幅值的绝对误差分别为0.4340、0.6643 mA。因此,仿真信号和试验信号分析结果均证明所提方法是有效和可行的。  相似文献   

8.
基于径向基神经网络与粒子群算法的双叶片泵多目标优化   总被引:1,自引:4,他引:1  
针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解。选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较。经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点。该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高。  相似文献   

9.
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reffectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reffectance (R) and its three different transformations, the first derivative reffectance (D1), the second derivative reffectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and GLCD. The relationships between different transformations of reffectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.  相似文献   

10.
基于参数优化的最小二乘支持向量机触电电流检测方法   总被引:4,自引:5,他引:4  
针对如何从低压电网总泄漏电流中检测出生物体触电电流信号的难题,提出了一种基于网格搜索和交叉验证的最小二乘支持向量机的触电电流信号检测方法。首先在剩余电流动作保护装置触电物理试验系统平台上通过故障录波器获得生物体在3个典型时刻(电源电压最大时刻、电源电压过零时刻及电源电压任意时刻)发生触电过程的总泄漏电流和触电电流波形,并截取触电前1个周期和触电后3个周期共800个采样点的信号数据作为触电试验样本数据;然后将触电试验样本数据进行滤波预处理,预处理后的多个样本采样点的总泄漏电流组合成特征向量输入最小二乘支持向量机(least square-support vector machine,LS-SVM),相应样本采样点的触电电流作为其输出,并通过网格搜索与交叉验证相结合的方法来优化最小二乘支持向量机参数,利用输出最优参数组合对触电电流与总泄漏电流的关系进行训练,从而建立了触电电流的检测模型;最后利用该方法对10组测试样本数据进行了检测,检测结果为:当训练样本数据为20组时,检测均方误差为14.0040,当训练样本数据为40组时,检测均方误差为11.7469,当训练试验数据为65组时,检测均方误差为11.1849。与径向基(radial basis function,RBF)神经网络方法相比,最小二乘支持向量机方法比径向基神经网络方法检测均方误差分别低3.7272、1.9132、0.1556,从而可较准确地从总泄漏电流中检测出生物体触电电流信号,为开发新一代基于生物体触电电流分量而动作的自适应型剩余电流保护装置提供理论依据。  相似文献   

11.
该文探讨RBF映射理论在遥感影像分类中的具体算法和实现过程,给出了基于自适应聚类间距的快速聚类算法(AGDFC)的RBF网络训练算法和树型RBF网络构造算法。然后以实际的遥感土地覆盖分类为例,通过与最大似然分类算法(MLC)相比较,对分类过程和结果进行了综合分析,实验结果表明树型RBF网络方法在学习速度、网络结构、分类精度等方面具有一定的优势。  相似文献   

12.
基于PCA-RBF神经网络的烟田土壤水分预测   总被引:6,自引:3,他引:6  
为建立烟田土壤水分预测模型以利于烟区种植的规划和管理,该文提出了基于主元分析(PCA)与径向基函数(RBF)神经网络模型的烟田土壤水分预测方法。首先,利用PCA消除原始输入层数据的相关性,以解决神经网络建模时输入变量过多、网络规模过大导致效率下降的问题;然后,以主元模型结果为输入建立土壤水分RBF神经网络预测模型。实例研究表明,烟田土壤水分PCA-RBF神经网络预测模型具有较好的预测效果,平均预测精度达到96.02%,与全要素误差反向传播(BP)神经网络和RBF神经网络相比,平均预测精度分别提高5.20%和6.06%,完全符合实际烟区种植规划的需求,为研究其他类型的土壤水分预测提供了参考。  相似文献   

13.
基于卷积神经网络的奶牛个体身份识别方法   总被引:5,自引:14,他引:5  
视频分析技术已越来越多地应用于检测奶牛行为以给出养殖管理决策,基于图像处理的奶牛个体身份识别方法能够进一步提高奶牛行为视频分析的自动化程度。为实现基于图像处理的无接触、高精确度、适用性强的奶牛养殖场环境下的奶牛个体有效识别,提出用视频分析方法提取奶牛躯干图像,用卷积神经网络准确识别奶牛个体的方法。该方法采集奶牛直线行走时的侧视视频,用帧间差值法计算奶牛粗略轮廓,并对其二值图像进行分段跨度分析,定位奶牛躯干区域,通过二值图像比对跟踪奶牛躯干目标,得到每帧图像中奶牛躯干区域图像。通过理论分析和试验验证,确定了卷积神经网络的结构和参数,并将躯干图像灰度化后经插值运算和归一化变换为48×48大小的矩阵,作为网络的输入进行个体识别。对30头奶牛共采集360段视频,随机选取训练数据60 000帧和测试数据21 730帧。结果表明,在训练次数为10次时,代价函数收敛至0.0060,视频段样本的识别率为93.33%,单帧图像样本的识别率为90.55%。该方法可实现养殖场中奶牛个体无接触精确识别,具有适用性强、成本低的特点。  相似文献   

14.
为了检测触电时刻剩余电流中生物体触电支路电流信号的难题,应用Hilbert-Huang变换方法,确定了生物触电时剩余电流的固有模态函数中相关系数最大的IMF分量的局部幅值达34.02 m A,且与原信号相关性系数达到0.99,同时剩余电流与触电电流暂态过程频谱特性具有相似变化规律。以此为基础,应用生物电流信号高频IMF分量幅值的突变特征,作为触电故障时刻确定判据,建立生物触电故障时刻判定方法,实际数据的仿真处理正确率为94.17%;筛选剩余电流分解的相关性较高的有限个数的低频固有模态IMF分量,应用逐步多元线性回归方法,提出基于剩余电流固有模态分量的生物触电支路电流幅值检测方法,仿真试验结果的平均相对误差值5.46%,具有良好的适应性和实用性,为研发基于生物体触电电流而动作的剩余电流保护装置提供参考。  相似文献   

15.
针对未来低压电网剩余电流保护技术中,生物触电故障诊断与剩余电流之间具有不确定的潜在规律及关系映射,提出了一种基于剩余电流固有模态能量特征的生物触电故障诊断模型。首先应用Hilbert-Huang变换明确了生物触电故障时,剩余电流各固有模态能量在时间和各种频率尺度上的分布,其中低频IMF分量的能量占有率高达86.35%,建立了剩余电流固有模态能量特征的提取方法;然后以选取剩余电流各IMF分量5维度能量特征向量,为生物触电故障诊断模型提供有效特征的信息源,利用量子遗传计算的快速寻优性和神经计算的自适应性有机结合,建立了一种量子遗传模糊神经网络作为触电故障模式分类归属的决策系统,仿真试验准确率达到100%。为研发基于人体触电电流而动作的新型剩余电流保护装置,提供可靠的理论依据和方法支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号