首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zymoseptoria tritici, the causal agent of septoria tritici blotch (STB), remains a significant threat to European wheat production with the continuous emergence of fungicide resistance in Z. tritici strains eroding the economic sustainability of wheat production systems. The life cycle of Z. tritici is characterized by a presymptomatic phase (latent period, LP) after which the pathogen switches to an aggressive necrotrophic stage, when lesions bearing pycnidia quickly manifest on the leaf. As minimal knowledge of the possible role of the LP in supporting STB resistance/susceptibility exists, the goal of this study was to investigate the spatial and temporal association between the LP and disease progression across three locations (Ireland – Waterford, Carlow; UK – Norwich) that represent commercially high, medium and low STB pressure environments. Completed over two seasons (2013–2015) with commercially grown cultivars, the potential of the LP in stalling STB epidemics was significant as identified with cv. Stigg, whose high level of partial resistance was characterized by a lengthened LP (c. 36 days) under the high disease pressure environment of Waterford. However, once the LP concluded it was followed by a rate of disease progression in cv. Stigg that was comparable to that observed in the more susceptible commercial varieties. Complementary analysis, via logistic modelling of intensive disease assessments made at Carlow and Waterford in 2015, further highlighted the value of a lengthened LP in supporting strong partial resistance against STB disease of wheat.  相似文献   

2.
Septoria tritici blotch (STB) caused by the fungal pathogen Zymoseptoria tritici continues to be the most economically destructive disease of winter wheat throughout Ireland. Due to the widespread development of fungicide resistance in the Irish Z. tritici population, integrated strategies to control STB are increasingly necessary. A key component of such strategies will be the deployment of winter wheat cultivars with improved levels of STB resistance. Unfortunately, due to the nature of Z. tritici, such resistances are at risk of being overcome by the pathogen. In late summer 2020, foci of STB were observed across a range of winter wheat cultivars under evaluation for recommendation in Ireland. Common amongst these was the cultivar Cougar in each of their pedigree. To determine if the foci observed in 2020 resulted from strains virulent to Cougar, isolate collections were established and virulence screens conducted on Cougar and a range of the cultivars currently under evaluation. These confirmed the presence of Cougar-virulent strains in the Irish Z. tritici population, and that this virulence affects not just Cougar, but also cultivars derived from it. Although the foci observed in 2020 were in both fungicide-untreated and -treated plots, there was no evidence that these strains are more sensitive or resistant to fungicides compared to the wider Irish Z. tritici population, with moderate resistance to the SDHIs and azoles dominating. Combined, the present study confirms the need to ensure a diversity of control measures for STB, including ensuring a range of STB resistances are used.  相似文献   

3.
Globally, bread wheat production is threatened by fungal diseases, including the devastating disease Septoria tritici blotch (STB). Given the global importance of STB, and the difficulty in identifying novel sources of resistance to this disease, we screened a variety of wheat genotypes, including wild, ancestral, and mutagenized lines, for their STB response. This delineated a panel of wild wheat relatives and Watkins collection lines with exceptional resistance to a range of Zymoseptoria tritici isolates, some of which are highly virulent on modern, elite wheat varieties. Additionally, we characterized the STB susceptibility of 500 lines of the wheat cultivar Cadenza TILLING population and developed backcross derivatives of two TILLING lines that show dominant partial resistance to STB. These backcross lines are partially resistant to multiple isolates of Z. tritici, and, with the wild and ancestral lines identified, provide a useful reservoir of STB-resistant germplasm for use in wheat breeding programmes.  相似文献   

4.
5.
Zymoseptoria tritici, the causal agent of septoria tritici blotch, a serious foliar disease of wheat, is a necrotrophic pathogen that undergoes a long latent period. Emergence of insensitivity to fungicides, and pesticide reduction policies, mean there is a pressing need to understand septoria and control it through greater varietal resistance. Stb6 and Stb15, the most common qualitative resistance genes in modern wheat cultivars, determine specific resistance to avirulent fungal genotypes following a gene‐for‐gene relationship. This study investigated compatible and incompatible interactions of wheat with Z. tritici using eight combinations of cultivars and isolates, with the aim of identifying molecular responses that could be used as markers for disease resistance during the early, symptomless phase of colonization. The accumulation of TaMPK3 was estimated using western blotting, and the expression of genes implicated in gene‐for‐gene interactions of plants with a wide range of other pathogens was measured by qRT‐PCR during the presymptomatic stages of infection. Production of TaMPK3 and expression of most of the genes responded to inoculation with Z. tritici but varied considerably between experimental replicates. However, there was no significant difference between compatible and incompatible interactions in any of the responses tested. These results demonstrate that the molecular biology of the gene‐for‐gene interaction between wheat and Zymoseptoria is unlike that in many other plant diseases, indicate that environmental conditions may strongly influence early responses of wheat to infection by Z. tritici, and emphasize the importance of including both compatible and incompatible interactions when investigating the biology of this complex pathosystem.  相似文献   

6.
Zymoseptoria tritici ascospores and pycnidiospores are considered the main forms of primary and secondary inoculum, respectively, in septoria tritici blotch epidemics. The pathogenicity of the two types of spores of the same genotypic origin were compared through a two‐stage inoculation procedure in controlled conditions. Adult wheat leaves were inoculated with ascospores collected from field sources, yielding 119 lesions; pycnidiospores collected from 12 lesions resulting from these ascospore infections were then used for inoculation. Lesion development was assessed for 5 weeks; latent period, lesion size, and pycnidium density were estimated for different isolates. The latent period was calculated as the maximum likely time elapsed between inoculation and either the appearance of the majority of the sporulating lesions (leaf scale) or the appearance of the first pycnidia (lesion scale). The latent period was significantly longer (c. 60 degree‐days, i.e. 3–4 days) after infection with ascospores than with pycnidiospores. No difference was established for lesion size and density of pycnidia. A comparison with other ascomycete fungi suggested that the difference in latent period might be related to the volume of spores and their ability to cause infection. Fungal growth before the appearance of lesions may be slower after inoculation with an ascospore than with a pycnidiospore. The mean latent period during the very beginning of epidemics, when first lesions are mainly caused by ascospores, may be longer than during spring, when secondary infections are caused by pycnidiospores. Disease models would be improved if these differences were considered.  相似文献   

7.
Demethylation inhibitor (DMI) and succinate dehydrogenase inhibitor (SDHI) fungicides are currently relied upon for the control of septoria tritici blotch (STB) in European wheat fields. However, multiple mutations have occurred over time in the genes encoding the targeted proteins that have led to a practical loss of fungicide efficacies. Among the different amino acid substitutions in Zymoseptoria tritici associated with resistance to these fungicides, S524T in CYP51 (DMI target) and H152R in SdhC (SDHI target) are regarded as conferring the highest resistance factors to DMI and SDHI, respectively. To facilitate further studies on the monitoring and selection of these substitutions in Z. tritici populations, a multiplex allele-specific quantitative PCR (qPCR) assay allowing for estimation of both allele frequencies in bulk DNA matrices was developed. The assay was then used on complex DNA samples originating from a spore trap network set up in Belgium, Denmark, Sweden, and Ireland in 2017 and 2018, as well as on leaf samples with symptoms. The S524T allele was present in all field samples and its proportion was significantly higher in Ireland than in Belgium, whereas the proportion of H152R was only sporadically present in both countries. The frequency of S524T varied greatly in the airborne inoculum of all four countries; however, the H152R allele was never detected in the airborne inoculum. The method developed in this study can be readily adopted by other laboratories and used for multiple applications including resistance monitoring in field populations of Z. tritici.  相似文献   

8.
Septoria tritici blotch (STB) disease of wheat is caused by the fungal pathogen Zymoseptoria tritici. It is the most important foliar disease of wheat in western Europe and affects wheat cultivation worldwide. The combination of intensive fungicide usage, a polycyclic asexual life cycle and an active sexual cycle has led to the emergence of fungal strains resistant/tolerant to all the major classes of fungicides used in its control. The hallmark of this disease is a long, symptomless latent phase that precedes the onset of visible symptoms. Understanding the processes that occur during the symptomless phase of infection is paramount in developing alternative strategies for disease control; however, large gaps in our knowledge of the disease remain. The known unknowns of the latent stage of infection can be summarized in three questions. Does the fungus initiate or manipulate host defences to trigger programmed cell death in order to facilitate nutrient acquisition or is the host acting exclusively? Does the fungus feed during both the latent phase and the necrotrophic phase like a true hemibiotroph? Does the long latent phase serve a beneficial function for the fungus or is it simply an artefact of evolution? This review aims to distil observations made during studies that have directly or indirectly contributed to answering these questions and points towards their most likely answers.  相似文献   

9.
小麦条锈病菌和白粉病菌多重TaqMan Real-time PCR方法的建立   总被引:1,自引:0,他引:1  
<正>小麦条锈病(Puccinia striiformis f.sp.tritici,Pst)和小麦白粉病(Blumeria graminis f.sp.tritici,Bgt)是我国小麦生产上的重要病害。条锈病主要发生在西北、华北、长江中下游和西南各省、自治区;白粉病则在西南各省和河南、山东、湖北、江苏、安徽等省发生较重,且西北、东北麦区也日趋严重[1]。条锈病菌依靠夏孢子造成小麦初侵染和再侵染并随气流远距离传播导致大区流行,白粉病菌则依赖于分生孢子或子囊孢子进行初侵染和再侵染。二者作为典型的气传病害,空中的接种体在  相似文献   

10.
Zymoseptoria tritici is the causal agent of septoria tritici blotch (STB), a foliar wheat disease important worldwide. Succinate dehydrogenase inhibitors (SDHIs) have been used in cereals for effective control of STB for several years, but resistance towards SDHIs has been reported in several phytopathogenic fungi. Resistance mechanisms are target‐site mutations in the genes coding for subunits B, C and D of the succinate dehydrogenase (SDH) enzyme. Previous monitoring data in Europe indicated the presence of single isolates of Z. tritici with reduced SDHI sensitivity. These isolates carried mutations leading to amino acid exchanges: C‐T79N, C‐W80S in 2012; C‐N86S in 2013; B‐N225T and C‐T79N in 2014; and C‐V166M, B‐T268I, C‐N86S, C‐T79N and C‐H152R in 2015. The current study provides results from microtitre and greenhouse experiments to give an insight into the impact of different mutations in field isolates on various SDHIs. In microtitre tests, the highest EC50 values for all tested SDHIs were obtained with mutants carrying C‐H152R. Curative greenhouse tests with various SDHIs confirmed the findings of microtitre tests that isolates with C‐H152R are, in general, controlled with lower efficacy than isolates carrying B‐T268I, C‐T79N and C‐N86S. SDHI‐resistant isolates of Z. tritici found in the field were shown to have cross‐resistance towards all SDHIs tested. So far, SDHI‐resistant isolates of Z. tritici have been found in low frequencies in Europe. Therefore, FRAC recommendations for resistance management in cereals, including a limited number of applications, alternation and combination with other MOAs, should be followed to prolong SDHI field efficacy.  相似文献   

11.
Septoria tritici blotch (STB), caused by Mycosphaerella graminicola, is the most prevalent disease of wheat worldwide. Primary inoculum and the early stages of STB epidemics are still not fully understood and deserve attention for improving management strategies. The inoculum build‐up and overseasoning involves various fungal structures (ascospores, pycnidiospores, mycelium) and plant material (wheat seeds, stubble and debris; wheat volunteers; other grasses). Their respective importance is assessed in this review. Among the mechanisms involved in the early stages of epidemics and in the year‐to‐year disease transmission, infection by ascospores wind‐dispersed from either distant or local infected wheat debris is the most significant. Nevertheless, infection by pycnidiospores splash‐dispersed either from neighbouring wheat debris or from senescent basal leaves has also been inferred from indirect evidence. Mycosphaerella graminicola has rarely been isolated from seeds so that infected seed, although suspected as a source of primary inoculum for a long time, is considered as an epidemiologically anecdotal source. Mycosphaerella graminicola can infect a few grasses other than wheat but the function of these grasses as alternative hosts in natural conditions remains unclear. Additionally, wheat volunteers are suspected to be sources of STB inoculum for new crops. This body of evidence is summarized in a spatio‐temporal representation of a STB epidemic aimed at highlighting the nature, sources and release of inoculum in the early stages of the epidemic.  相似文献   

12.
13.
The evolution of fungicide resistance in the cereal pathogen Zymoseptoria tritici is a serious threat to the sustainability and profitability of wheat production in Europe. Application of azole fungicides has been shown to affect fitness of Z. tritici variants differentially, so it has been hypothesized that combinations of azoles could slow the evolution of resistance. This work assessed the effects of dose, mixtures and alternations of two azoles on selection for isolates with reduced sensitivity and on disease control. Naturally infected field trials were carried out at six sites across Ireland and the sensitivity of Z. tritici isolates monitored pre‐ and post‐treatment. Epoxiconazole and metconazole were applied as solo products, in alternation with each other, and as a pre‐formulated mixture. Full and half label doses were tested. Isolates were partially cross‐resistant to the two azoles, with a common azole resistance principal component accounting for 75% of the variation between isolates. Selection for isolates with reduced azole sensitivity was correlated with disease control. Decreased doses were related to decreases in sensitivity but the effect was barely significant (= 0·1) and control was reduced. Single applications of an active ingredient (a.i.) caused smaller decreases in sensitivity than double applications. Shifts in sensitivity to the a.i. applied to a plot were greater than to the a.i. not applied, and the decrease in sensitivity was greater to the a.i. applied at the second timing. These results confirm the need to mix a.i.s with different modes of action.  相似文献   

14.
Although fungicide resistance in crop pathogens is a global threat to food production, surprisingly little is known about the evolutionary processes associated with the emergence and spread of fungicide resistance. Early stages in the evolution of fungicide resistance were evaluated using the wheat pathogen Zymoseptoria tritici, taking advantage of an isolate collection spanning 20 years in Oregon, USA, and including two sites with differing intensity of fungicide use. Sequences of the mitochondrial cytb protein conferring single‐mutation resistance to QoI fungicides and the nuclear CYP51 gene implicated in multiple‐mutation resistance to azole fungicides were analysed. Mutations associated with resistance to both fungicides were absent in the 1992 isolates, but frequent in the 2012 collection, with higher frequencies of resistance alleles found at the field site with more intensive fungicide use. Results suggest that the QoI resistance evolved independently in several lineages, and resulted in significant mitochondrial genome bottlenecks. In contrast, the CYP51 gene showed signatures of diversifying selection and intragenic recombination among three phylogenetic clades. The findings support a recent emergence of resistance to the two fungicide classes in Oregon, facilitated by selection for mutations in the associated resistance genes.  相似文献   

15.
A field study is described which explored the possibility of controlling Stagonospora nodorum and Septoria tritici on wheat using a barley pathogen, Drechslera teres. Pre-treatment of wheat cv. Hussar flag leaves with D. teres resulted in a significant reduction in disease caused by S. nodorum and S. tritici, resulting in a significant increase in grain yield. When cv. Brigadier leaves were treated with D. teres prior to inoculation with S. nodorum there was an initial increase in disease expression whilst D. teres had no effect on symptoms produced by S. tritici on cv. Brigadier. There was significantly less disease on leaves of cvs. Hussar and Brigadier pre-treated with D. teres prior to inoculation with an equal mixture of S. nodorum and S. tritici compared to plants pre-treated with water. It is concluded that D. teres and other non-host pathogens show potential as biological control agents for S. nodorum and S. tritici.  相似文献   

16.
为明确小麦蔗糖非发酵-1相关蛋白激酶(sucrose non-ferment-1-related protein kinase,SnRK)在协调植物体内多种信号通路之间的作用,通过普通PCR方法从扬麦20中克隆SnRK基因,利用生物信息学方法对其进行分析,使用实时荧光定量PCR技术分析其在激素、干旱、盐和病菌胁迫下的表达模式,并测定瞬时过表达该基因对烟草叶片抗致病疫霉Phytophthora infestans侵染能力的影响。结果显示,从扬麦20中克隆获得SnRK3基因,命名为TaSnRK3.16-D;该基因编码蛋白可能通过与多种蛋白互作参与多种形式的调控;过表达TaSnRK3.16-D增强了小麦对脱落酸、NaCl、PEG、白粉病菌Blumeria graminis f. sp. tritici和赤霉病菌Fusarium graminearum胁迫的抗性,经亚细胞定位和根癌农杆菌Agrobacterium tumefaciens瞬时表达试验验证表明TaSnRK3.16-D定位于细胞膜上,且其在烟草叶片上过表达部位的致病疫霉侵染病斑颜色较对照病斑颜色浅,一定程度上抑制了致病疫霉的侵染。表...  相似文献   

17.

BACKGROUND

Fenpicoxamid is a new fungicide for control of Zymoseptoria tritici, and is a derivative of the natural product UK‐2A. Its mode of action and target site interactions have been investigated.

RESULTS

UK‐2A strongly inhibited cytochrome c reductase, whereas fenpicoxamid was much less active, consistent with UK‐2A being the fungicidally active species generated from fenpicoxamid by metabolism. Both compounds caused rapid loss of mitochondrial membrane potential in Z. tritici spores. In Saccharomyces cerevisiae, amino acid substitutions N31K, G37C and L198F at the Qi quinone binding site of cytochrome b reduced sensitivity to fenpicoxamid, UK‐2A and antimycin A. Activity of fenpicoxamid was not reduced by the G143A exchange responsible for strobilurin resistance. A docking pose for UK‐2A at the Qi site overlaid that of antimycin A. Activity towards Botrytis cinerea was potentiated by salicylhydroxamic acid, showing an ability of alternative respiration to mitigate activity. Fungitoxicity assays against Z. tritici field isolates showed no cross‐resistance to strobilurin, azole or benzimidazole fungicides.

CONCLUSION

Fenpicoxamid is a Qi inhibitor fungicide that provides a new mode of action for Z. tritici control. Mutational and modeling studies suggest that the active species UK‐2A binds at the Qi site in a similar, but not identical, fashion to antimycin A. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

18.
Interactions between Stagonospora nodorum and Septoria tritici were studied. Results from a detached glume experiment indicated that the interaction may be isolate-dependent, as it was shown that the interaction between the two pathogens may be beneficial or antagonistic depending on the isolate of each pathogen present. The number of spores produced by both pathogens was significantly greater when an aggressive isolate of S. tritici was mixed with a non-aggressive isolate of S. nodorum, whereas the number of spores produced by both pathogens was significantly less when two non-aggressive isolates were mixed. There was a significant reduction in disease level when S. tritici was applied prior to S. nodorum, compared to vice versa in the growth chamber. Results from growth chamber and field studies showed that S. nodorum produced significantly more spores when both pathogens were present together. It is concluded that S. tritici has a stimulatory effect on spore production by S. nodorum. However, there was a reduction of S. tritici spores observed in the dual inoculation treatments, suggesting that S. nodorum inhibits S. tritici.  相似文献   

19.
As the frequency of fungicide resistant strains increases in a pathogen population, there is a change in the shape of the response curve of disease severity to fungicide dose. We showed previously, in a theoretical analysis, that such changes can result in an increase or a decrease in the economically optimal dose of fungicide; this depends on how the response curve changes (which is determined jointly by the degree of insensitivity and frequency of a new strain) and the shape of the disease–yield loss relationship (which is a characteristic of the pathogen and crop). Here, we use field dose–response data to estimate economic optimum doses for the control of Zymoseptoria tritici on wheat over a 21-year period. Resistance to fungicide developed to varying degrees against three modes of action (MoA). Changes of optimal dose across years differed according to MoA, but there was an underlying pattern of initial increase in optimal dose, followed by a decrease (ultimately to zero dose at high levels of fungicide resistance). Fungicides are often applied in mixture and analysis shows that, provided the mixture partner is effective, the economic optimal dose increases less as resistance develops than when the fungicide is used as solo product; however, the subsequent decrease in optimal dose remains.  相似文献   

20.
The virulence of 57 Australian isolates of Pyrenophora tritici-repentis (Ptr), a necrotrophic fungal pathogen responsible for the major wheat disease tan spot, was assessed through plant infection assays. Isolates collected from the northern, southern, and western wheat-cropping regions of Australia were evaluated against 16 Australian bread wheat cultivars under controlled growth conditions. Following infection, the wheat panel displayed varying disease symptoms ranging from tiny necrotic specks to spreading chlorotic and necrotic lesions. Analysis of variance indicated that the wheat cultivar exhibited a greater effect on the disease response, explaining 62.7% of the variation, in comparison to the isolate (10.4%). The interaction between the cultivar and the isolate was statistically significant and was attributed to 9.8% of the total variation. All Ptr isolates examined were able to cause disease, but did not display a clear distinction in virulence on the wheat panel investigated, instead showing subtle differences in aggressiveness. Based on the disease responses, there was no obvious pattern between isolate aggressiveness and cropping region. Some cultivars, such as Hydra, exhibited an effective level of resistance in relation to the panel of isolates tested. All 57 Ptr isolates were found to possess the ToxA effector gene and lack the ToxB effector gene. The gene expression level of ToxA was up-regulated at 3 days postinfection in both ToxA-sensitive and -insensitive cultivars, independent of ToxA–Tsn1 recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号