首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beet yellows virus (BYV), beet mild yellowing virus (BMYV), beet chlorosis virus (BChV), and beet mosaic virus (BtMV) cause virus yellows (VY) disease in sugar beet. The main virus vector is the aphid Myzus persicae. Due to efficient vector control by neonicotinoid seed treatment over the last decades, there is no current knowledge regarding virus species distribution. Therefore, Europe-wide virus monitoring was carried out from 2017 to 2019, where neonicotinoids were banned in 2019. The monitoring showed that closterovirus BYV is currently widely spread in northern Europe. The poleroviruses BMYV and BChV were most frequently detected in the northern and western regions. The potyvirus BtMV was only sporadically detected. To study virus infestation and influence on yield, viruses were transmitted to sugar beet plants using viruliferous M. persicae in quadruplicate field plots with 10% inoculation density simulating natural infection. A plant-to-plant virus spread was observed within 4 weeks. A nearly complete infection of all plants was observed in all treatments at harvest. In accordance with these findings, a significant yield reduction was caused by BMYV and BChV (−23% and −24%) and only a moderate reduction in yield was observed for BYV (−10%). This study showed that inoculation at low densities mimics natural infection, and quick spreading induced representative yield effects. Within the background of a post-neonicotinoid era, this provides the basis to screen sugar beet genotypes for the selection of virus tolerance/resistance and to test the effectiveness of insecticides for the control of M. persicae with a manageable workload.  相似文献   

2.
From a total of 261 yellow sugarbeet leaves collected from 10 countries representing three continents, the incidence and distribution of strains of Beet mild yellowing virus (BMYV), Beet chlorosis virus (BChV) and Beet yellows virus (BYV) were analysed using serological and molecular methods. BMYV was found in all countries except Greece, and more frequently in the northern and western areas of Europe, whereas BYV predominated in Turkey, Spain, Greece, the USA and Chile. BChV, originally found in the USA and the UK in 1989, was identified in France, Spain, the Netherlands and Chile. Nine sugar beet poleroviruses, plus a reference isolate of Turnip yellows virus (TuYV, syn. Beet western yellows virus ), were further characterized and compared. Isolates obtained from sugar beet infected this species, but not oilseed rape or lettuce; all isolates except one infected Capsella bursa-pastoris . The coat-protein sequences of these isolates were highly similar, with the consensus sequence representing 89% of nucleotide residues. Within the coat-protein gene, two regions were identified that could represent specific epitopes to which monoclonal antibody BYDV-PAV-IL-1 could bind; this antibody is used to distinguish beet poleroviruses in ELISA. Comparison of the sequences at the 5' end showed that sequence homology existed only between isolates with the same host range. The first sequence data of polerovirus isolates from Chile are presented, showing that the coat protein and the 5' end of their genomes are highly similar to those of BMYV isolates found in Europe. Chilean polerovirus isolates may have been imported from the northern hemisphere in sugar beet breeding material.  相似文献   

3.
Virus yellows is an important disease affecting yield in sugar beet in the UK. Myzus persicae (Sulzer) is the most effective and efficient aphid vector of the three viruses causing the disease: beet yellows virus, beet mild yellowing virus and beet chlorosis virus. Control of virus yellows disease is thus focused on the study and control of this aphid species. UK national surveys of virus yellows began in 1946 and these data helped to formulate disease forecasting schemes to optimise control. Over the years, in addition to improvements in farm hygiene, periodic changes and developments in control of the disease have occurred. To accommodate these important developments, virus yellows forecasting schemes have evolved accordingly. The most recent version has been adapted to take account of the current widespread use of imidacloprid seed treatment. Its application offers potential to optimise the rational use of aphicides such as imidacloprid so as to benefit beet growers and the environment by reducing prophylactic use of seed treatment.  相似文献   

4.
5.
A survey of the incidence of yellowing viruses in Greek glasshouse (and occasional field) cucumber and melon crops was carried out during 2000–03. In most cases disease incidence ranged from 50 to 80%. Simplex RT-PCR was used for the detection of Beet pseudo-yellows virus (BPYV) and Cucurbit yellow stunting disorder virus (CYSDV), and DAS-ELISA for the detection of Cucurbit aphid-borne yellows virus (CABYV). The results showed that BPYV was the predominant virus in cucumber and melon crops, whereas CYSDV, reported for first time in Greece, was isolated only in three regions of southern Greece: Rhodes, Crete and Arkadia. CABYV was detected only in three cucumber glasshouses in Pella (Macedonia). A simplified triplex RT-PCR method using a simple sample-preparation protocol was developed to allow rapid, sensitive and simultaneous detection of the three viruses. Sequence comparisons of the PCR products of BPYV and CYSDV revealed 98·7 and 100% amino acid identity, respectively, with previously reported sequences. The arable weed species Amaranthus retroflexus , Selosia cristata , Sonchus oleraceus and Sonchus sp. were identified as potential BPYV reservoirs.  相似文献   

6.
7.
辣椒是我国重要的蔬菜和经济作物,受多种病毒危害。2014年在北京市顺义区调查时发现部分种植的辣椒植株上叶片大面积黄化,边缘症状明显,个别植株叶片轻微上卷。提取典型症状样品的总RNA,反转录得到cDNA,分别用黄瓜花叶病毒(Cucumber mosaic virus,CMV)特异引物和马铃薯卷叶病毒属(Polerovirus)通用引物进行PCR检测,CMV特异引物和马铃薯卷叶病毒属通用引物分别扩增得到约650bp和1 400bp的特异条带。测序和核苷酸序列比对表明,其分别与CMV和甜菜西方黄化病毒(Beet western yellows virus,BWYV)序列同源性最高为99%和96%。这是对我国种植的辣椒上发生的CMV和BWYV复合侵染的首次报道。  相似文献   

8.
ABSTRACT Experiments over two growing seasons clearly showed that Turnip mosaic virus (TuMV) infection was associated with internal necrosis (sunken necrotic spots 5 to 10 mm in diameter) and Beet western yellows virus (BWYV) infection was associated with collapse of leaf tissue at the margins (tipburn) in heads of stored white cabbage (Brassica oleracea var. capitata). Virtually no tipburn was seen in cv. Polinius, whereas cv. Impala was affected severely. Internal necrotic spots were seen in both cultivars. BWYV appeared to interact with TuMV. Plants infected with both viruses showed a lower incidence of external symptoms and had less internal necrosis than plants infected with TuMV alone. Cauliflower mosaic virus (CaMV) did not induce significant amounts of internal necrosis or tipburn, but did, in most cases, exacerbate symptoms caused by TuMV and BWYV. BWYV-induced tipburn worsened significantly during storage. Post-transplanting inoculation with TuMV induced more internal necrosis than pre-transplant inoculation. There was a significant association between detection of TuMV just prior to harvest and subsequent development of internal necrotic spots. Individually, all three viruses significantly reduced the yield of cv. Polinius, whereas only BWYV and CaMV treatments reduced the yield of cv. Impala.  相似文献   

9.
10.
寄主植物对桃蚜羧酸酯酶和乙酰胆碱酯酶的诱导作用   总被引:16,自引:1,他引:16  
在1995~1996年研究了寄主植物对桃蚜[Myzuspersicae(Sulzer)]羧酸酯酶(CarE)和乙酰胆碱酯酶(AChE)的诱导作用。在试验的甘蓝、茄子和桃树3种寄主植物中,取食甘蓝的桃蚜种群CarE和AChE活性最高,取食茄子和桃树的桃蚜种群CarE活性没有明显不同,而AChE活性取食茄子的桃蚜种群明显高于取食桃树的种群。CarE与底物的亲和力是桃树>茄子>甘蓝,而AChE与底物的亲和力则是甘蓝>茄子>桃树。AChE与毒扁豆碱的双分子速率常数(Ki)值大小顺序为甘蓝>桃树>茄子  相似文献   

11.
12.
为探究豆科植物作为繁育烟蚜和扩繁烟蚜茧蜂寄主植物的潜力,本研究测试了烟蚜在豌豆、蚕豆、大豆和绿豆4种豆科植物上的发育历期和繁殖力,随后比较了豆科植物和烟草繁育的烟蚜茧蜂以及蚕豆烟蚜茧蜂回接烟草所获得的子代蜂在羽化率、体型、成虫寿命和寄生力等重要生物学特性上的差异。结果表明:与豌豆和蚕豆相比,大豆与绿豆上蚜虫发育历期更短;大豆与绿豆单头烟蚜总产蚜量为22.3头和25.2头,显著高于豌豆和蚕豆的21头和18.2头;不同植物上蚜虫扩繁速度有显著差异,绿豆不适合作为扩繁烟蚜和烟蚜茧蜂的寄主植物;豌豆与大豆上僵蚜羽化率为67.5%和78.33%,显著低于其他植物;各植物上子代蜂性比无显著差异;烟草繁育的子代蜂成虫寿命(6.89 d)和后足胫节长(雌蜂573.5 μm,雄蜂493.5 μm)均显著高于豆科植物;不同寄主植物繁育烟蚜茧蜂的寄生力由大到小为烟草,蚕豆,豌豆,大豆;回接组烟蚜茧蜂各项指标均不低于烟草组。综合考虑扩繁周期、时间、空间利用率及经济成本等因素,蚕豆有望成为烟蚜茧蜂规模化扩繁的寄主植物。  相似文献   

13.
Vaira  A. M.  Accotto  G. P.  Vecchiati  M.  Bragaloni  M. 《Phytoparasitica》2002,30(3):290-294
Since autumn 2000, severe and widespread chlorosis, sometimes associated with redness, has been observed in greenhouse tomatoes in different regions of Italy. A total of 104 samples were analyzed for tomato infectious chlorosis virus (TICV), by a one-step RT-PCR procedure. In some areas of central Italy and Sardinia, the symptom was consistently correlated with the presence of TICV. The RT-PCR procedure enabled rapid and reliable detection of TICV from field samples. Sequence analysis of the amplified 501-bp fragment, part of the HSP70 coding region, revealed an identity of 99% with the TICV sequence in the GenBank database. A digoxigenin-labeled DNA probe was also produced and successfully tested in dot blot assays. This is the first report of TICV causing epidemics in Europe.  相似文献   

14.
 通过RACE和RT-PCR技术相结合的方法,在山东省潍坊市和济宁市辣椒上克隆出2个甜菜西方黄化病毒(beet western yellows virus,BWYV)的全基因组序列,基因组全长均为5 699 nt。与GenBank比对发现,2个分离物的5′UTR(Untranslated region,UTR)变异程度小、相对比较保守,而3′UTR变异程度大、为突变热点区域。潍坊、济宁两地分离物与GenBank中该病毒的全基因组序列相似度平均值分别为89.89%和89.72%。系统进化树分析发现BWYV亚洲地区的分离物聚类在3个不同的组别,本研究克隆的2个山东分离物和3个日本分离物(LC428355、LC428356、LC428357)、2个韩国分离物(LC198684、KM076647)聚在一组,而美国分离物与法国分离物聚在其他分支,表明该病毒的进化存在地理相关性。这是首次对BWYV中国辣椒分离物的全基因组序列克隆,丰富了BWYV的序列信息,有助于进一步了解该病毒种群的遗传进化关系。  相似文献   

15.
 通过RACE和RT-PCR技术相结合的方法,在山东省潍坊市和济宁市辣椒上克隆出2个甜菜西方黄化病毒(beet western yellows virus,BWYV)的全基因组序列,基因组全长均为5 699 nt。与GenBank比对发现,2个分离物的5′UTR(Untranslated region,UTR)变异程度小、相对比较保守,而3′UTR变异程度大、为突变热点区域。潍坊、济宁两地分离物与GenBank中该病毒的全基因组序列相似度平均值分别为89.89%和89.72%。系统进化树分析发现BWYV亚洲地区的分离物聚类在3个不同的组别,本研究克隆的2个山东分离物和3个日本分离物(LC428355、LC428356、LC428357)、2个韩国分离物(LC198684、KM076647)聚在一组,而美国分离物与法国分离物聚在其他分支,表明该病毒的进化存在地理相关性。这是首次对BWYV中国辣椒分离物的全基因组序列克隆,丰富了BWYV的序列信息,有助于进一步了解该病毒种群的遗传进化关系。  相似文献   

16.
Studies were undertaken to determine Alternaria spp. associated with leaf spot symptoms on canola (Brassica napus) in two cropping seasons (2015, 2016) across southern Australia. Major allergen Alt a1 and plasma membrane ATPase genes were used to identify Alternaria spp. In 2015, 112 isolates of seven Alternaria spp. were obtained, with A. metachromatica predominating. In 2016, 251 isolates of 12 Alternaria spp. were obtained, with A. infectoria predominating. Alternaria spp. isolates were morphologically and phylogenetically identified and studies to determine their pathogenicity on both B. napus (cv. Thunder TT) and B. juncea (cv. Dune) confirmed 10 species (A. alternata, A. arborescens, A. brassicae, A. ethzedia, A. hordeicola, A. infectoria, A. japonica, A. malvae, A. metachromatica and A. tenuissima) as pathogenic on both Brassica species. Alternaria ethzedia, A. hordeicola and A. malvae were recorded for the first time in Australia on any host and the record of A. arborescens was the first for New South Wales (NSW) and South Australia (SA). Other first records included A. infectoria on B. napus in NSW; A. japonica on B. napus in NSW and Western Australia (WA); A. metachromatica on any host in NSW, Victoria (VIC), WA and SA; and A. tenuissima on B. napus in NSW, SA and WA. It is evident that alternaria leaf spot on canola across southern Australia is not solely caused by A. brassicae, but that a range of other Alternaria spp. are also involved to varying degrees, depending upon the year and the geographic locality.  相似文献   

17.
为比较不同寄主植物繁蚜,继而繁育烟蚜茧蜂Aphidius gifuensis的潜力,促进烟蚜茧蜂扩繁,从烟田采集供试烟蚜与烟蚜茧蜂,比较了烟草、萝卜、油菜和小白菜共4种常用寄主植物的繁蚜-繁蜂能力和繁育的子代烟蚜茧蜂的寄生潜力。结果显示:(1)烟草和萝卜的单株繁蚜速率较快、繁蚜量大,表明两者的繁蚜能力强于小白菜和油菜;(2)4种寄主植物上的僵蚜羽化率没有显著差异,烟蚜茧蜂对烟草和萝卜繁育烟蚜的寄生率显著高于小白菜和油菜,表明在烟草和萝卜上繁蜂能力强于油菜和小白菜;(3)烟草上繁育的子代蜂寿命及其后足胫节长度均显著大于在其他3种寄主植物上繁育的寄生蜂的相应参数,表明烟草上繁育的子代烟蚜茧蜂的营养状态优于在其他3种寄主植物上得到的烟蚜茧蜂。总体而言,烟草的繁蚜-繁蜂能力和子代烟蚜茧蜂的寄生潜力均强于其他3种寄主植物,更适用于烟蚜茧蜂扩繁;萝卜上繁育的子代烟蚜茧蜂的寄生潜力不及烟草,但明显优于小白菜和油菜,可作为一种烟蚜茧蜂繁育的替代寄主植物,用于提纯、复壮烟蚜和烟蚜茧蜂。  相似文献   

18.
The plasmodiophoromycete Polymyxa betae is an obligate root parasite that transmits Beet necrotic yellow vein virus (BNYVV), the cause of sugar beet rhizomania disease. Currently, control of this disease is achieved through the use of cultivars with monogenic (Rz1) partial resistance to the virus. To improve the level and durability of this resistance, sources of resistance to the virus vector, P. betae, were sought. Over 100 accessions of the wild sea beet (Beta vulgaris ssp. maritima) from European coastal regions were evaluated for resistance in controlled environment tests. Quantification of P. betae biomass in seedling roots was achieved using recombinant antibodies raised to a glutathione‐s‐transferase expressed by the parasite in vivo. Several putative sources of resistance were identified and selected plants from these were hybridized with a male‐sterile sugar beet breeding line possessing partial virus resistance (Rz1). Evaluation of F1 hybrid populations identified five in which P. betae resistance had been successfully transferred from accessions originating from Mediterranean, Adriatic and Baltic coasts. A resistant individual from one of these populations was backcrossed to the sugar beet parent to produce a BC1 population segregating for P. betae resistance. This population was also tested for resistance to BNYVV. Amplified fragment length polymorphism and single‐nucleotide polymorphism markers were used to map resistance quantitative trait loci (QTL) to linkage groups representing specific chromosomes. QTL for resistance to both P. betae and BNYVV were co‐localized on chromosome IV in the BC1 population, indicating resistance to rhizomania conditioned by vector resistance. This resistance QTL (Pb1) was shown in the F1 population to reduce P. betae levels through interaction with a second QTL (Pb2) found on chromosome IX, a relationship confirmed by general linear model analysis. In the BC1 population, vector‐derived resistance from wild sea beet combined additively with the Rz1 virus resistance gene from sugar beet to reduce BNYVV levels. With partial virus resistance already deployed in a number of high‐yielding sugar beet cultivars, the simple Pb1/Pb2 two‐gene system represents a valuable additional target for plant breeders.  相似文献   

19.
采用微量滴度酶标板法测定了吡虫啉亚致死剂量对桃蚜乙酰胆碱酯酶(AChE)的影响。结果表明,用不同亚致死剂量吡虫啉处理桃蚜后AChE的活力明显降低,表现为抑制作用,且不同剂量间AChE的活力差异显著;酶动力学分析表明,AChE的Km值显著降低,而Vmax显著升高,表明吡虫啉亚致死剂量处理桃蚜后AChE与底物的亲和力明显增强,且最大反应速度显著加快。用LC10的吡虫啉处理桃蚜后AChE的活力随时间的延长而变化,且表现为明显的抑制作用;AChE的Km随时间的变化表现为先升高后降低的趋势,但Vmax均升高。此外研究了LC10的吡虫啉处理桃蚜后AChE在不同亚细胞层的分布特征,结果表明,AChE比活力的高低次序依次为:微粒体>细胞核与细胞碎片>线粒体>细胞质液;吡虫啉亚致死剂量处理后虽然没有影响AChE在亚细胞中的分布,但是却改变了对底物的亲和力和最大反应速度。  相似文献   

20.
The interaction of beet western yellows virus (BWYV), lettuce mosaic virus (LMV) and cucumber mosaic virus (CMV) has been studied in lettuce cultivars Little Gem and Saladin. LMV infection alone or in combination with BWYV and or CMV caused the most severe symptoms and yield losses in both cultivars. BWYV caused more severe reactions in Little Gem than in Saladin; the reactions caused by CMV were mild in both cultivars. The interaction between BWYV and CMV infection resulted in a significantly greater yield loss in both cultivars than that caused by BWYV or CMV infection alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号