首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widely used resistant peppers (Capsicum spp.) bearing the Tsw locus triggered the rapid emergence of resistance‐breaking (RB) isolates of Tomato spotted wilt virus (TSWV) around the world. However, although TSWV‐induced diseases have rapidly increased in Yunnan, southwest China, in recent years, no information is available about the diversity of TSWV isolates in this region. In this study, the occurrence of natural TSWV RB variants among isolates collected in Yunnan is reported. Initially, a TSWV isolate from asparagus lettuce (TSWV‐LE) was collected in Yunnan in 2012. Surprisingly, this isolate of TSWV induced systemic necrosis on pepper carrying the Tsw resistance gene. Novel TSWV isolates, collected in 2015, included a tomato isolate (TSWV‐YN18) and a tobacco isolate (TSWV‐YN53) that also overcame Tsw‐mediated resistance. TSWV‐YN18 induced systemic ringspots, whereas TSWV‐YN53 caused systemic chlorotic mottling. Variations in the TSWV nonstructural (NSs) protein are the key determinants associated with Tsw resistance‐breaking isolates. It was found that TSWV‐LE NSs retained the hypersensitive response (HR) induction, whereas TSWV‐YN18 and TSWV‐YN53 NSs were unable to induce HR. However, the NSs of all three RB isolates suppressed RNA silencing. Sequence analysis of the NSs revealed that RB isolates of Yunnan have no amino acid mutation sites common to other previously reported RB isolates. However, two amino acids (F74 and K272) on TSWV‐LE NSs make it distinct from TSWV‐YN18 and TSWV‐YN53. The occurrence of different RB isolates and the failure of Tsw‐mediated resistance control pose serious threats to domestic pepper crops in southwest China.  相似文献   

2.
The single dominant Tsw resistance gene from Capsicum chinense against the Tomato spotted wilt orthotospovirus (TSWV) is temperature sensitive, i.e. the resistance fails to function at or above 32 °C. This study describes a new class of temperature-sensitive resistance-breaking TSWV isolates that induce Tsw-mediated resistance at T < 28 °C but at T ≥ 28 °C break this resistance. The NSs genes from these isolates were cloned and expressed to be analysed for RNA silencing suppressor (RSS) activity and the ability to induce a Tsw-mediated hypersensitive response (HR) in C. chinense and Capsicum annuum (Tsw+). Unlike in viral infection, transient expression of some of the NSs proteins at standard temperatures (22 °C) did not induce Tsw-mediated HR, although varying degrees of RSS activity were observed. Attempts to express and test the NSs proteins for functionality at an elevated temperature through agroinfiltration remained unsuccessful. The NSs proteins of some TSWV resistance-breaking (RB) isolates were analysed and found to lack amino acid residues that were previously shown to be important for RNA silencing suppression and avirulence. This study describes a new class of resistance-breaking TSWV isolates that may be of importance for breeders and growers and for which the underlying mechanism still remains unknown.  相似文献   

3.
Tomato spotted wilt virus was recorded for the first time in Jordan on tomato plants. Severe disease symptoms were observed in different tomato farms in the Jordan Valley. Using a specific primer pair a fragment of the capsid protein gene of the virus has been amplified by RT-PCR and IC-RT-PCR. The amplified PCR product was cloned and sequenced. Sequence analysis revealed that the Jordanian isolate of TSWV shared high nucleotide similarities with other isolates from different countries. The sequence of the capsid protein gene was deposited in GenBank under the accession number AY646682 . The response of different tomato breeding lines and hybrids, previously developed for resistance against Tomato yellow leaf curl virus (TYLCV) were tested for their reaction to TSWV infection. All tested lines and hybrids were susceptible to TSWV infection. This has been confirmed at the molecular level by using the SCAR 421 marker linked to the TSWV resistance gene Sw-5 .  相似文献   

4.
ABSTRACT Multiple viral infections frequently are found in single plants of cultivated and wild hosts in nature, with unpredictable pathological consequences. Synergistic reactions were observed in mixed infections in tomato plants doubly infected with the positive-sense and phloem-limited single-stranded RNA (ssRNA) crinivirus Tomato chlorosis virus (ToCV) and the negative-sense ssRNA tospovirus Tomato spotted wilt virus (TSWV). Synergism in a tomato cultivar susceptible to both viruses resulted in a rapid death of plants. A pronounced enhancement of ToCV accumulation mediated by TSWV co-infection was observed with no evident egress of ToCV from phloem tissues. No consistent alteration of TSWV accumulation was detected. More remarkable was the synergism observed in tomato cultivars which carry the Sw-5 resistance gene, which are resistant to TSWV. Pre-infection with ToCV resulted in susceptibility to TSWV, whereas co-inoculations did not. This suggested that a threshold level or a time lapse is needed for ToCV to interfere or downregulate the defense response in the TSWV-resistant plants.  相似文献   

5.
ABSTRACT Tomato hybrids obtained from homozygous progeny of line 30-4, engineered for Tomato spotted wilt virus (TSWV) resistance, were tested under field conditions in two locations with their corresponding nontransgenic hybrids. No transgenic hybrid became infected, but 33 to 50% of plants of each nontransgenic hybrid became infected with a severe reduction of marketable fruit production. The transgenic hybrids conformed to the standard agronomic characteristics of the corresponding nontransgenic ones. Fruit were collected from the nontransgenic plots included in the experimental field and from border rows, and seed were used to estimate the flow of the transgene via pollen. No transgene flow was detected in the protected crops; however, in the open field experiment, 0.32% of tomato seedlings were found to contain the genetic modification. Immunity to TSWV infection in 30-4 hybrids was confirmed in laboratory conditions using mechanical inoculation and grafting. Thrips inoculation in leaf discs of line 30-4 demonstrated that TSWV replication was inhibited at the primary infection site but not in leaf discs of a commercial hybrid containing the naturally occurring resistance gene Sw-5. Due to the high economic value of tomato crops worldwide and the importance of TSWV, the engineered resistance described here is of practical value for breeding into cultivars of commercial interest, because it could be combined with naturally occurring resistance, thus greatly reducing the ability of the virus to develop resistance-breaking strains.  相似文献   

6.
Journal of Plant Diseases and Protection - The most effective management strategy for tomato spotted wilt orthotospovirus (TSWV) has been the use of resistant tomato (Sw-5b+) cultivars....  相似文献   

7.
Considerable losses in pepper production by Tomato spotted wilt virus (TSWV) have been reported worldwide. In breeding programs, an assay for resistance that accurately estimates field occurrence of TSWV during pepper production is critical because the virus is vector transmitted. Here, we establish an assay system of TSWV-resistant Capsicum spp. using insect-mediated inoculation within an acrylic chamber in which environmental conditions such as temperature, light intensity, and nutrient supply are controlled. This chamber enables transmission of TSWV from viruliferous plants to plants used in the resistance assay with Frankliniella occidentalis safely, quickly, and precisely.  相似文献   

8.
Twenty isolates of fluorescent pseudomonads were evaluated for their ability to control damping-off in tomato (Lycopersicon esculentum) and hot pepper (Capsicum annuum). These isolates were characterized as Pseudomonas fluorescens and Pseudomonas putida. Two isolates, PFATR and KKM 1 belonged to P. putida and the remaining 18 isolates belonged to P. fluorescens. Among these isolates, P. fluorescens isolate Pf1 showed the maximum inhibition of mycelial growth of Pythium aphanidermatum and increased plant growth promotion in tomato and hot pepper. P. fluorescens isolate Pf1 was effective in reducing the damping-off incidence in tomato and hot pepper in greenhouse and field conditions. Isolate Pf1 was further tested for its ability to induce production of defense-related enzymes and chemicals in plants. Earlier and increased activities of phenylalanine ammonia lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) were observed in P. fluorescens Pf1 pretreated tomato and hot pepper plants challenged with Pythium aphanidermatum. Moreover, higher accumulation of phenolics was noticed in plants pretreated with P. fluorescens isolate Pf1 challenged with Pythium aphanidermatum. Thus, the present study shows that in addition to direct antagonism and plant growth-promotion, induction of defense-related enzymes involved in the phenyl propanoid pathway collectively contributed to enhance resistance against invasion of Pythium in tomato and hot pepper.  相似文献   

9.
In order to develop a method for discrimination of Corynespora cassiicola isolates pathogenic to sweet pepper among Japanese isolates, this study analysed pathogenic variations of 64 Japanese isolates of C. cassiicola on perilla, cucumber, tomato, aubergine and sweet pepper, and their multigene phylogeny. Japanese isolates were divided into seven pathogenicity groups (PG1–PG7). The virulence of isolates in PG1–PG5 was restricted to perilla, cucumber, tomato, aubergine and sweet pepper, respectively. Isolates in PG6 were virulent to sweet pepper, tomato and aubergine. Isolates in PG7 were avirulent to all tested plants. Multigene phylogenetic analysis of the isolates based on β‐tubulin, translation elongation factor 1‐α, calmodulin and actin genes showed three divergent clusters, MP‐A, MP‐B and MP‐C. These clusters included all isolates in PG1, PG2, PG8 and PG9 (MP‐A), PG3 and PG5 (MP‐B) and PG4 and PG6 (MP‐C). Isolates in PG7 were distributed amongst all clusters. Furthermore, random amplified polymorphic DNA (RAPD) analysis using universal primers, Q17 (5′‐GAAGCCCTTG‐3′) and Q13 (5′‐GGAGTGGACA‐3′), facilitated discrimination of isolates virulent on sweet pepper amongst isolates in MP‐B and MP‐C, respectively. Together, a combination of the multigene analysis and the RAPD technique allowed the discrimination of the isolates virulent to sweet pepper.  相似文献   

10.
The tomato chlorosis virus (ToCV), transmitted by whitefly species of the genera Bemisia and Trialeurodes in a semipersistent manner, causes significant losses in solanaceous crops including tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum). Worldwide reports of natural and experimental infection of sweet pepper plants with ToCV are contradictory, raising the question of whether the critical factor determining infection is related to the susceptibility of sweet pepper cultivars or the genetics of virus isolates. In this work, ToCV isolates obtained from different hosts and geographical origins were biologically and molecularly analysed, transmitted by B. tabaci MEAM1 and MED, and the reaction of different sweet pepper cultivars was evaluated under different environmental conditions. Brazilian ToCV isolates from tomato, potato (S. tuberosum), S. americanum, and Physalis angulata did not infect plants of five sweet pepper cultivars when transmitted by B. tabaci MEAM1. Temperatures did not affect the sweet pepper susceptibility to tomato-ToCV isolates from São Paulo, Brazil, and Florida, USA. However, sweet pepper-ToCV isolates from Spain and São Paulo, Brazil, were transmitted efficiently to sweet pepper plants by B. tabaci MEAM1 and MED. Although the results indicated that ToCV isolates from naturally infected sweet pepper plants seem to be better adapted to plants of C. annuum, phylogenetic analyses based on the complete nucleotide sequences of RNA1 and RNA2 as well as the p22 gene did not reveal significant nucleotide differences among them. Additional studies are needed to identify intrinsic characteristics of ToCV isolates that favour infection of sweet pepper plants.  相似文献   

11.
Nine isolates of Phtophthora nicotianae were isolated from infected pepper plants. Their pathogenicity was studied in Capsicum annuum in comparison with P. nicotianae isolates from tomato and tobacco. The pathogenicity test showed that pepper isolates of P. nicotianae are adapted to their host. Banding patterns obtained by RAPD analysis with six oligonucleotide primers revealed polymorphism that grouped the isolates independently of the plant host. The polygenic dendrogram showed that pepper isolates were more similar to tomato isolates than to tobacco isolates. The RAPD bands of 1300 and 1500 bp, detected with primers OPD-01 and OPD-10, respectively, appeared specific to the most pathogenic pepper isolates. The OPK-08-1950 seems specific to the isolates of P. nicotianae from tomato. These results suggest that host specified might occur in P. nicotianae and that may be due to interspecific hybridization events resulting in novel pathogenic behavior.  相似文献   

12.
Approximately 30,000 fluorescent bacterial strains isolated from tomato, lettuce, eggplant, Chinese cabbage, and Japanese pepper plants at seven different locations in Hyogo Prefecture, were screened for plant-growth-promoting (PGP) activity to induce disease resistance against bacterial wilt in tomato. The 37 strains that had higher PGP activity were subjected to molecular phylogenetic analyses using the sequences of the 16S rRNA, gyrB and rpoD genes. Most of the strains were identified as Pseudomonas fluorescens or its close relative, P. putida, while a few strains were grouped with more distantly related bacterial species such as Enterobacter and Stenotrophomonas. The phylogenetic relationships among tomato and lettuce isolates mostly coincided with the source locality and host plants, with a few exceptions. In contrast, isolates from Japanese pepper plants did not form their own cluster but represented several different bacterial species.  相似文献   

13.
Phytophthora capsici causes root, crown, and fruit rot of vegetable and tropical hosts. Cucumber, zucchini, tomato, and pepper fruits were inoculated using 6-mm-diameter agar plugs of P. capsici, incubated in clear plastic boxes at room temperature (25 ± 2°C and 100% relative humidity), and virulence was estimated by measuring the lesion diameter, pathogen growth diameter, and pathogen sporulation density three (cucumber, zucchini) or four (tomato, pepper) days later. When isolates were grouped by genetic cluster, significant differences in virulence were observed on cucumber and zucchini, with isolates belonging to genetic cluster five causing larger lesions than isolates from genetic cluster six. On tomato, no significant differences were observed for isolates grouped by genetic cluster, but isolates from vegetable crops were generally more virulent than isolates from tropical hosts. Isolates from fabaceous hosts sporulated better on cucumber fruits than isolates from solanaceous hosts. Isolates from vegetable hosts sporulated better on zucchini than isolates from tropical hosts. No significant differences in lesion diameter were noted on pepper when isolates were grouped by host family of origin or genetic cluster, but differences in pathogen sporulation were apparent by host family. Our findings suggest that isolate characteristics such as host family of origin and genetic cluster membership may be used to guide initial isolate selection for cucurbit fruit resistance screening. Final isolate selection should incorporate the phenotypic and genetic diversity of P. capsici, including isolates with differing virulence to the host organ of interest.  相似文献   

14.
Phenotypic variants of Clavibacter michiganensis subsp. michiganensis (Cmm) were isolated from pepper fields and from pepper seeds during quarantine inspections. All strains isolated from pepper (pepper isolates) produced orange-coloured colonies with lower mucoidy than typical Cmm strains isolated from tomato (tomato isolates). However, the results of ELISA, fatty acid analysis, 16S rDNA sequencing, and PCR analysis showed that all pepper isolates were similar enough to be identified as Cmm. In addition to phenotypic variations, the pepper isolates showed different pathogenic and genetic characteristics from tomato isolates from the USA, Europe, or other countries. They could be clearly distinguished in terms of pathogenicity, as they showed increased pathogenicity to pepper but reduced pathogenicity to tomato. Tomato isolates caused strong wilting and canker in tomato, but caused only canker and no wilting in pepper and bell pepper. However, pepper isolates caused no wilting, even in tomato, and only caused canker in the three host plants. In addition, compared to tomato isolates, pepper isolates showed increased colonization efficiency and caused a greater reduction in shoot dry weight in pepper. Pepper and tomato isolates could be separated into two groups according to host origin on the basis of 16S rDNA and ITS sequence analysis. They also showed different rep-PCR genomic fingerprints. All pepper isolates showed higher cellulase activity than tomato isolates on M9CMC plates. However, two plasmid-borne virulence genes of Cmm, pat-1, and celA, were not detected in any pepper isolates by PCR. Furthermore, PCR for pathogenicity-related genes located on a pathogenicity island (PAI) revealed that all tomato isolates were positive for these genes, whereas the pepper isolates did not show any PCR products for the chpC, chpG, ppaA, or tomA genes. Therefore, we suggest that the pepper isolates may represent a separate Cmm population that has evolved within the limits of this host.  相似文献   

15.
Studies were carried out on a population ofThrips tabaci Lindeman (Thysanoptera: Thripi-dae) from Liguria to assess its sex-ratio and its ability to transmit four tospoviruses: tomato spotted wilt (TSWV), impatiens necrotic spot, tomato chlorotic spot and groundnut ringspot. The population was composed of females only (therefore thelytokous). The first instar larvae were allowed to acquire the virus for 48 h on infected leaves of datura, basil or pepper, and then reared on cucumber until emergence, which medially occurred 9.5 days after hatching. Transmission capacity was checked using two inoculation access periods (lAPs) of 48 h each on pepper leaf disks.T. tabaci was able to transmit TSWV isolate P105 with an efficiency of 16.7% and 4.4% in the first and second IAP, respectively, and TSWV isolate BR-01 with an efficiency of 2.0%. The onion thrips did not transmit the three other tospoviruses. During the IAPs, almost all adults fed on the leaf disks, producing evident silvery scars. The presence of tospovirus nucleocapsids in thrips was assayed by Triple Antibody Sandwich (TAS) and cocktail ELISA. Not all adults that had transmitted TSWV were positive in the tests, whereas some non-transmitter individuals proved positive. For each of the other tospoviruses, some thrips were positive in at least one test, although none was able to transmit the virus.  相似文献   

16.
The emergence of virulent root-knot nematode populations, able to overcome the resistance conferred by some of the resistance genes (R-genes) in Solanaceous crops, i.e., Mi(s) in tomato, Me(s) in pepper, may constitute a severe limitation to their use in the field. Research has been conducted to evaluate the durability of these R-genes, by comparing the reproduction of several laboratory-selected and wild virulent Meloidogyne incognita isolates, on both susceptible and resistant tomatoes and peppers. We first show that the Me1 R-gene in pepper behaves as a robust R-gene controlling avirulent and virulent Me3, Me7 or Mi-1 isolates. Although the reproductive potential of the virulent isolates was highly variable on susceptible and resistant plants, we also confirm that virulence is highly specific to a determined R-gene on which selection has occurred. Another significant experimental result is the observation that a reproductive fitness cost is associated with nematode virulence against Mi-1 in tomato and Me3 and Me7 in pepper. The adaptative significance of trade-offs between selected characters and fitness-related traits, suggests that, although the resistance can be broken, it may be preserved in some conditions if the virulent nematodes are counter-selected in susceptible plants. All these results have important consequences for the management of plant resistance in the field.  相似文献   

17.
Isolates of Phytophthora from pepper, produced in Tunisia, were characterised according to molecular and pathogenicity criteria. Polymerase chain reaction amplification of the ITS1 region in the ribosomal DNA resulted in different sized fragments. The pepper isolates and P. nicotianae yielded a fragment of 310bp that distinguished it from P. capsici with a fragment of 270bp. The ribosomal RNA gene amplicons of both internal transcribed spacers and the 5.8 S of the pepper Phytophthora and P. nicotianae were digested with 8 endonucleases. The patterns generated, with the 2 enzymes that cut, were identical for both taxa. This molecular analysis corroborated the morphological and biological characteristics and suggests strongly that the isolates of Phytophthora from pepper belong to the species P. nicotianae. Inoculation of pepper, tomato, eggplant and tobacco plants with the isolates of P. nicotianae from pepper showed they were highly pathogenic on pepper but not on tobacco, while their pathogenicity was weak on tomato and eggplant and was associated with atypical symptoms not observed in the field. These pathogenicity tests suggest that pepper isolates of P. nicotianae are particularly adapted to their host and may thus constitute a forma specialis of P. nicotianae.  相似文献   

18.
Three isolates of Chrysanthemum stem necrosis virus (CSNV) were obtained from chrysanthemum plants in distinct regions of Japan in 2006 and 2007. All the original host plants showed severe necrotic symptoms on the leaves and stems. Amino acid sequence data of the nucleocapsid protein genes of the three isolates (CbCh07A, TcCh07A, and GnCh07S) showed high identities with those of two other CSNV isolates, HiCh06A L1 from Japan and Chry1 from Brazil. Furthermore, for the first time the complete nucleotide sequence of the S RNA was determined for CSNV (isolate HiCh06A). In phylogenetic analysis based on the non-structural protein genes from the genus Tospovirus, HiCh06A L1 was placed in the same genetic group as Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus. Host range examination for isolates HiCh06A L1 and CbCh07A showed that green pepper (cv. ‘Kyoyutaka’, ‘Saitamawase’, ‘Tosakatsura’, ‘L3 sarara’ and ‘L3 miogi’) and tomato (cv. ‘Sekaiichitomato’) were systemically susceptible hosts, whereas TSWV-resistant Solanaceae species, Capsicum chinense, Lycopersicon peruvianum and a TSWV-resistant cultivar of green pepper (cv. TSR miogi), were resistant.  相似文献   

19.

Leaf mold caused by the fungus Cladosporium fulvum (syn. Passalora fulva) has been a serious disease in greenhouse tomatoes in Cuba, but less damage is seen in outdoor grown plants. This study was conducted to identify races of the causal agent of tomato leaf mold. A total of 36 single conidial isolates obtained from different provinces in Cuba and the reference strain race 0 were inoculated on a differential set of tomato cultivars carrying different Cf resistance genes. Further, a polymerase chain reaction (PCR) was developed using Avr9 gene-specific primers. As result, all isolates could overcome the Cf-9 resistance gene only, but not resistance genes Cf-2, Cf-4 and Cf-5 and must therefore be coined race 9. Race identity was also confirmed by PCR analysis, which showed that the Avr9 gene was not amplified in any of 36 single conidial isolates studied proving that they all lack this gene. This is the first report of the occurrence of race 9 of C. fulvum in Cuba. Pyramiding other Cf genes in hybrid of tomato may provide a more durable level of resistance to C. fulvum.

  相似文献   

20.
The chromosome number and electrophoretic karyotype of Japanese isolates of Verticillium dahliae were investigated. In a genomic Southern blot analysis of seven isolates probed with a telomere consensus sequence (TTAGGG)5, 12 or 14 bands were observed. Furthermore, pulsed-field gel electrophoresis (PFGE) of these isolates revealed five or six chromosomal bands. A band (approx. 3.5 Mbp) common to all isolates apparently contained more than two chromosomes. From these results, we concluded that each isolate’s chromosome number is six (an eggplant pathotype isolate) or seven (all isolates of tomato and sweet pepper pathotypes). Although the chromosome sizes differed among isolates, karyotypes were similar within tomato and sweet pepper pathotypes. A small chromosome (approx. 1.8 Mbp) was observed only in the sweet pepper pathotype. Subsequent PFGE-Southern hybridization analyses revealed that the three DNA fragments specific to tomato pathotype are located on the same chromosome. These results suggest that the tomato-pathotype-specific DNA sequences might coexist on one chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号