首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Philippines, timber production on small farms has become profitable as a result of reduced supplies due to extensive deforestation and increasing demand. In the early 1990s, when the price of timber was high, farmers were promised huge returns from tree farming. However, widespread planting of few species has led to oversupply and a sharp decline in the price of farm-grown timber. Moreover, low intercrop yields as a result of competition from fast-growing trees and low timber yields due to poor tree management, further reduce net economic returns. In spite of this, interest in tree farming remains high. This paper examines the private profitability of two tree-maize systems, namely trees in blocks and trees in hedgerows, compared with the alternative of maize monocropping. The analysis reveals that maize monocropping provides higher returns to land at the current timber price, but considerably lower returns to labour, than the maize-tree systems tested. This suggests that tree farming is a more attractive option for labour and capital-constrained households or those with off-farm opportunities that compete for their labour. These farmers may raise productivity and income by planting trees on the excess land that cannot be devoted to annual crops. The analysis also indicates that wide-spaced tree hedgerows are superior to tree blocks, due to lower establishment and management costs, longer periods of viable intercropping and more rapid tree growth.  相似文献   

2.
On-farm experiments were conducted in the Philippines to study over a 4-year period the growth of two timber trees, gmelina (Gmelina arborea R. Br.) and bagras (Eucalyptus deglupta Blume), and their impact on the grain yield of intercropped maize. The experiment consisted of maize monocropping plots (control) and maize intercropped between trees planted in block (2 × 2.5 m), and hedgerow arrangement (1 × 10 m). Three maize crops were planted in the block plots before canopy closure, and seven maize crops were planted in the hedgerow and monocropping plots. Maize grain yield in the hedgerow and in the block arrangement with gmelina were respectively 37% (16.58 tons ha−1) and 68% (8.3 tons ha−1) lower than in monocropping (26.21 tons ha−1). In the plots with bagras, maize grain yield in hedgerow and in block arrangement were respectively 19% (24.8 tons ha−1) and 66% (10.4 tons ha−1) lower than in monocropping (30.6 tons ha−1). For both tree species, the diameter at breast height (dbh) was greater in hedgerow than in block arrangement, with the difference being more pronounced with age. It was estimated that gmelina planted in hedgerows would produce 6–8 m3 ha−1 of merchantable volume more than if planted in block. The study verifies the hypothesis that intercropping between widely-spaced trees rows (planted at 10 m or more) is more profitable and feasible to smallholders than either maize monocropping or woodlots, and concludes with recommendations on how to further improve the productivity of tree-intercropping systems.  相似文献   

3.
The impact of agroforestry on food security of upland farmers is least recognized and appreciated given that the linkage between them is quite complex and not well understood. The crucial role of agroforestry in enhancing food supply and augmenting family income is commonly ignored. This study aimed to get a deeper understanding of the role of agroforestry in ensuring food security of farming households in the Philippine uplands. A combination of participatory approaches including participatory rural appraisal, household survey, focused group discussions, field experiments and simulation modeling were used for the study conducted in Claveria, Northern Mindanao, Philippines. The first major finding was that the prime responsibility for ensuring adequacy of food production and supply for the farming households rested on the husband and wife. The second major finding based on the simulation results was that agroforestry increased and stabilized corn yields under hedgerow system. Moreover, fruits from perennial crops and trees served as secondary food crops especially during lean months of food supply. The last major finding was that the adoption of agroforestry significantly increased the level of benefits by around 42–137%, compared with the low income from continuous annual monocropping. The key to making upland farm households food secure is to increase the productivity of their farms and home gardens. A good start is to promote the agroforestry system in upland areas, and it is thereby recommended that both national and local government units mainstream their policies and efforts toward promotion of agroforestry adoption in the Philippine uplands.  相似文献   

4.
The interactions between component species in three-tier agroforestry systems were studied on sloping laterite soils of South India for three years. The wood yield of Eucalyptus was found to increase in association with the intercrops, with cassava + groundnut resulting in the best growth of Eucalyptus. Green forage yield of Leucaena was adversely affected by cassava but was improved by inclusion of a short duration seasonal crop. Both spread and mean length of lateral roots of Eucalyptus and Leucaena were restricted by cassava intercropping. Both the tree species were found to reduce the tuber yield of cassava and also the pod yield of both the seasonal crops when grown in association. Monocropping with cassava was found to improve the fertility and an increase in phosphorus and potassium contents of the soil was observed when grown in association with Eucalyptus and Leucaena. Soil fertility fell considerably after three years of cultivation of the tree species. The nutrient uptake by cassava was low when grown in association with perennial species. Both run off and soil loss were effectively reduced when cassava was grown in staggered mounds under Eucalyptus and Leucaena.  相似文献   

5.
The great erosion control potential of agroforestry systems is generally recognized. However, insufficient data are available to be able to give absolute quantitative values for the erosion control potential of specific agroforestry systems or to compare their potential. To obtain such quantitative erosion data, long-term standard erosion measurements should be done in specific agroforestry systems. Such measurements may become very costly because the data need to be collected in a wide range of agroforestry systems on different sites over a long time. A further constraint is the reliability of such information: erosion figures may not be comparable because of discrepancy between the scale of measurement and the scale of the agroforestry system and the occurrence of different kinds of erosion. The methodology presented here enables a quick comparative estimation of the erosion (surface erosion, gully erosion and mass movement) control potential of different agroforestry systems. The erosion control value of agroforestry systems is related to their protective functions: the cover, barrier and soil reinforcement functions. The methodology involves identifying which features influence these different functions within a specific agroforestry system and subsequently evaluating the efficacy. The applicability of this methodology is demonstated with examples from various agroforestry systems in the Himalayan region.  相似文献   

6.
Agroforestry Systems - The Soil Management Assessment Framework (SMAF) has successfully been tested as an objective tool to quantify land use and management effects on soil health, including under...  相似文献   

7.
不同类型用地水土流失的对比研究   总被引:4,自引:0,他引:4  
采用设置径流场、集水区等观测方法,经2~3年研究,发现裸地的土壤侵蚀剧烈,坡耕地土壤侵蚀达中度以上,而有林地仅为微度或轻度侵蚀。裸地的地表径流量最大,其次是坡耕地,有林地地表径流量仅为坡耕地的13.8%,裸地的6.9%。影响地表径流量的主要因子是降雨量和降雨强度,蒸发量、间隔期有负效应。  相似文献   

8.
The Indo-gangetic plains (IGP) in India occupies 13 % of the total geographical area and produces 50 % of total food grain to feed 40 % population of the country. Dynamic CO2FIX model v3.1 has been used to assess the baseline (2011) carbon and to estimate the carbon sequestration potential (CSP) of agroforestry systems (AFS) for a simulation period of 30 years in three districts viz. Ludhiana (upper IGP in Punjab), Sultanpur (middle IGP in Uttar Pradesh) and Uttar Dinajpur (lower IGP in West Bengal) respectively. The estimated numbers of trees existing in farmer’s field on per hectare basis in these districts were 37.95, 6.14 and 6.20, respectively. The baseline standing biomass in the tree components varied from 2.45 to 2.88 Mg DM ha?1 and the total biomass (tree + crop) from 11.14 to 25.97 Mg DM ha?1 in the three districts. The soil organic carbon in the baseline ranged from 8.13 to 9.12 Mg C ha?1 and is expected to increase from 8.63 to 24.51 Mg C ha?1. The CSP of existing AFS (for 30 years simulation) has been estimated to the tune of 0.111, 0.126 and 0.551 Mg C ha?1 year?1 for Sultanpur, Dinajpur and Ludhiana districts, respectively. CSP of AFS increases with increasing tree density per hectare. Site specific climatic parameters like monthly temperature, annual precipitation and evapotranspiration also moderates the CSP of AFS. The preliminary estimates of the area under AFS’s were 2.06 % (3,256 ha), 2.08 % (6,440 ha) and 12.69 % (38,860 ha) in Sultanpur, Dinajpur and Ludhiana respectively.  相似文献   

9.
Pan  Jiachen  Liu  Chao  Li  Hongli  Wu  Qicong  Dong  Zhi  Dou  Xiaohui 《Agroforestry Systems》2022,96(7):997-1008
Agroforestry Systems - Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters,...  相似文献   

10.
Diversification of agroecosystems has long been recognized as a sound strategy to cope with price and crop yield variability, thus increasing farm income stability and lowering financial risk. In this study, the financial returns, stability and risk of six cacao (Theobroma cacao L.) – laurel (Cordia alliodora (R&P) Oken) – plantain (Musa AAB) agroforestry systems, and the corresponding monocultures, were compared. Production and cost data were obtained from an on-going eight-year old experiment. The agroforestry systems included a traditional system and a replacement series between cacao (278, 370, 556, 741 and 833 plants ha–1) and plantain (833, 741, 556, 370 and 278 plants ha–1) with a constant laurel population (timber tree; 69 trees ha–1). An ex-post analysis was conducted using experimental and secondary data to build a simulation model over a 12-year period under different price assumptions. The probability distribution functions for the three commodity prices were modeled and simulated through time, accounting for their possible autocorrelation and non-normality. The expected net incomes from the agroforestry systems were considerably higher than from monocultures. The agroforestry systems were also less risky. Agroforestry systems with proportionally more cacao than plantain were less risky, but also less stable. The timber component (C. alliodora) was a key factor in reducing farmer's financial risks. Methodologically, the study illustrates a technique to evaluate both expected returns and the corresponding financial risks to obtain a complete, comparable profile of alternative systems. It shows the need to allow for the possibility of non-normality in the statistical distributions of the variables entering a financial risk and return analysis.  相似文献   

11.
The use of land for intensive arable production in Europe is associated with a range of externalities that typically impose costs on third parties. The introduction of trees in arable systems can potentially be used to reduce these costs. This paper assesses the profitability and environmental externalities of a silvoarable agroforestry system, and compares this with the profitability and environmental externalities from an arable system and a forestry system. A silvoarable experimental plot of poplar trees planted in 1992 in Bedfordshire, Eastern England, was used as a case study. The Yield-SAFE model was used to simulate the growth and yields of the silvoarable, arable, and forestry land uses along with the associated environmental externalities, including carbon sequestration, greenhouse gas emissions, nitrogen and phosphorus surplus, and soil erosion losses by water. The Farm-SAFE model was then used to quantify the monetary value of these effects. The study assesses both the financial profitability from a farmer perspective and the economic benefit from a societal perspective. The arable option was the most financially profitable system followed by the silvoarable system and forestry. However, when the environmental externalities were included, silvoarable agroforestry provided the greatest benefit. This suggests that the appropriate integration of trees in arable land can provide greater well-being benefits to society overall, than arable farming without trees, or forestry systems on their own.  相似文献   

12.
13.
Inadequate soil management practices adopted in the Brazilian semi-arid region contribute to erosive processes. Agroforestry systems (AFs) have been considered an alternative to reduce water erosion. This study aimed to evaluate the impact of two alternatives AFs, a traditional and an intensive cropping system on the losses of sediments, water, organic carbon and nutrients caused by water erosion in comparison to the natural vegetation (caatinga) in a semi-arid region of northeastern Brazil. The agroecosystems studied were: agrosilvopasture (AGP) which consisted of an alley cropping system, cultivated with Leucaena leucocephala and maize, within an area composed by 22% of native trees (200 native trees per hectare) which was grazed during the dry season; silvopasture (SILV) that was composed by 38% of native trees (260 trees per hectare) with a stocking rate of 20 ewes during whole year; traditional agrosilvopasture (TRAG) being managed as following: total deforestation, burning of the residues, cropped with maize for 2 years (1998 and 1999) and fallow during 8–10 years; and intensive cropping (IC) system which was deforested and burned in 1997 followed by cultivation of maize from 1998 to 2002, and thereafter by a fallow period of 8–10 years similar to TRAG. Two areas of native forest (NF1, NF2) known as ‘caatinga’, used as grassland during the dry season and as a source of wood, were selected and used as reference of steady state in the comparative study in relation to the cultivated sites. Sediment and water losses as a result of erosion were collected during two rainy seasons, i.e. 2003 and 2004, and nutrients and organic carbon contents were determined. Soil samples were collected and organic carbon, pH in water, pH in KCl, water dispersible clay (WDC) and hydraulic conductivity (K0) were measured. In 2003, sediment and water losses did not differ significantly among all treatments. However, in 2004, TRAG (0.70 Mg ha−1) and NF1 (1.37 Mg ha−1) showed the highest sediment losses, whereas TRAG and IC presented the highest water losses. On average, nutrients losses in cropped areas were lower than in natural vegetation (NF1, NF2). The alternative AFs (AGP, SILV) were efficient to reduce water erosion effects when compared to the most common agricultural practices adopted in the region, being highly recommended as sustainable technical alternatives for food production in the region.  相似文献   

14.
黄土高原山坡上的复合农林业是一种普遍存在的景色,在这里土壤的水分是植物生长和发展的限制因素。文中研究了三种类型复合农林业边界(林-牧地、林-耕地和防护林-耕地)下水分的时空特性。研究结果表明,从土地表面到110cm处土壤的水分含量随着土壤深度的增加而减少。在雨季(7-9月)、干旱季(5-6月)和春季(3-4月),土壤的水分含量在三种边界下变化非常显著。在三种边界类型的不同土壤层下,土壤水分的水平分布呈现出线性、波形、勺形或是"W"形不同的形式。通过方差分析和多重比较估计除了不同边界类型下土壤水分影响域(DEI)。在干旱季节,在0-10cm的土壤层的DEI为0.4H(H为平均树高),该数据从牧地或耕地下的0.2H到林-牧地、林-耕地下的0.2H和防护林-耕地下0.7H(从耕地的0.2H到防护林的0.5H)。在雨季,在0-110cm土壤深度三种边界下的DEI为0.7H。研究结果表明,特别在黄土高原的恢复退化土地区域为了保持土壤的水分在土地管理上复合农林业类型应该谨慎选取。  相似文献   

15.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

16.
Consequent to recent recognition of agricultural soils as carbon (C) sinks, agroforestry practices in the West African Sahel (WAS) region have received attention for their C sequestration potential. This study was undertaken in the Ségou region of Mali that represents the WAS, to examine the extent of C sequestration, especially in soils, in agroforestry systems. Five land-use systems were selected in farmers’ fields [two traditional parkland systems, two improved agroforestry systems (live fence and fodder bank), and a so-called abandoned land]. Soil samples taken from three depths (0–10 cm, 10–40 cm, and 40–100 cm) were fractionated into three size classes (2,000–250 μm, 250–53 μm, and <53 μm) and their C contents determined. Whole-soil C contents, g kg−1 soil, across three depths ranged from 1.33–4.69 in the parklands, 1.11–4.42 in live fence, 1.87–2.30 in fodder bank, and 3.69–5.30 in abandoned land; and they correlated positively with silt + clay content. Using the 13C isotopic ratio as an indicator of relative contribution of trees (C3 plants) and crops (C4 plants) to soil C, more tree-origin C was found in larger particle size and surface soil and indicated that long-term tree presence promoted storage of protected C in deeper soil. Existing long-standing agroforestry practices of the region such as the parklands seemed to have little advantage for sequestering additional C, whereas improved agroforestry practices such as live fence and fodder bank introduced in treeless croplands seemed to be advantageous.  相似文献   

17.
In an effort to mitigate severe environmental problems, the Chinese government introduced ecological agriculture as an approach to sustainable grain production. One such method heavily employed in the Northern Plains of China is agroforestry. This region provides a unique case to assess the effect of agroforestry on agricultural output. This paper estimates a production function with a measure for forest cover to test the hypothesis that agroforestry makes a positive and significant contribution to agricultural output. Evidence shows that the effects of agroforestry on agricultural output are positive, though not always significant. This finding is relevant not only to Chinese agriculture, but also in answering the question of how agricultural sustainability can be accomplished in the long term. With increasing populations and decreasing opportunities for land expansion globally, agroforestry is one answer to improving agricultural growth.  相似文献   

18.
Tabora, Panfilo C. Analysis and evaluation of agroforestry as an alternative environmental design in the Philippines.Agroforestry as a land-use concept and an environmental design was analyzed and evaluated from the Philippines setting. A historical perspective of agroforestry was presented and the study explores the direction that agroforestry has taken in recent years as a socio-economic tool, a conservation strategy and a political expediency.The concepts of agroforestry were analyzed and used as the bases for evaluation. Five general socially-oriented concepts were examined: social relevance (appropriateness); profitability; balance (equilibrium); versatility and creativity; and longevity and reliability. These were related to five agroecosystem principles: ecological integrity; productivity; stability; flexibility and resiliency; and sustainability and conservation. All these were interrelated to many attributes under a unified Agroecosystem Analysis Framework.Seven current programs in the Philippines which promote agroforestry were also examined and evaluated based on the Agroecosystem Analysis Framework. A closer look at the impacts of the programs was done and ratings were given for each program. The Multiple Cropping Program and the Integrated Social Forestry Program came out with the most positive results.For a closer focus, a site was selected and five cases from the site were evaluated based on a reconstruction of the events and experience in the area over 14 years. The Mixed-Crops Agroforestry (representing the ideal agroforestry) came out with a rating equivalent to the Coconut and Abaca-based Agroforestry. The Industrial Tree Plantation came out with the lowest rating.The study concludes that agroforestry has a role as an environmental design, but that its usefulness has limitations due to some physical constraints and social and economic values that have to be overcome. Recommendations are provided for policy-making for agroforestry.Portion of a study submitted to the Graduate Faculty of the State University of New York College of Environmental Science & Forestry, May, 1986.Presently Leader of the Diversification Program of the Honduran Foundation for Agricultural Research.  相似文献   

19.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

20.
Karki  Himani  Bargali  Kiran  Bargali  S. S. 《Agroforestry Systems》2021,95(8):1603-1617

To access the process of nitrogen mineralization in soil, the buried-bag technique was used among traditional agroforestry systems in the Bhabhar belt of Kumaun Himalaya. The present study, determined the relationship between various parameters of N-mineralization with agroforestry systems, seasons and soil depths. Season and soil depth have significantly (p?<?0.001) affected the process of ammonification, nitrification and net N-mineralization. The soil ammonium-N pool was comparatively higher than the nitrate-N pool. Highest amount of ammonium and nitrate-N were recorded in the agri-horticulture (AH) system, and lowest in the agri-horti-silviculture (AHS) system. Among the systems, highest amount of inorganic-N (ammonium?+?nitrate) was recorded during rainy season while, lowest during winter season. The highest ammonification rate (6.47?±?1.47 mg kg?1 month?1) was observed in agri-silviculture system and lowest (5.67?±?1.68 mg kg?1 month?1) in AHS system, while nitrification value was maximum (2.53?±?0.40 mg kg?1 month?1) in AH system and minimum (2.23?±?0.37 mg kg?1 month?1) in AHS system. The values of net N-mineralization were ranged from 4.03?±?0.53 to 13.29?±?0.44 mg kg?1 month?1. The values of inorganic-N and net N-mineralization were significantly more (P?<?0.01) in the surface soil layer (0–20 cm) than the subsurface layers (20–40 cm and 40–60 cm). Nitrogen mineralization was negatively correlated with the soil pH and positively correlated with soil organic carbon and total soil nitrogen. Higher rate of N-mineralization in AHS system indicated rapid turnover of nitrogen due to soil management practices and suggested that the changes in agroforestry based land-use systems alter the process of net N-mineralization, nitrification and ammonification.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号