首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

2.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

3.
Our aim was to compare enzyme activities (tannase, polyphenol oxidase and protease) with concentrations of tannins and their ability to precipitate proteins in the litter layer and the humus layer under silver birch (Betula pendula Roth.) and Norway spruce (Picea abies L.). We also estimated the influence of these enzymes on protein-tannin complexes and the influence of tannins on proteolytic activity. The study site was a tree species experiment in Eno, middle-eastern Finland, having three replicated plots dominated by 42-year-old silver birch and Norway spruce. Our hypotheses were (1) tree species and soil layer have an influence on tannin concentrations and enzyme activities, (2) that tannin and protein concentrations in soil organic horizon are positively correlated with enzyme activities and (3) that the enzymes studied have the ability to degrade tannin-protein complexes and that tannins can inhibit proteolytic activity. Concentrations of total tannins and hydrolysable tannins, and tannase and proteolytic activities were higher in the humus layer than in the litter layer. In general the highest values of concentrations of total tannins and hydrolysable tannins and enzyme activities were obtained for the birch humus layer, but the concentrations of condensed tannins and proteins were highest in the litter layer and under spruce. A strong correlation between substrate concentration and enzyme activity was found between hydrolysable tannins and tannase activity. Polyphenol oxidase showed similar activities in both layers. To study the influence of enzymes on protein-tannin complex we synthesized such complexes using bovine serum albumin and either condensed tannins from silver birch and Norway spruce needles or a hydrolysable tannin, tannic acid. Studies with commercial enzymes and enzymes extracted from the soil showed some decrease in tannin concentration of the tannin-protein complex over time, but surprisingly, only a negligible decrease in protein concentration. Complexes of protein with condensed tannins were more recalcitrant than tannic acid-protein complexes. Tannins, depending on the concentration and chemical structure, tended to inhibit proteolytic activity. Our results indicate that protein-tannin complexes are relatively recalcitrant since the enzymes studied here do not effectively release protein from the complexes. Also proteolytic activity and the concentration of extractable proteins seem to be low in soil. However, tannin-degrading enzymes showed high activities.  相似文献   

4.
 Microbial biomass C (Cmic), C mineralization rate, phospholipid fatty acid (PLFA) profiles and community level physiological profiles (CLPPs) using Biolog were determined from the humus and mineral soil layers in adjacent stands of Scots pine (Pinus sylvestris L.), Norway spruce [Picea abies (L.) Karst.] and silver birch (Betula pendula Roth) at two forest sites of different fertility. In addition, the Fourier-transformed infrared (FTIR) spectra were run on the samples for characterization of the organic matter. Cmic and C mineralization rate tended to be lowest under spruce and highest under birch, at the fertile site in all soil layers and at the less fertile site in the humus layer. There were also differences in microbial community structure in soils under different tree species. In the humus layer the PLFAs separated all tree species and in the mineral soil spruce was distinct from pine and birch. CLPPs did not distinguish microbial communities from the different tree species. The FTIR spectra did not separate the tree species, but clearly separated the two sites. Received: 3 December 1999  相似文献   

5.
The biomass of two groups of microorganisms was studied in gray forest soils under six tree species (spruce, Scotch pine, Arolla pine, larch, birch, and aspen) and in the soil of a layland (a clearing in the forest) using kinetic methods. The biomass was the highest in the soil of the layland. The lowest (19.4 μg C/g of soil) biomass of heterotrophic microorganisms was found in the soil under the birch trees, and the highest one (41.7 and 32.0 μg C/g), under the pine and spruce ones. The biomass of denitrifying microorganisms was lower by thirty times than that of the heterotrophic ones. In the soils under the pine and spruce trees (8.4 and 9.2 μg C/g, respectively), the biomass of the denitrifying microorganisms was the lowest; under the birch and larch trees, it was the highest (16.7 and 13.7 μg C/g).  相似文献   

6.
The aim of this study was to compare the concentration of tannins and their capacity to precipitate proteins in the dominant species of ground vegetation (Deschampsia flexuosa (L.) Trin., Pleurozium schreberi (Brid.) Mitt., Vaccinium myrtillus (L.), and Vaccinium vitis-idaea (L.)) and in different layers of the soil organic horizon (litter layer—L, fermentation layer—F, humified layer—H) under silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.), and Scots pine (Pinus sylvestris L.). Total tannin concentrations were also measured in leaves or needles of birch, spruce, and pine. The study site is located in Kivalo, northern Finland, close to the Arctic Circle. Differences in total tannin concentrations in ground vegetation were due mainly to species, with Vaccinium species having the highest values. The influence of the dominant tree species was less important. Protein precipitating capacity was dependent on plant species; the highest values occurred in Vaccinium species and spruce. Because of their relatively high protein precipitating capacity but low total tannin concentration, D. flexuosa and P. schreberi seemed to have more astringent tannins. Concentrations of total tannin and hydrolyzable tannin in the soil organic horizon differed depending on the layer and tree species. In general, the highest concentrations of total tannins were found under birch and spruce in the L layer and the lowest concentrations under pine. Protein precipitating capacity was usually the lowest in the H layer and highest under birch and spruce in the F and H layers. We showed that lignin from rotted pine wood can also precipitate proteins but only small amounts; additionally, lignin can be an important source of error for soil total tannin measurements.  相似文献   

7.
The aim of this study was to monitor the concentration of some plant secondary metabolites, such as low- and high-molecular-weight phenolics, condensed tannins (proanthocyanidins), and sesqui-, di- and triterpenes, in litter (L), fermentation (F) and humified (H) layers of the soil organic horizon in stands dominated by silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and from samples taken from birch leaves and spruce and pine needles. Concentrations of low- and high-molecular-weight phenolics and terpenes from the four most dominant species of ground vegetation taken from the stands were also determined. In general, the L layer showed higher concentrations of both phenolic compounds and terpenes than the F and H layers did. Concentrations of terpenes decreased relatively more with soil depth than did concentrations of total phenolics (=low + high) or condensed tannins. Of the total phenolics, the proportion of low-molecular-weight phenolics increased from the L to the H layer with all tree species. Concentrations of all terpenes were highest under pine and lowest under birch. Concentrations of the studied secondary metabolites in the ground vegetation species were similar under different tree species. Blueberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) contained considerably higher concentrations of total phenolics than did feather moss (Pleurozium schreberi (Brid.) Mitt.) and wavy hair-grass (Deschampsia flexuosa (L.) Trin.). Concentration of total phenolics in soil correlated positively with soil respiration and microbial biomass C, and terpenes showed positive correlation with soil C-to-N ratio.  相似文献   

8.
The aim was to characterize dissolved organic matter in soils under different tree species. Molecular size distribution and chemical composition of dissolved organic carbon and nitrogen were determined in water extracts from humus layers and mineral soils taken from silver birch ( Betula pendula Roth.), Norway spruce ( Picea abies (L.) Karst.) and Scots pine ( Pinus sylvestris L.) stands. Concentrations of tannins and 15 phenolic acids in the humus layers were measured. Per unit of organic matter, the concentrations of dissolved organic C and N were larger in birch and spruce humus layers than in the pine humus layer. In the underlying mineral soil, the concentrations of dissolved organic C were similar at all sites, but the concentration of dissolved organic N was greater in spruce and pine soils than in birch soil. In all soils, the 10–100 kDa fraction was the most abundant molecular size group and hydrophobic acids the most abundant chemical group of dissolved organic C. In all humus layers, hydrophobic acids and hydrophilic bases were the major components of dissolved organic N. There were only minor differences in the concentrations of total tannins in the humus layers under different tree species. Small-molecule tannins (about < 0.5 kDa) were most abundant in the birch humus, and large-molecule tannins in the pine humus. Coniferous humus contained more ferulic and p -coumaric acids than did the birch humus. The concentrations of 3,4 and 3,5-dihydroxybenzoic acid, vanillic acid and 4-hydroxybenzoic acid were similar in all soils.  相似文献   

9.
The aim of this study was to compare microbial activities in the litter (L), fermentation (F) and humified (H) layers of the forest floor under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.). Soil pH, C-to-N ratio, respiration rates, concentration of NH4-N, net N mineralization and nitrification rates, gross NH4+ production and consumption rates and amounts of C (Cmic) and N (Nmic) in the microbial biomass were determined from samples taken from the L, F and H layers under silver birch, Norway spruce and Scots pine. The forest floors under birch and spruce were more active than that under pine, having higher respiration and net N mineralization rates, and higher Cmic and Nmic values than pine forest floor. Differences between tree species were smaller in the H layer than in the L and F layers. The L layer had the highest rates of respiration for all tree species, while rates of net N mineralization were highest in the F layer for birch and spruce. Pine showed negligible net N mineralization in all layers. Concentration of NH4-N was the best predictor of rate of net N mineralization (r=0.748). In general, Cmic and Nmic were higher in the L and F layers than in the H layer, as were their relative proportions of total C (Ctot) and N (Ntot), respectively. Cmic correlated positively with soil respiration (r=0.980) and Nmic with concentration of NH4-N (r=0.915).  相似文献   

10.
The aim of this study was to examine the occurrence and concentrations of volatile organic compounds (VOCs), in particular, volatile monoterpenes, in soil atmosphere under silver birch (Betula pendula L.) and two conifers, Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.), and to determine the effects of the most relevant monoterpenes on transformations of soil N. The study site was a 70-year-old tree species experiment in Kivalo, northern Finland. VOCs were collected using two methods, passive air samplers and a chamber method. In soil atmosphere under spruce and especially under pine, the concentrations of monoterpenes were high, α- and β-pinene, Δ-3-carene and myrcene being the most abundant compounds, whereas concentrations of monoterpenes in soil atmosphere under birch were negligible. Samples of humus layer from the birch stand incubated in vitro and exposed to vapors from monoterpenes typical of coniferous forest soil showed decreased rates of net N mineralization but simultaneously increased rates of C mineralization. The response of soil microbial biomass C and N to different monoterpenes varied, but some monoterpenes considerably decreased soil microbial biomass. Altogether these results suggest that these compounds have negative effects on soil N transformations, but may serve as carbon and energy source for part of soil microbes.  相似文献   

11.
Trees have a key role in determining the composition of soil biota via both above and belowground resource-based mechanisms, and by altering abiotic conditions. We conducted an outdoor mesocosm experiment to investigate the relative impact of above and belowground tree inputs on soil nematode trophic composition, and examine whether tree-driven impacts differed between contrasting species (birch and pine). For both species, we created a factorial design of litter addition and root presence treatments. The litter addition treatment was equivalent to natural levels of litterfall; tree saplings were planted in mesocosms for the root presence treatment and an unplanted control treatment was established that had no litter or root inputs. Litter addition had a limited impact on soil nematode community composition: it primarily decreased omnivore and predatory nematode abundance in birch but had few other effects on the nematode community. By contrast, root presence markedly altered nematode community composition through changes in a range of trophic groups. For both birch and pine, there were significant increases in total, fungivore and predatory nematode abundance in root presence treatments, and furthermore, total and fungivore abundances were positively related to root biomass. Root presence of these contrasting tree species also had a distinctive impact on some specific nematode trophic groups; pine roots promoted bacterivore abundance while birch roots promoted root-hair feeding nematode abundance. These findings suggest strong bottom-up effects of belowground tree inputs, and indicate that particular components of the nematode community may be affected differently by resource quantity and quality. Consequently, we suggest that, in the short-term, belowground rather than aboveground tree inputs have a strong impact on soil food web structure and complexity.  相似文献   

12.
A significant change in the properties of mountainous meadow soils of the Ai-Petri Plateau has taken place under the impact of artificial plantations of pine, birch, and larch created in the Crimean highlands in the middle of the 20th century. In comparison with the soils under meadow vegetation, the soils under forest vegetation are characterized by an increased content of large aggregates, a decrease in the humus content, and an increase in the soil acidity and in the iron content of the organomineral compounds. The most dramatic changes in the structural state of the soils are observed under the plantations of pine. The changes in the acidity and the iron content are most pronounced under larch stands. The decrease in the humus content is observed under all tree species. Thus, in the soil layer of 0–10 cm under pine, birch, and larch stands, the content of Corg is 1.2, 1.3, and 1.4 times lower, respectively, than that in the soil under meadow vegetation.  相似文献   

13.
 Flushes of C and N from fumigation-extraction (FE-C and FE-N, respectively), substrate-induced respiration (SIR), denitrification enzyme activity (DEA) and numbers of NH4 + and NO2 oxidizers were studied in the rhizospheres of Scots pine (Pinus sylvestris L.), Norway spruce [(Picea abies (L.) Karsten] and silver birch (Betula pendula Roth) seedlings growing in soil from a field afforestation site. The rhizosphere was defined as the soil adhering to the roots when they were carefully separated from the rest of the soil in the pots, termed as "planted bulk soil". Soil in unplanted pots was used as control soil. All seedlings had been grown from seed and had been infected by the natural mycorrhizas of soil. Overall, roots of all tree species tended to increase FE-C, FE-N, SIR and DEA compared to the unplanted soil, and the increase was higher in the rhizosphere than in the planted bulk soil. In the rhizospheres tree species did not differ in their effect on FE-C, FE-N and DEA, but SIR was lowest under spruce. In the planted bulk soils FE-C and SIR were lowest under spruce. The planted bulk soils differed probably because the roots of spruce did not extend as far in the pot as those of pine and birch. The numbers of both NH4 + and NO2 oxidizers, determined by the most probable number method, were either unaffected or decreased by roots, with the exception of the spruce rhizosphere, where numbers of both were increased. Received: 26 August 1998  相似文献   

14.
The aim of this study was to explore the response of C and N transformations in the humus layer under silver birch (Betula pendula Roth) to compounds, especially condensed tannins, of different molecular weight extracted and fractioned from Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) needles. Lighter fractions containing tannin monomers and dimers as well as many other compounds, and heavier fractions consisting predominantly of polymerized condensed tannins, were added to samples taken from the humus layer of birch stand. The effects of the spruce and pine fractions were mostly similar, but some differences in magnitude were observed; our results indicated that lighter fractions of pine were easier for microbes to degrade and use than lighter fractions of spruce. Lighter fractions of both tree species increased soil respiration and decreased net N mineralization, while heavier fractions inhibited respiration and increased net N mineralization. Microbial biomass C was not clearly affected by any of the treatments, but with some of the pine fractions the amount of N in the microbial biomass was increased. Comparison of the effects of fractions in birch and in spruce and pine soils, which were studied earlier, showed no major differences between the effects of the fractions in birch and in their own soils, but gave some indication of adaptation.  相似文献   

15.
The chemical and microbial properties of afforested mine soils are likely to depend on the species composition of the introduced vegetation. This study compared the chemical and microbial properties of organic horizons and the uppermost mineral layers in mine soils under pure pine (Pinus sylvestris), birch (Betula pendula), larch (Larix decidua), alder (Alnus glutinosa), and mixed pine–alder and birch–alder forest stands. The studied properties included soil pH, content of organic C (Corg) and total N (Nt), microbial biomass (Cmic), basal respiration, nitrogen mineralization rate (Min-N), and the activities of dehydrogenase, acid phosphomonoesterase, and urease. Near-infrared spectroscopy (NIR) was used to detect differences in the chemical composition of soil organic matter under the studied forest stands. There were significant differences in Corg and Nt contents between stands in both O and mineral soil horizons and also in the chemical composition of the accumulated organic matter, as indicated by NIR spectra differences. Alder was associated with the largest Corg and Nt accumulation but also with a significant decrease of pH in the mineral soil. Microbial biomass, respiration, the percentage of Corg present as Cmic, Min-N, and dehydrogenase activity were the highest under the birch stand, indicating a positive effect of birch on soil microflora. Admixture of alder to coniferous stand increased basal respiration, Min-N, and activities of dehydrogenase and acid phosphomonoesterase as compared with the pure pine stand. In the O horizon, soil pH and Nt content had the most important effects on all microbial properties. In this horizon, the activities of urease and acid phosphomonoesterase did not depend on microbial biomass. In the mineral layer, however, the amount of accumulated C and microbial biomass were of primary importance for the enzyme activities.  相似文献   

16.
Case studies are necessary to assess the effects of changes to tree species on the physicochemical and chemical properties of soils. To achieve this, the fine earth under five tree species was investigated. This study was performed in the Breuil-Chenue experimental forest site located in the Morvan Mountains (France). This site contains two adjacent blocks with replicated stands. The native forest (old beech and oak coppice with standards) was partially clear-felled and replaced in 1976 with mono-specific plantations of European beech, Norway spruce, Laricio pine and Douglas fir. The same changes in soil properties were revealed in both blocks, thus confirming the tree species effect. The percentage of exchangeable acidity on the cation exchange capacity (CEC) was greater under spruce, Douglas fir and pine than under the other species. Spruce stands, and to a lesser extent those of Douglas fir and pine, had a less acidic soil pH than hardwood stands (which was unusual in view of the data in the literature) and smaller CEC values. The small quantities of carbon added to the soil under these tree species provide an explanation for these effects through a partial control of both CEC and pH. This case study thus demonstrated that the tree species effect was not unequivocal and different criteria are necessary for its interpretation. Tree species significantly influenced certain aspects of the chemical properties of topsoil and have the potential to have an impact on current soil fertility.  相似文献   

17.
Forest nitrogen (N) retention and soil carbon (C) storage are influenced by tree species and their associated soil microbial communities. As global change factors alter forest composition, predicting long-term C and N dynamics will require understanding microbial community structure and function at the tree species level. Because atmospheric N deposition is increasing N inputs to forested ecosystems across the globe, including the northeastern US, it is also important to understand how microbial communities respond to added N. While prior studies have examined these topics in mixed-species stands, we focused on the responses of different tree species and their associated microbial communities within a single forest type - a northern hardwood forest in the Catskills Mountains, NY. Based on prior studies, we hypothesized that N additions would stimulate extracellular enzyme activities in relatively labile litters, but suppress oxidative enzyme activities in recalcitrant litters, and tested for independent tree species effects within this context. During the 2007 growing season (May-June), we measured enzyme activities and microbial community composition (using phospholipid fatty acid analysis - PLFA) of the forest floor in single-species plots dominated by sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), red oak (Quercus rubra), American beech (Fagus grandifolia) and eastern hemlock (Tsuga canadensis), species whose litters range from relatively labile to recalcitrant. Half the plots were fertilized with N by adding NH4NO3 (50 kg ha−1 y−1) from 1997 to 2009. Non-metric multidimensional scaling (NMS) and multi-response permutation procedures (MRPP) were used to examine microbial community structure and relationship to enzyme activities.We found that in response to N additions, both microbial community composition and enzyme activities changed; however the strength of the changes were tree species-specific and the direction of these changes was and not readily predictable from prior studies conducted in mixed-species stands. For example, in contrast to other studies, we found that N additions caused a significant overall increase in fungal biomass that was strongest for yellow birch (24% increase) and weakest for sugar maple (1% increase). Contrary to our initial hypotheses and current conceptual models, N additions reduced hydrolytic enzyme activities in hemlock plots and reduced oxidative enzyme activity in birch plots, a species with relatively labile litter. These responses suggest that our understanding of the interactions between microbial community composition, enzyme activity, substrate chemistry, and nutrient availability as influenced by tree species composition is incomplete. NMS ordination showed that patterns in microbial community structure (PLFA) and function (enzyme activity) were more strongly influenced by tree species than by fertilization, and only partially agreed with the structure-function relationships found in other studies. This finding suggests that tree species-specific responses are likely to be important in determining the structure and function of northeastern hardwood forests in the future. Enhanced understanding of microbial responses to added N in single and mixed-species substrates with varying amounts of lignin and phenols may be needed for accurate predictions of future soil C and N dynamics.  相似文献   

18.
In a forest in Flanders (Belgium), situated in a region of intensive livestock production, comparable stands of Corsican pine and silver birch were studied for (1) NH4 + and NO3 - concentrations in throughfall water and soil solution and (2) depositions and leaching of NH4 + and NO3 - to groundwater. In each stand, throughfall collectors and porous cup lysimeters at three depths (0.1m, 0.5m and 1m) were installed in three replicated sets. Throughfall concentrations of ammonium and nitrate were significantly different for both species as well as soil solution concentrations of nitrate at all depths. Under pine, nitrate concentrations of the soil solution at 1m depth clearly exceeded the Belgian critical level for drinking water (50 mg.1-1). Under birch, this level was only sporadically exceeded. During the sampling period, the depositions of NH4 +-N and NO3 --N reached respectively 21.6 kg/ha and 6.3 kg/ha under birch and 81.3 and 15.2 kg/ha under Corsican pine. Nitrate-N leaching under silver birch amounted 25.4 kg/ha whereas 56.4 kg/ha was measured under Corsican pine.  相似文献   

19.
Microbial transformation of nitrogen compounds in middle taiga soils   总被引:1,自引:0,他引:1  
The intensity of mineralization, nitrogen fixation, and denitrification in forest soils of the Karelian middle taiga ecosystems has been evaluated. Podzol-gleyish soil underlying a birch forest with gramineous plants and miscellaneous herbs was shown to have the highest nitrogen-fixing activity. The loss of gaseous nitrogen during denitrification was insignificant due to the low nitrifying activity of the soils named above. N2O uptake by microorganisms was rather intensive in all the soils analyzed, and in illuvial-humo-ferric podzols underlying pine and spruce forests this process predominated. Podzolic sandy loam gley-like soil of a birch forest with gramineous plants and miscellaneous herbs had the highest potential for the mineralization of organic nitrogen; the rate of ammonification and nitrification in this soil was maximal.  相似文献   

20.
伊犁河谷不同造林模式土壤养分与酶活性的关系   总被引:1,自引:1,他引:0  
[目的]研究伊犁河谷5种典型造林模式下土壤养分和酶活性空间特征,为伊犁河谷地区造林树种的搭配和布局提供依据。[方法]通过采样和室内测试分析,对0—20和20—40cm土壤的化学性质及酶活性等指标进行分析测定,并对其相关性进行研究。[结果]0—20的土层土壤酶活性更强,养分含量也更高;各模式土壤养分含量差异显著,榆树防护林土壤碱解氮和有效磷含量最高,全钾和有效钾处于较高水平,林草间作用材林土壤全氮、全磷和有机质含量最高,碱解氮也处于较高水平;土壤酶活性与土壤养分有一定的相关,其中脲酶与全磷、碱解氮、速效磷和有机质显著正相关,过氧化氢酶与全钾和速效钾呈显著正相关,与全氮、全磷、碱解氮和有机质呈显著负相关。[结论]土壤酶活性与土壤养分间关系紧密,并可较好表征土壤肥力水平,可广泛应用于森林土壤的肥力水平评价。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号