首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A major impediment to the identification of priority areas for marine biodiversity conservation is a fundamental lack of information about the distribution of many marine species. Comprehensive species inventories for many areas currently do not exist, and performing detailed taxonomic surveys is often prohibitively expensive and time-consuming. Accordingly, there is a need to develop simple and reliable rapid-assessment techniques for mapping marine biodiversity. One potential approach is to use ‘surrogates’ that function as proxies for the distribution of other, less easily sampled, ‘cryptic’ biota. Two potential surrogates for predicting arthropod faunal biodiversity on rock subtidal reefs were investigated in this study: (1) macroalgae, and (2) faunal subsets derived by aggregating the arthropod fauna at higher taxonomic levels. Faunal and macroalgal assemblage composition was only weakly correlated across sites reflecting broad faunal responses to changes in algal structural complexity and/or common environmental gradients. This suggests that algal species composition may not be very informative in mapping patterns of faunal species distribution on reefs. Instead, the best surrogates were related (i.e. nested), subsets of the faunal assemblages such as family-level taxon richness which was found to be a good predictor of arthropod species richness at independent test sites.  相似文献   

2.
Invasive plants can eliminate native flora and ultimately have negative indirect effects on fauna and the functional ecology of ecosystems, but understanding of these cascading effects on arthropod assemblages is poor. Desert spring habitats are small, isolated landscape elements that are literal oases for flora and fauna and support high diversity assemblages; invasive palms can colonize desert springs and form monocultures. In an effort to understand effects of these invasive trees on higher terrestrial trophic levels at springs, we contrasted assemblage structure of terrestrial arthropods in native vegetation versus invasive palm habitat. We sampled arthropods in paired palm and native habitat at 10 springs in Death Valley National Park, California, USA, during both spring and fall growing seasons using suction sampling. The invading palms Phoenix dactylifera L. and Washingtonia filifera (Linden ex André) supported a mean of only one-sixth of the arthropod abundance, one-third of the species richness, and half the family richness of native habitat. Almost all orders were less abundant in palms, and most families and species were either absent or virtually absent in palm habitat. Both live and dead palm leaves were depauperate, and season and block effects were minimal. Impacts of these visually striking invasives clearly go beyond monopolization of ground cover, and invading palms appear capable of reshaping the functional ecology of desert springs. If control efforts are undertaken, we recommend complete removal of palms, because killed but standing “ghost palms” and associated thatch persist for many years and will continue to provide poor arthropod habitat and prevent native plant establishment.  相似文献   

3.
We present a procedure for the selection of a network of reserves representing the biological diversity of a large and biologically poorly known region. The quantitative analysis gives equal weighting to a wide array of different species: mobile and sessile, long-lived and ephemeral, heterothermic and homeothermic, etc.

Sampling was based on quadrats that were positioned through the region using a stratified random strategy. This provided a presence-absence matrix of the species composition at each quadrat. Numerical pattern analysis was used to identify 14 species assemblages and to re-order the sites and species in the data matrix. The geographic pattern of each assemblage throughout the region was described by contouring assemblage richness, the isolines being the proportion of the number of species in each assemblage. The data matrix was re-examined. Some assemblages exhibit several gradients in species composition. For example, a 0·1 isoline in the east may represent a different 10% of species than a 0·1 isoline in the west. Other assemblages exhibit only a single gradient in species composition.

The results were used to select the optimum positions of reserves needed to represent the compositional diversity of each of the 14 species assemblages.

Limited field checking confirmed the predicted isolines in assemblage compositional richness to a satisfactory extent.  相似文献   


4.
Mangroves are highly threatened ecosystems yet their community ecology is poorly understood. We examined the ecological determinants of bird community assemblage in floristically depauperate mangroves. Birds were surveyed using line transect methods. Large mangrove patches supported fewer species than smaller patches. Patches did not comprise nested species subsets and the bird species richness of several small patches combined was greater than a single large area. The number of mangrove dependent species in a patch was area-dependent suggesting these species may be resource limited, although there was no species density compensation. There was a clear effect of the surrounding habitat, with matrix species accounting for ∼45% of bird species in a patch. Patches surrounded by tropical savanna were relatively species-poor, while regardless of size, patches including monsoon rainforest were relatively species rich. Null model analysis of non-random assemblage structure (nestedness and species co-occurrence) revealed no deterministic structure to the overall mangrove species assemblage. These analyses described a random pattern of bird distribution and with no evidence of density compensation this suggests that competition is a weak structuring force of mangrove bird assemblages. The lack of nestedness and the random co-occurrence of species are consistent with the matrix-dependence of bird community composition. Conservation plans should treat mangrove patches as part of a habitat mosaic and incorporate many smaller mangrove patches rather than just big ones. Consideration of the nature, extent and diversity of the surrounding matrices is vital in managing and conserving mangrove bird communities.  相似文献   

5.
Temporal variability is a key factor to understand the structure of belowground communities. Seasonal and annual variations are especially relevant in unpredictable desert ecosystems, where macroinvertebrates are poorly known, despite constituting an important group of soil organisms. In the present study, we analyse the composition and temporal (seasonal and annual) variations of soil macroinvertebrates in an arid area of southern Spain. During two years, macroinvertebrates were sampled in litter and belowground levels by means of soil cores. Results show that the assemblage was dominated by arthropods, especially Formicidae and Coleoptera. The assemblage differed between litter and belowground levels. In litter, detritivores dominated the community, while belowground fauna showed a similar proportion of detritivores and herbivores and a low percentage of predators. Litter and belowground assemblages showed seasonal variations in richness, abundance, biomass and composition, although variations were more marked in litter than belowground. Patterns of seasonal variation also differed between the two study years for both litter and belowground invertebrates. The seasonal and annual variability of the assemblage has potentially important implications for community dynamics in the study system, since the changes in species composition and trophic structure of soil invertebrate assemblages may affect species interactions and food web dynamics over time. Therefore, integrating temporal variability is likely to be crucial to understand soil community dynamics and food webs, especially in heterogeneous, variable systems as deserts.  相似文献   

6.
Despite the ubiquity of oribatid mites in soil and litter systems, and their importance in decomposition and nutrient cycling processes, little is known of the factors underlying the composition of their assemblages. Our objective was to address this by determining how oribatid assemblage composition changes by forest stand type. This work was done in and near a hardwood forest in southwestern Quebec, Canada. We sampled mites by collecting 1 L of litter and 170 cm3 of soil from four sites in each of four distinct habitat types: American beech stands, sugar maple stands, mixed deciduous stands and mixed conifer plantations. Samples were collected in July and September 2005, and June 2006, and over 6500 oribatid mites were collected and identified to species. Abundance and species richness differed between forest types: for abundance conifer>beech>maple>mixed deciduous while for species richness beech and conifer>maple>mixed deciduous. Ordination analyses revealed that conifer plantations and beech stands supported distinct assemblages, while there were some overlap in the assemblages found in maple stands and mixed deciduous stands. These data support the importance of aboveground plant communities in affecting the composition of oribatid assemblages even at local scales and provide insight into additional impacts that may be caused by shifts in plant species ranges due to global changes.  相似文献   

7.
The growing pressure placed by human development on natural resources creates a need for quick and precise answers about the state of conservation of different areas. Thus, identifying and making use of ecological indicators becomes an essential task in the conservation of tropical systems. Here we assess the effects of small-scale disturbance on terrestrial arthropods and select groups that could be used as ecological indicators in the Brazilian Atlantic Forest. Arthropods were sampled within a continuous forest in the Serra do Mar State Park, southeastern Brazil, both in disturbed and undisturbed areas of the reserve. The abundance of exotic species was higher in the disturbed site, and this pattern seems to be an adequate indicator of anthropogenic disturbance. Species richness of Araneae, Carabidae, Scarabaeidae, Staphylinidae, and epigaeic Coleoptera (pooled) was higher in the undisturbed site, while that of fruit-feeding butterflies was higher in the disturbed site. Species richness was not significantly correlated between any pair of taxa. In contrast, species composition was significantly correlated among most groups, and clearly discriminates the disturbed from the undisturbed site. Moreover, fruit-feeding butterflies and epigaeic Coleoptera composition discriminated disturbed and undisturbed sites even when species were grouped into higher taxonomic levels, which may be a way of overcoming the difficulty of identifying arthropod species from poorly studied, species-rich ecosystems. Potential applications for these indicators include the choice and evaluation of sites for the establishment of natural reserves, elaboration of management plans, and the assessment of ecological impacts due to human activities, either for the purposes of licensing or legal compensation.  相似文献   

8.
Patterns of biodiversity are influenced by habitat features at multiple spatial scales, yet few studies have used a multi-scale approach to examine ground-dwelling beetle diversity patterns. We trapped and quantified ground-dwelling beetle assemblages at two spatial scales: (1) microhabitat elements, represented by open ground, ground under trees and ground next to logs and (2) macrohabitat, represented by three vegetation types in a box-gum grassy woodland in south-eastern Australia. Species richness and evenness was highest at samples from under trees and lowest at samples in the open. At the macrohabitat scale, species richness and evenness did not differ among vegetation types. Assemblage composition was significantly different between trees, logs and open elements. Assemblage composition was different only between vegetation types with contrasting high and low shrub cover. Estimation of true species richness indicated assemblages at logs may have a higher number of species compared to trees and open elements, and implied greater spatial heterogeneity in assemblages at logs. Significant spatial autocorrelation in beetle assemblages was detected for logs at up to 400 m, but not for ground under trees or in the open. In agreement with previous studies, a mix of vegetation types at the macrohabitat scale is important for beetle conservation. Assemblage composition, however, appears to be more closely linked with habitat elements at the microhabitat scale, where logs support a high diversity of beetle species. This strongly supports the idea that restoring logs to box-gum grassy woodlands would be useful for increasing beetle species richness and assemblage heterogeneity.  相似文献   

9.
The effect of tree species, stand structure, landscape and historical variables was studied on the species composition, species richness and cover of epiphytic bryophyte assemblages in mixed deciduous-coniferous forests of Western Hungary. Stand and tree level assemblages were analyzed by ordinations and generalized linear modeling in 35 70-110 year old stands of different management regimes.Bryophytes showed a considerable preference to different host trees, so that stand level diversity of bryophyte assemblages was determined mainly by tree species diversity, and their composition by tree species composition. Cover and diversity of epiphytic bryophytes were the highest on oaks (Quercus petraea and Quercus robur), and the lowest on Scotch pine (Pinus sylvestris). The presence of sapling (shrub) layer increased, whereas a large number of medium sized trees decreased bryophyte species richness in this study. Tree size was much less influential which is explained by the lack of large, veteran trees. Forest management maintaining tree species diversity, structural heterogeneity and temporal continuity of the stands could considerably contribute to the conservation of this organism group. Selective cutting is more appropriate for these conservational purposes than shelterwood management system.  相似文献   

10.
Across large areas of upland Britain Molinia caerulea and Nardus stricta are replacing Calluna vulgaris as the dominant plant species of the vegetation assemblage. Associated changes in the composition of the whole plant assemblage and a phytophagous insect group, the Hemiptera, were investigated. Vegetation and hemipteran assemblages were sampled at six moorland sites in northern England and Scotland. Sampling at each site was carried out in Calluna vulgaris-dominated areas and grass-dominated areas that had previously been dominated by C. vulgaris. Vegetation assemblages of heath and grass sites differed significantly even when species by which sites were selected for sampling (C. vulgaris, M. caerulea and N. stricta) were removed from the analysis with the highest species richness in dry grassland sites. Hemipteran assemblages differed significantly between heath and grass sites with greater species richness also being in grass sites. Plant species composition was the most important explanatory variable of hemipteran assemblages with temperature, latitude, soil loss on ignition and vegetation height also explaining a significant proportion of the variation. Overall a range of vegetation composition and structural variables explained 40.8% of variation in the Hemiptera species data with ranges of soil and biogeographic variables explaining an additional 8.7%.This research demonstrates that the replacement of one dominant plant species by another is associated with a change in other aspects of moorland biodiversity. In particular the loss of C. vulgaris actually leads to an increase in the species richness of Hemiptera and plants although the number of specialist species declines.  相似文献   

11.
The soil fauna is often a neglected group in many large-scale studies of farmland biodiversity due to difficulties in extracting organisms efficiently from the soil. This study assesses the relative efficiency of the simple and cheap sampling method of handsorting against Berlese–Tullgren funnel and Winkler apparatus extraction. Soil cores were taken from grassy arable field margins and wheat fields in Cambridgeshire, UK, and the efficiencies of the three methods in assessing the abundances and species densities of soil macroinvertebrates were compared. Handsorting in most cases was as efficient at extracting the majority of the soil macrofauna as the Berlese–Tullgren funnel and Winkler bag methods, although it underestimated the species densities of the woodlice and adult beetles. There were no obvious biases among the three methods for the particular vegetation types sampled and no significant differences in the size distributions of the earthworms and beetles. Proportionally fewer damaged earthworms were recorded in larger (25 × 25 cm) soil cores when compared with smaller ones (15 × 15 cm). Handsorting has many benefits, including targeted extraction, minimum disturbance to the habitat and shorter sampling periods and may be the most appropriate method for studies of farmland biodiversity when a high number of soil cores need to be sampled.  相似文献   

12.
We studied the leaf-litter decomposition of three pioneer plants (Cynodon dactylon – grass; Ricinus communis – shrub and Schinus terebinthifolius – tree), and the diversity of the associated detritivore macrofaunal assemblages in a system affected by two coal ash disposals (fly ash and boiler slag) in southern Brazil. We conducted a litter bag experiment in the area during a period of 140 days. We found that the decomposition rate of R. communis was more than 80% faster (k-value 20.7) than the other species. This result agrees with its low C:N ratio, high N (%), and increased abundance of detritivores in the first days of its decomposition. On the other hand, this leaf-litter supported the lowest invertebrate species richness. C. dactylon and S. terebinthifolius leaf-litters were similar in decomposition rates and macrofauna diversity. The type of ash disposal system did not affect leaf-litter decomposition and detritivore densities; on the other hand, the morphospecies composition was distinct in the different sites.  相似文献   

13.
Conservation and management actions often have direct and indirect effects on a wide range of species. As such, it is important to evaluate the impacts that such actions may have on both target and non-target species within a region. Understanding how species richness and composition differ as a result of management treatments can help determine potential ecological consequences. Yet it is difficult to estimate richness because traditional sampling approaches detect species at variable rates and some species are never observed. We present a framework for assessing management actions on biodiversity using a multi-species hierarchical model that estimates individual species occurrences, while accounting for imperfect detection of species. Our model incorporates species-specific responses to management treatments and local vegetation characteristics and a hierarchical component that links species at a community-level. This allows for comprehensive inferences on the whole community or on assemblages of interest. Compared to traditional species models, occurrence estimates are improved for all species, even for those that are rarely observed, resulting in more precise estimates of species richness (including species that were unobserved during sampling). We demonstrate the utility of this approach for conservation through an analysis comparing bird communities in two geographically similar study areas: one in which white-tailed deer (Odocoileus virginianus) densities have been regulated through hunting and one in which deer densities have gone unregulated. Although our results indicate that species and assemblage richness were similar in the two study areas, point-level richness was significantly influenced by local vegetation characteristics, a result that would have been underestimated had we not accounted for variability in species detection.  相似文献   

14.
The effort of boreal forest conservation has emphasised the preservation of old-growth forests while the role of young successional stages in maintaining biodiversity has remained largely unstudied. We compared the richness of beetle species and composition of species assemblages between managed and seminatural forests in five stages of forest succession. The sites were in boreal sub-xeric pine-dominated forests in eastern Finland. Seminatural study sites, especially the recently burned sites, were important habitats for threatened and near-threatened species. We propose that young stages of natural succession should be included in the network of protected forest areas. On the other hand, the composition of saproxylic species assemblages in seminatural forests differed from the assemblages in managed forests, indicating also the need to improve the forest management guidelines so that they better address the requirements of species protection. Regeneration methods applied should resemble or mimic the natural disturbances more closely.  相似文献   

15.
The long-term dynamics of plant communities remain poorly understood in isolated tropical forest fragments. Here we test the hypothesis that tropical tree assemblages in both small forest fragments and along forest edges of very large fragments are functionally much more similar to stands of secondary growth (5-65-yr old) than to core primary forest patches. The study was carried out in a severely fragmented landscape of the Brazilian Atlantic forest. Nine functional attributes of tree assemblages were quantified by sampling all trees (DBH ? 10 cm) within 75 plots of 0.1 ha distributed in four forest habitats: small forest fragments (3.4-79.6 ha), forest edges, second-growth patches, and primary forest interior areas within a large forest fragment (3500 ha). These habitats were markedly different in terms of tree species richness, and in the proportion of pioneer, large-seeded, and emergent species. Age of second-growth stands explained between 31.4% and 88.2% of the variation in the functional attributes of tree assemblages in this habitat. As expected, most traits associated with forest edges and small forest fragments fell within the range shown by early (<25-yr old) and intermediate-aged secondary forest stands (25-45-yr old). In contrast to habitat type, tree assemblage attributes were not affected by vegetation type, soil type and the spatial location of plots. An ordination analysis documented a striking floristic drift in edge-affected habitats. Our results suggest that conservation policy guidelines will fail to protect aging, hyper-fragmented landscapes from drastic impoverishment if the remaining forest patches are heavily dominated by edge habitat.  相似文献   

16.
Water resource development in coastal river catchments contributes to poor fish assemblage health due to the effects of barriers to migration and altered flow regimes. Impacts of migration barriers on fish assemblages depend primarily on the location of each barrier within the river network and migration needs of regional fish fauna. This study examined how temporal and spatial patterns in the distribution and composition of fish assemblages was associated with varying estuarine connectivity and migration barriers in higher altitude reaches in the eastern Hunter River catchment, temperate Australia. Species richness and abundances of diadromous species were expected to be greater in a tributary catchment with unrestricted connectivity to the Hunter River estuary when compared to a neighbouring tributary catchment with restricted connectivity. Six diadromous species were sampled only, or in greater abundances, in the unrestricted tributary when compared to the restricted tributary. As a consequence, assemblage composition in the restricted tributary was dominated by non-diadromous species. Greater abundances of the amphidromous Cox’s gudgeon (Gobiomorphus coxii) were sampled in the unrestricted tributary following their estuarine-freshwater upstream juvenile migration period when compared to the restricted tributary. Differences in the accumulations of migratory species immediately downstream of upland barriers between the two levels of estuary connectivity indicate that migration barriers in lowland reaches have significant effects throughout the entire catchment. Results of this study indicate that the location of each barrier to migration within river networks has varying consequences for catchment-scale connectivity loss and assessing the impacts of multiple barriers. Determining the effects and most appropriate management of migration barriers requires that all obstructions within a river network are recognised, as multiple barriers can have cumulative and interacting consequences for freshwater fish fauna, especially diadromous species.  相似文献   

17.
18.
Pollination has received attention recently due to reported sharp declines of Apis mellifera in several locations, and it has been proposed that diverse native bee communities may be key for continued pollination of economically important crops. However, there is some inconsistency in the literature as to how these communities should best be managed. To address this issue, we collected bees from an intensively managed agricultural region in eastern Australia using blue vane traps. Both linear remnants of vegetation, which form part of a larger corridor network, and adjacent fields of native and exotic pastures, wheat, canola, and lucerne were sampled. A total of 3249 individual bees, representing four families and 36 species were collected. Highly modified environments of nectar-bearing crop supported the most species-rich bee assemblages, and the highest abundance of individual bee species. Distance from the remnants did not limit the body size of species occupying fields (up to 400 m). However, richness of bee assemblages also responded positively to the presence of conservation land in nearby areas, or the number of remnant native trees surrounding traps. Linear remnants of native vegetation contributed to assemblage heterogeneity by adding unique species to the regional pool. Our findings indicate that agricultural industries that currently rely on pollination by A. mellifera should ensure that intensive land use is complemented by untilled areas in the form of conservation land, or farm dams and scattered trees in fields, to support wild pollinators that may act as insurance against further future losses of managed hives.  相似文献   

19.
Quick biodiversity studies on poorly studied taxa and areas are increasingly popular for setting conservation priorities over a wide range of spatial scales. However, the implementation of such studies is complicated by the variable extent to which the different criteria used in prioritisation are correlated to each other. Using methods of constrained ordination, we examined the species-habitat relationships of carabid beetles based on ground beetle assemblages from 22 sites in the Picos de Europa National Park, northern Spain. We found characteristic species assemblages for subalpine meadows, Genista shrublands, and pastures, whereas mown meadows, heathlands, beech and riparian woodlands were occupied by more habitat generalist species. Species associated with subalpine meadows and Genista shrublands tended to be mostly brachypterous and to have geographic ranges restricted to northern Spain. In contrast, we found no relationship between the degree of species' association with pastures and geographic range-wing size type. Although the species richness was higher in riparian woodlands and mown meadows, we suggest a higher conservation value for subalpine meadows and Genista shrublands across the landscape because they sustain characteristic assemblages dominated by species with restricted ranges and reduced powers of dispersal. Our study suggests that preserving areas in the landscape supporting higher biodiversity will not necessarily preserve those species potentially more susceptible to habitat loss and fragmentation. It also supports the feasibility of biodiversity studies based on multivariate techniques for setting conservation priorities over complex landscapes.  相似文献   

20.
Epiphyte mats (contiguous pieces of live and dead epiphytes perched upon branches of trees) are a conspicuous component of tropical cloud forests and harbor diverse meso- and microarthropod communities. We investigated differences in arthropod assemblage structure between the vegetative (green) and humic (brown) portions of epiphyte mats in a lower montane forest in Monteverde, Costa Rica. Because of qualitative differences between the two substrates, we hypothesized that they would support different arthropod communities and that variation in community parameters would be linked to the quantity of brown material present in a mat sample. The green fraction contained twice as many individuals and species per gram dry mass than the brown fraction. Morphospecies composition was very similar between green and brown portions, but the relative abundance of several taxa differed significantly between the substrates. Contrary to our prediction, total arthropod abundance and richness in a sample were not correlated with the proportion of brown material present. In laboratory trials, the most common morphospecies of oribatid mite in this system showed a preference for brown substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号