首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Reforestation and afforestation have been suggested as an important land use management in mitigating the increase in atmospheric CO2 concentration under Kyoto Protocol of UN Framework Convention on climate change. Forest inventory data (FID) are important resources for understanding the dynamics of forest biomass, net primary productivity (NPP) and carbon cycling at landscape and regional scales. In this study, more than 300 data sets of biomass, volume, NPP and stand age for five planted forest types in China (Larix, Pinus tabulaeformis, Pinus massoniana, Cunninghamia lanceolata, Pouulus) from literatures were synthesized to develop regression equations between biomass and volume, and between NPP and biomass, and stand age. Based on the fourth FID (1989–1993), biomass and NPP of five planted forest types in China were estimated. The results showed that total biomass and total NPP of the five types of forest plantations were 2.81 Pg (1 Pg = 1015 g) and 235.65 Mg ha−1 yr−1 (1 Mg = 106 g), respectively. The area-weighted mean biomass density (biomass) and NPP of different forest types varied from 44.43 (P. massoniana) to 146.05 Mg ha−1 (P. tabulaeformis) and from 4.41 (P. massoniana) to 7.33 Mg ha−1 yr−1 (Populus), respectively. The biomass and NPP of the five planted forest types were not distributed evenly across different regions in China. Larix forests have the greatest variations in biomass and NPP, ranging from 2.7 to 135.37 Mg ha−1 and 0.9 to 10.3 Mg ha−1 yr−1, respectively. However, biomass and NPP of Populus forests in different region varied less and they were approximately 50 Mg ha−1 and 7–8 Mg ha−1 yr−1, respectively. The distribution pattern of biomass and NPP of different forest types closely related with stand ages and regions. The study provided not only with an estimation biomass and NPP of major planted forests in China but also with a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

3.
The availability of coarse woody debris (CWD) and distribution of dead trees into categories of mortality (dead standing, broken and uprooted) were investigated in north-temperate forests of central Europe (Lithuania). The studied area comprised 188.7 ha and included 18 different stands 40–130 years of age with a variety of tree species (spruce (Picea abies (L.) Karst.), pine (Pinus sylvestris L.), alder (Alnus glutinosa (L.) Gaertn.), birch (Betula pendula Roth and B. pubescens Ehrh.), aspen (Populus tremula L.), oak (Quercus robur L.), forest types (caricus-sphagnum, vaccinium-myrtillus, oxalis, myrtillus-oxalis, caricus-calamagrostis) and edaphic conditions (peaty, sandy, loamy soils of different moisture). The stands were excluded from wood harvesting for at least 30 years. A total of 11 365 dead trees (over 10 cm in DBH) or 6160.7 m3 of dead wood was found (60.2 trees/ha and 32.6 m3/ha). The volume of CWD per hectare was larger in older stands (rS=0.78, P<0.01). Tree mortality during the last 2 years consisted of 482 trees and 381 m3, or 1.28 trees/ha×year and 1.01 m3/ha×year. In 25–33% of cases it was wind-related. Uprooted and broken trees were of larger DBH than dead standing. The distribution into the categories of mortality was strongly dependent on tree species (chi-square test, d.f.=10,P=0). Dead standing dominated in CWD of pine and alder. Broken trees comprised almost a half in CWD of aspen, and about one-third in birch, alder and oak. Uprooting most often occurred in spruce, aspen and birch. Edaphic conditions and stand age had a pronounced impact on distribution into mortality categories for spruce (chi-square test, d.f.=20, P<0.00001) and pine (d.f.=8, P≤0.0003). On peat soil, only a minority of trees of both pine and spruce was uprooted, and standing dead prevailed. In CWD of spruce and pine, the proportions of both dead standing and broken decreased and that of uprooted trees increased on mineral soils of higher moisture and bulk density in older stands. By contrast, uprooting in birch and alder occurred less often on more wet sites, where the proportions of standing snags were higher. A total of 41 species of wood-decomposing polypores were found in the study area. Among those, 10 (24%) were of conservation value.  相似文献   

4.
Our limited understanding of the processes that control the allocation of biomass in trees is one of the factors that hinders our ability to develop mechanistic models of tree growth. Furthermore, accurate assessment of carbon sequestration by forests is hampered by lack of information regarding below-ground biomass. Below-ground to above-ground biomass ratios (BGB:AGB) are known to vary with a number of environmental factors, tending to increase in drier, harsher conditions. However, there are few, good datasets of BGB:AGB ratios of large trees, especially native Australian species. We aimed to investigate the response of BGB:AGB to water availability and tree spacing in 10-year-old Eucalyptus camaldulensis growing in a plantation in a low rainfall area.We carefully harvested 16 trees, ranging in diameter at breast height (DBH) from 7.6 to 25 cm, from a research trial near Deniliquin, NSW. Four replicates of each treatment from a factorial design with wide (3 m × 6 m) and narrow (3 m × 1.5 m) spaced trees and with natural rainfall (408 mm/year) (control) or irrigated plots (flooded six times per year) were selected. Above-ground tree parts were harvested separating stem, branch and foliage. Soil cores to 1 m depth were taken to sample small roots (<15 mm diameter) within each plot, then all roots >15 mm belonging to each tree were excavated using compressed air and an excavator. Roots were separated into six size classes within the range from <2 to >50 mm.Both water and spacing treatments influenced tree growth with trees being larger in irrigated, wide spaced plots. The BGB:AGB ratio was strongly influenced by irrigation (0.68 control, 0.34 irrigated) but not spacing. Allometric analysis of above- and below-ground biomass as a function of DBH showed that the relationship between DBH and above-ground biomass was conserved across treatments.By contrast, the relationship between DBH and below-ground biomass was influenced by water availability, commensurate with the large differences in BGB:AGB ratio. The BGB:AGB ratio increased with tree size largely due to an increase in small roots.The proportion of total root mass in the small roots (<15 mm) obtained through coring was 25–48% with 18–30% of total root biomass in the <5 mm diameter class.  相似文献   

5.
Forest structure and floristic composition were studied in a series of 0.5 ha natural forest plots at four sites near Porto Trombetas in Pará State, Brazil, 11–12 years after being subjected to differing levels of above-ground biomass harvest and removal. In addition to undisturbed control plots, experimental treatments included: removal of most trees ≥45 cm DBH (low intensity harvest); removal of trees <20 and ≥60 cm DBH (moderate intensity harvest); clear-cutting (100% above-ground biomass removal). Post-harvest basal area growth generally increased with harvest intensity, and total basal areas for trees ≥5 cm DBH were, at the time of our study, 60% (in the clear-cut) to about 80% of those in the control plots. Biomass harvests stimulated recruitment and growth of residual trees, particularly in the smaller diameter classes, but had little effect on species richness for small trees, seedlings, vine, herbs, and grasses. Species richness for trees ≥15 cm DBH was greater in the control and low-intensity (74–75 species) than in the moderate intensity (47 species) and clear-cut (26 species) treatment plots. While the tree flora within all harvest treatments was broadly similar to the undisturbed (control) plots and included similar numbers of species of the major plant families typical of the surrounding forests, the more intensive harvest treatments, especially the clear-cut, were dominated by a higher proportion of short-lived, early successional tree species.  相似文献   

6.
Studies of growth rates of trees in managed neotropical forests have rarely employed complete botanical identification of all species, while published information for Central American lowland rain forests largely concerns forests free of recent disturbance. We studied diameter increments of trees in a managed Costa Rican rain forest. The Pentaclethra macroloba-dominated forest was located on low hills with Ultisols in Holdridge's Tropical Wet Forest life zone. The 540 m × 540 m (29.2 ha) experimental area was lightly logged during 1989–1990. The 180 m × 180 m (3.24 ha) experimental plots comprised a 100 m × 100 m (1.0 ha) central permanent sample plot (PSP) with a 40-m wide buffer strip. Post-harvest silvicultural treatments were liberation/refinement (in 1991) and shelterwood (in 1992), applied under a complete randomized block design with three replicates, using logged but untreated plots as controls. All live trees ≥10 cm DBH in the PSPs, were identified to species; data reported are for 1993–1996. Cluster analysis was used to group species on the basis of the median and quartiles of their diameter increment distributions, separating data by silvicultural treatments; five diameter increment groups were established and subdivided on the basis of the adult height of each species (four categories), giving 17 species groups in the final classification. Adult height and silvicultural treatment made a significant contribution to growth rate variation. Median annual increments of the slowest-growing species groups, which featured many under- and middle story species, were ca. 1 mm; those for the fastest growing species, which were mainly canopy and emergents, were ca. 16 mm. All species in the groups of very fast growth were pioneers, whether short or long-lived, though many other pioneer species did not show fast growth. The proportions of species found in groups of moderate, fast or very fast growth were greater in the silviculturally treated plots than in the controls, and one complete diameter increment group, of fast growth, was only represented in the treated plots. Crown form, crown illumination and presence of lianas in the crown, showed significant correlations with diameter increments, though the importance of these latter two variables varied with silvicultural treatment. The very fast growth groups differed from the others in having higher proportions of trees with well-formed, well-illuminated crowns and an irregular diameter distribution with relatively few individuals in the smallest DBH class. Comparison with data from other neotropical forest sites shows that long-lived pioneers such as Vochysia ferruginea and Jacaranda copaia grow fast or very fast at all sites, while non-commercial canopy and emergent species of Chrysobalanaceae and Sapotaceae appear to be uniformly slow-growing. Growth data for the majority of species are, however, published for the first time.  相似文献   

7.
Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory and analysis (FIA) measured tree diameter and height, and then destructively sampled 30 trees from 6 species at an upland deciduous dry forest site near Ponce, Puerto Rico. This data was used to develop best parsimonious equations fit with ordinary least squares procedures and additive models fit with nonlinear seemingly unrelated regressions that estimate subtropical dry forest leaf, woody, and total AGB for Bucida buceras and mixed dry forest species. We also fit equations for estimating inside and outside bark total and merchantable stem volume using both diameter at breast height (d.b.h.) and total height, and diameter at breast height alone for B. buceras and Bursera simaruba. Model fits for total and woody biomass were generally good, while leaf biomass showed more variation, possibly due to seasonal leaf loss at the time of sampling. While the distribution of total AGB into components appeared to remain relatively constant across diameter classes, AGB variability increased and B. simaruba and B. buceras allocated more carbon into branch biomass than the other species. When comparing our observed and predicted values to other published dry forest AGB equations, the equation developed in Mexico and recommended for areas with rainfall >900 mm/year gave estimates substantially lower than our observed values, while equations developed using dry forest data from forest in Australia, India and Mexico were lower than our observed values for trees with d.b.h. <25 cm and slightly higher for trees with d.b.h. >30 cm. Although our ability to accurately estimate merchantable stem volume and live tree AGB for subtropical dry forests in Puerto Rico and other Caribbean islands has been improved, much work remains to be done to sample a wider range of species and tree sizes.  相似文献   

8.
The establishment of woody fallow systems is an option for the improvement of degraded agricultural landscape within the ecologically deteriorated Aral Sea area in northwest Uzbekistan. Growth and development of ten tree species, differing in tolerance to drought and salinity, were studied over 24 months. To determine species suitability for afforestation, conventional diameter and height measurements were compared to Relative Growth Rate (RGR) and its underlying components, Net Assimilation Rate (NAR), Specific Leaf Area (SLA) and Leaf Weight Ratio (LWR), as well as the Crop Growth Rate (CGR) as a function of NAR and Leaf Area Index (LAI). RGRs varied between 0.46 and 2.16 mg g−1 day−1 and showed highly significant differences among species, but also between years, which reduces the parameter's suitability for species selection. The same is true for NAR and SLA. CGR values ranged from 0.01 to 0.71 g m−2 day−1, increased with age of the trees, and showed significant species differences. CGR correlated better with NAR (r = 0.89) and SLA (r = 0.86) than RGR. Overall CGR correlated highly with the RGRs in height and diameter (in 80% and 71% of all cases, respectively). Thus, CGR appears to be a suitable indicator complementing RGR, NAR and SLA estimates to decide on species suitability for afforestation. The intensive measurements for RGR should be done later, rather than earlier in the tree life cycle. At an early age, CGR and diameter measurements are more meaningful. A combination of estimates, not a single factor, best assesses the long-term sustainable growth under natural conditions and allows early selection of species suitable for afforestation of degraded patches in the agricultural landscape. Ranking of all parameters concurrently showed the high potential of Elaeagnus angustifolia and Populus euphratica, which matched previous rankings based on total biomass production and financial added value.  相似文献   

9.
General non-site-specific allometric relationships are required for the conversion of forest inventory measurements to regional scale estimates of forest carbon sequestration. To determine the most appropriate predictor variables to produce a general allometric relationship, we examined Eucalyptus pilularis aboveground biomass data from seven contrasting sites. Predictor variables included diameter at breast height (dbh), stem volume, dbh2 × H, dbh × H and height (H). The data set contained 105 trees, ranging from 6 to over 20,000 kg tree−1, with dbh ranging from 5 to 129 cm. We observed significant site differences in (1) partitioning of biomass between the stem, branch wood and foliage; (2) stem wood density and (3) relationship between dbh and height. For all predictor variables, site had a significant effect on the allometric relationships. Examination of the model residuals of the site-specific and general relationship indicated that using dbh alone as the predictor variable produced the most stable general relationship. Furthermore, the apparent site effect could be removed by the addition of a constant value to the measured diameter (dbh + 1), to account for the differing diameter distribution across the seven sites. Surprisingly, the inclusion of height as a second predictor variable decreased the performance of the general model. We have therefore demonstrated that for E. pilularis a general allometric relationship using dbh alone as the predictor variable can be as accurate as site-specific allometry, whilst being applicable to a wide range of environments, management regimes and ages. This simplifies regional estimates of aboveground biomass from inventory measurements, eliminating the need for site-specific allometric relationships or modifiers such as height, wood density or expansion factors.  相似文献   

10.
Studies on basic density of woody species in Amazonian savannas are needed to convert data on woody volume to biomass. These ecosystems, which have large carbon stocks, emit greenhouse gases annually due to frequent burnings. Basic density (g cm−3: oven-dry weight/wet volume), measured from complete sample disks (bark, sapwood and heartwood), was calculated for the most abundant woody species in three types of open savannas (Sg: grassy-woody savanna; Sp: savanna parkland; Tp: steppe-like parkland) in Roraima, a state in the northern part of Brazil’s Amazon region. The species selected represent 90–95% of the woody biomass estimated in these ecosystem types. Seven additional species were lumped in an “others” group. In total, we sampled 107 trees: 40 in Sg, 37 in Sp and 30 in Tp. Bowdichia virgilioides (0.516 ± 0.021 (S.E.) g cm−3) was the species with the highest basic density, followed by the “others” group (0.485 ± 0.057 g cm−3), Curatella americana (0.413 ± 0.028 g cm−3), Byrsonima crassifolia + B. coccolobifolia (0.394 ± 0.019 g cm−3), Himatanthus articulatus (0.375 ± 0.020 g cm−3) and B. verbascifolia (0.332 ± 0.020 g cm−3). Basic density of the species with the greatest woody biomass in Roraima’s open savannas (C. americana and B. crassifolia + B. coccolobifolia) did not differ significantly at the 5% level (ANOVA) among the three ecosystem types studied. Wood basic density in these savannas (weighted mean = 0.404 ± 0.025 g cm−3) is lower than that in Amazonian forests (weighted mean = 0.680 g cm−3). These results reduce uncertainty in calculations of carbon stocks and of greenhouse gas emissions from clearing and burning tropical savanna.  相似文献   

11.
Aboveground biomass and nutrients and soil chemical characteristics were examined in young plantations of four indigenous tree species: Hieronyma alchorneoides, Vochysia ferruginea, Pithecellobium elegans, and Genipa americana, growing in mixed and pure stands at La Selva Biological Station, Costa Rica. Total tree biomass production rates ranged from about 5.2 Mg ha−1 year−1 for G. americana to 10.3 Mg ha−1 year−1 for H. alchorneoides pure stands, and for the species mixture it was about 8.9 Mg ha−1 year−1. Branches and foliage formed 25–35% of total tree biomass but they represented about 50% of total tree nutrients. H. alchorneoides, the four species mixture, and P. elegans had the greatest accumulations of total aboveground nutrients per hectare. The importance of the plantation floor as a nutrient compartment varied temporally. When forest floor litter biomass was at its peak, plantation floor litter N, Ca, and Mg were roughly equal to, or greater than stem nutrients for all species except for P. elegans. For P. elegans, the plantation floor consistently represented a very low proportion of total aboveground nutrients. G. americana and V. ferruginea trees showed 55–60% less biomass accumulation in mixed than in pure stands while H. alchorneoides and P. elegans trees grew 40–50% more rapidly in mixture. P. elegans foliage had 60% lower Ca but higher P concentrations in mixed than in pure stands, and G. americana had higher foliar Mg in mixed than in pure stands. V. ferruginea stands had the highest concentrations of soil Ca, Mg, and organic matter, particularly in the top layers. Relative to pure plantations, soil nutrient concentrations in mixed plantations were intermediate for N, P, and K, but lower for Ca and Mg. The results of this study can be used in the selection of tree species and harvest designs to favor productivity and nutrient conservation.  相似文献   

12.
Turvo Park in the Alto Uruguay River region of the State of Rio Grande do Sul is the last intact remnant of the Seasonally Deciduous Forest in southern Brazil. This forest once covered large parts of southern Brazil but it is now reduced to less than 3% of its original size due to intensive logging caused by its exceptional richness in tree species with commercial timber value. The current study presents results on the diversity of timber species inventored in Turvo Park and in a number of small and scattered forest remnants in its vicinity. All timber plants with DBH ≥5 cm were included in the forest inventory on 540 sampling points, established using the point-centred quarter method. On average, 313 plants ha−1 were recorded, belonging to 57 different species from 25 families. Timber species of commercial value represented 64% of all woody species and 36% of all woody plants. Nectandra megapotamica and Apuleia leiocarpa were the main dominant species. Twenty percent of all plants showed a DBH greater than 40 cm, representing 67% of the total log volume. Differences in species diversity and plant density among the forest remnants were detected. The few forest remnants represent an enormous richness of timber species, being the maintainers and propagule repository for all the biodiversity of that ecosystem. A knowledge-based forest management plan is therefore required to secure their vital role in forest enrichment programs or in projects aiming at recovering abandoned and degraded areas, and in breeding programs for the timber production improvement.  相似文献   

13.
In order to accurately estimate the size of the carbon pool and the capacity of the carbon sink in the forested areas of Xiaolong Mountain in Gansu Province, we have established regression equations of organ biomass of eight tree species. We measured and investigated the biomass of different forest stand types based on data from 1259 standard sample plots and 836 standard sample trees. The results show that stand biomass, expressed in t·hm−2 for eight types of forest stands on Xiaolong Mountain, are as follows: Quercus aliena var. acuteserrata 84.05, Pinus tabulaeformis 62.44, Quercus variabilis 81.77, Populus sp. and Betula sp. combined 77.44, Larix sp. 69.00, Pinus armandii 70.07, Picea sp. 96.49 and Abies sp. 98.72. We also looked at other broad-leaved mixed forests. Our study shows that the biomass of a single tree of each tree species is closely related to the diameter at breast height (DBH) and to tree height. The biomass of single trees as well as stand volumes is closely related to average DBH, average tree height and to stand density. __________ Translated from Journal of Beijing Forestry University, 2007, 29(1): 31–36 [译自: 北京林业大学学报]  相似文献   

14.
Uneven-aged management using single-tree or group selection has been in practice for many decades, especially in northern hardwood forests. Use of stocking regulation tools is thought to produce and maintain specific stand structures that upon regulation, are sustainable over time. We evaluated stand structures in northern hardwoods in Upper Michigan across three ownerships that practice different approaches toward uneven-aged management. Industry land (MeadWestvaco—MWV) uses primarily diameter limit cutting combined with a sawyer-select harvest method, retaining a maximum diameter of 45.7 cm (18 in.) with a residual basal area of 16.1 m2/ha (70 ft2/ac) and a cutting cycle of 10 years. The Michigan Department of Natural Resources (DNR) uses a crop tree release technique with a residual basal area of 18.4 m2/ha (80 ft2/ac) and a cutting cycle of 20 years. Both ownerships view regeneration of new cohorts as inevitable given the intensity of disturbance and the forest type. The third ownership (the Ford Forestry Center School Forest at Michigan Technological University—FFC) employs strict stocking regulation using the BDq method (residual basal area of 16.1 m2/ha (70 ft2/ac), maximum diameter of 50.8–55.9 cm (20–22 in.), and a q-ratio of 1.3) with a cutting cycle ranging from 12 to 15 years.Stand structure on a total of 25 stands was characterized for these ownerships to assess the impact of management strategy on stand structure and species composition. Differences in species composition and lower diversity indices were found where increasing sugar maple dominance was an objective (FFC ownership). All ownerships showed reduced relative importance values of mid-tolerant species such as yellow birch in their stands as compared to values reported for old-growth or unmanaged stands. Diameter distributions were classified into one of three shape categories (negative exponential, increasing q-ratio, and rotated sigmoid) using the regression of DBH, DBH2, and DBH3 on the log10 of trees per hectare. The best model in terms of adjusted-R2 and root mean square error (RMSE) was selected for each stand. All management strategies resulted in similar occurrences of distribution shapes, despite some evidence of a trend toward a rotated sigmoid distribution. These trends suggest that several different diameter distribution shapes in uneven-aged northern hardwoods in the Lake States are possible following a variety of management approaches, with sugar maple increasing in dominance with strict adherence to certain stocking regulation guidelines.  相似文献   

15.
The purpose of this study was to determine if spatially-explicit commercial timber inventories (CTI) could be used in conjunction with satellite imagery to improve timber assessments and forest biomass estimates in Amazonia. As part of a CTI, all commercial trees ≥45 cm DBH were measured and georeferenced in 3500 ha of a logging concession in NW Mato Grosso, Brazil. A scientific inventory was conducted of all trees and palms ≥10 cm DBH in 11.1 ha of this area. A total of >20,000 trees were sampled for both inventories. To characterize vegetation radiance and topographic features, regional LANDSAT TM and ASTER images were obtained. Using a stream network derived from the ASTER-based 30 m digital elevation model (DEM), a procedure was developed to predict areas excluded from logging based on reduced impact logging (RIL) criteria. A topographic index (TI) computed from the DEM was used to identify areas with similar hydrologic regimes and to distinguish upland and lowland areas. Some timber species were associated with convergent landscape positions (i.e., higher TI values). There were significant differences in timber density and aboveground biomass (AGB) in upland (6.0 stems ha−1, 33 Mg ha−1) versus lowland (5.4 stems ha−1, 29 Mg ha−1) areas. Upland and lowland, and timber and non-timber areas could be distinguished through single and principal component analysis of LANDSAT bands. However, radiance differences between areas with and without commercial timber on a sub-hectare scale were small, indicating LANDSAT images would have limited utility for assessing commercial timber distribution at this scale. Assuming a 50 m stream buffer, areas protected from logging ranged from 7% (third order streams and above) to 28% (first order and above) of the total area. There was a strong positive relationship between AGB based on the scientific inventory of all trees and from the commercial timber, indicating that the CTI could be used in conjunction with limited additional sampling to predict total AGB (276 Mg ha−1). The methods developed in this study could be useful for facilitating commercial inventory practices, understanding the relationship of tree species distribution to landscape features, and improving the novel use of CTIs to estimate AGB.  相似文献   

16.
Under natural conditions the zonation of woody species in floodplains is to a large extent determined by hydrological conditions. Flood survival varies even among closely related species of the same genus. Most studies that quantify flood survival of seedlings and saplings of European floodplain species focus on species of the genera Salix and Populus, while few studies on saplings of Quercus robur, Fraxinus excelsior, Crataegus monogyna have been carried out, and even less on comparing these species groups. We performed a comparative observational study on the presence of saplings (<150 cm) of Quercus robur, Fraxinus excelsior, Crataegus monogyna (hardwood species), Salix alba, Salix viminalis and Populus nigra (softwood species) in nature reserves along the Lower Rhine in the Netherlands. For each plot (n = 1178) the duration, frequency and depth of inundation was determined. This was done for both the entire year (January–December) and the growing season (March–October).We found that the presence of the hardwoods decreased with increasing inundation duration and even more so if the inundation occurred during the growing season. Contrary to what is generally assumed, the negative effects of flooding were stronger for F. excelsior than for Q. robur. For the hardwood group the total annual inundation duration was the best explanatory variable.The presence of the softwood species increased with increasing inundation duration and more so if the inundation occurred during the growing season. The average duration per inundation event was the best explanatory variable for this group, especially for both Salix species. The presence of P. nigra was best explained by the average inundation depth. A canonical correspondence analysis on species composition was consistent with these findings.Overall, our results agree with the general perspective of tree zonation along rivers. This is the first study that shows the singular and combined effects of several flooding characteristics on both presence, and species composition, of softwood and hardwood species from riparian woodlands. We outline an approach indicating how the results can be used for the selection of sections in retention areas suitable for the recruitment of the studied tree species.  相似文献   

17.
Nothofagus antarctica (Forster f.) Oersted is a deciduous tree species, which naturally grows on poorly drained or drier eastern sites in the Andes Mountain near Patagonian steppe. Above- and below-ground biomass and nutrients pools were measured in pure even-aged stands at different ages (5–220 years) and crown classes. Functions were fitted for total biomass and nutrients accumulation, and root/shoot ratio of individual trees against age. Total biomass accumulated for mature dominant trees was eight times greater than mature suppressed trees. Biomass root/shoot ratio decreased with age from 1.8 to a steady-state of 0.5. All nutrients concentration (except Ca) decreased with age and varied according to the degree of crown suppression classes. Nutrient concentrations varied between biomass pool components following the order leaves > bark > small branches > fine roots > medium roots > rooten wood > coarse roots > sapwood > heartwood. Total nutrient accumulation followed the order dominant > codominant > intermediate > suppressed trees and its accumulation rate varied over time, e.g. P accumulation rate of dominant trees increased from 0.17 g tree−1 year−1 during regeneration to 1.39 g tree−1 year−1 in mature trees. Nutrients uptake reached a peak during the period of maximum biomass production, and root/shoot ratio of nutrients decreased from its maximum value at 5 years of age (0.6, 4.0, 0.9, 1.5, 1.0 and 2.6 for N, P, K, Ca, S and Mg, respectively) to a steady-state asymptote beyond 50 years of age. Thus, accumulation of nutrients in roots was greater during the regeneration phase of stand development, and nutrient accumulation increased in above-ground over time. Also, nutrient use efficiency increased in mature trees (111–220 years) and decreased in suppressed crown classes. The equations developed for individual trees have been used to estimate stand biomass and nutrient accumulation from forest inventories data. Total stand biomass varied from 62.5 to 133.4 t ha−1 and total nutrients accumulation ranged from 3 kg Mg ha−1 to 1235 kg Ca ha−1. Proposed equations can be used for practical purposes such as to estimate pasture nutrients requirement in a silvopastoral system based on nutrients supply from leaf litter returns, or to determine amelioration practices like debarking stems before harvesting.  相似文献   

18.
Tree growth, biomass productivity, litterfall mass and nutrient content, changes in soil chemical properties and understory forest succession were evaluated over a 8.5-year period in single- and mixed-species (50 : 50) plantations of two N2-fixing species, Casuarina equisetifolia and Leucaena leucocephala, and a non-fixing species, Eucalyptus robusta. At the optimal harvest age for maximum biomass production (4 years), total aboveground biomass ranged from 63 Mg ha−1 in the Eucalyptus monoculture to 124 Mg ha−1 in the Casuarina/Leucaena mixture, and was generally greater in the mixed-species than in single-species treatments due to increased productivity of the N-fixing species in the mixed stands. Total litterfall varied from 5.3 to 10.0 Mg ha−1 year−1 among treatments, or between 5.9% and 13.2% of net primary production. Litterfall production and rates of nutrient return for N, P, K, Ca and Mg were generally highest for Leucaena, intermediate for Casuarina and lowest for Eucalyptus. These rates were usually higher in the mixed-species than in monospecific stands due to differences in biomass productivity, but varied considerably depending on their species composition. Total system carbon and nutrient pools (in biomass plus soils to 40-cm depth) for N, P, K, Ca, Mg, Mn at four years were consistently greater in the plantation treatments than in the unplanted control plots. Relative to the single-species plantations, these system pools were generally larger in the mixed-species plantations for C (−10% to +10%), N (+17% to +50%), P (−1% to +63%), K (−19% to +46%), Ca (−10% to +48%), Mg (+5% to +57%) and Mn (+19% to +86%). Whole-tree harvests at four years would result in substantial system carbon and nutrient losses, although these estimated losses would not exceed the estimated gains realized during the four-year period of tree growth at this site. At 7.5 years, soil organic matter and effective cation exchange capacity were reduced in all plantation treatments relative to the control. Changes in soil nutrient content from 0 to 7.5 years were highly variable and not significantly different among treatments, although stands containing Leucaena generally showed higher rates of nitrogen and phosphorus accretion in soils than those with Eucalyptus and/or Casuarina. Natural regeneration of secondary forest tree and shrub species increased over time in all plantation treatments. A total of 24 native or naturalized forest species were recorded in the plantations at 8.5 years. Woody species abundance at this age was significantly greater beneath Casuarina than either Eucalyptus or the Eucalyptus/Leucaena mixed stands. Species richness and diversity, however, were greatest beneath stands containing Eucalyptus and/or Leucaena than in stands with Casuarina.  相似文献   

19.
Seedlings of different provenances of Scots pine (Pinus sylvestris L.), lodgepole pine (Pinus contorta Dougl., var. latifolia Engelm.) and Norway spruce (Picea abies (L.) Karst.) were planted in three Scots pine shelterwoods (125, 65 and 43 stems ha−1) and a clear-cut, all in northern Sweden. The sites were mounded and planting took place during 2 consecutive years (1988 and 1989). The solar radiation experienced by the individual seedlings was determined using a simulation model. Height development of the seedlings was examined during their first 6 years after planting. During the final 3 years of the study, height growth of Norway spruce was relatively poor, both in the shelterwoods and the clear-cut area. Height growth of lodgepole pine was significantly greater than that of Scots pine, both in the shelterwoods and the clear-cut. In contrast to Norway spruce, Scots pine and lodgepole pine displayed significantly greater height growth in the clear-cut than in the shelterwoods. For all three species in the shelterwoods, regression analyses showed that height growth was more strongly correlated with the distance to the nearest tree than with the amount of radiation reaching the ground, i.e. growth was reduced in the vicinity of shelter trees. Therefore, we conclude that the significant reduction in height growth of seedlings of Scots pine and lodgepole pine in Scots pine shelterwoods was partially caused by factors associated with the distance to the nearest shelter tree. Because the substrate was a nitrogen-poor sandy soil, we suggest that root competition for mineral nutrients, especially nitrogen, accounts for the reduction in height growth.  相似文献   

20.
Only 7% of the once extensive forest along the eastern coast of Brazil remains, and much of that is degraded and threatened by agricultural expansion and urbanization. We wondered if methods similar to those developed to establish fast-growing Eucalyptus plantations might also work to enhance survival and growth of rainforest species on degraded pastures composed of highly competitive C4 grasses. An 8-factor experiment was laid out to contrast the value of different intensities of cultivation, application of fertilizer and weed control on the growth and survival of a mixture of 20 rainforest species planted at two densities: 3 m × 1 m, and 3 m × 2 m. Intensive management increased seedling survival from 90% to 98%, stemwood production and leaf area index (LAI) by ~4-fold, and stemwood production per unit of light absorbed by 30%. Annual growth in stem biomass was closely related to LAI alone (r2 = 0.93, p < 0.0001), and the regression improved further in combination with canopy nitrogen content (r2 = 0.99, p < 0.0001). Intensive management resulted in a nearly closed forest canopy in less than 4 years, and offers a practical means to establish functional forests on abandoned agricultural land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号