首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
建立了天然气发动机的三维CFD模型,验证了模型的有效性,计算和分析了缸内压力场、流场、温度场和NOx的变化情况.研究结果表明,该模型计算得到的缸内最高爆发压力与实测值较为接近,可以用于天然气发动机的工作过程计算;燃烧过程中火花塞始终处于高温区,天然气发动机设计时应考虑到火花塞周围的充分冷却:天然气发动机采用稀燃技术,大大减少了NOx的生成.  相似文献   

2.
本文通过对纯柴油发动机和双燃料发动机示功图和放热率的对比分析,研究了柴油-天然气发动机的爆震燃烧特性,将双燃料发动机的爆震燃烧分为3种形式,初步探讨了双燃料发动机爆震燃烧的主要影响因素。  相似文献   

3.
采用CFD-FEA耦合方法对某柴油发动机进行温度场分析,通过AVL FIRE软件建立三维缸内燃烧模型和水套流动分析模型,为发动机缸体缸盖温度场分析提供换热边界条件。采用ABAQUS软件计算了缸体缸盖温度场,采用AVL沸腾插件计算了水套壁面的沸腾换热。结果显示,缸盖缸体水套壁面温度离沸腾"开锅点"均保持了20℃以上的温度距离,无沸腾风险。该分析方法可以很好地预测缸体缸盖的温度及水套的沸腾换热情况,为发动机缸体缸盖和水套设计提供了一定的理论依据。  相似文献   

4.
研究了EGR率的变化对LPG燃气在稀燃条件下的燃烧、排放以及循环变动率的影响。结果表明,基于高能双火花塞点火的快速燃烧系统可以加快LPG燃气的燃烧速率,有效地改善引入EGR的LPG发动机的快速燃烧过程。在整个有效废气再循环率(REGR)范围内LPG稀燃稀限得到较大幅度提高,同时抑制了发动机因高温而生成的NOx。同时,采用快速燃烧系统的最大REGR为8.11%,大于普通方式的5%;LPG燃烧过程的循环变动也得到有效控制。  相似文献   

5.
火花点火沼气机燃烧室改进的模拟实验研究   总被引:2,自引:0,他引:2  
采用快速压缩膨胀机对2135型火花点火沼气发动机的燃烧室进行了模拟研究,结果表明,所模拟的燃烧过程存在着燃期中压力升高率较低,后燃比较严重的情况,通过采用增大压缩比,采用湍流型燃烧室的措施,可改善发动机的燃烧过程,将以上结果应用在2135型火花点火沼气发动机上,取得了很好的效果,从而证实了模拟实验研究的正确性。  相似文献   

6.
研究了EGR率的变化对LPG燃气在稀燃条件下的燃烧、排放以及循环变动率的影响.结果表明,基于高能双火花塞点火的快速燃烧系统可以加快LPG燃气的燃烧速率,有效地改善引入EGR的LPG发动机的快速燃烧过程.在整个有效废气再循环率(REGR)范围内LPG稀燃稀限得到较大幅度提高,同时抑制了发动机因高温而生成的NOx.同时,采用快速燃烧系统的最大REGR为8.11%,大于普通方式的5%;LPG燃烧过程的循环变动也得到有效控制.  相似文献   

7.
燃烧室结构对稀燃天然气发动机性能的影   总被引:2,自引:0,他引:2  
阐述了稀燃天然气发动机缸内不同气体运动及其产生机理,分析了缸内气体运动对发动机燃烧过程的影响。针对稀燃天然气发动机的燃烧过程,设计了不同结构形状和尺寸的燃烧室,并分别通过数值模拟和试验方法,就不同结构的燃烧室对天然气发动机性能的影响进行了研究。结果显示,产生湍流强度大的燃烧室燃烧速度快,动力性和经济性较好,而NOx排放量也较大。  相似文献   

8.
节能减排已成为当今发动机发展的重要方向之一,而燃烧过程将直接影响发动机的经济性与排放性。通过模拟软件模拟分析了某125mL发动机燃烧室选用单火花塞和双火花塞时气缸内的燃烧进程、燃烧生成物速率及缸内湍流火焰速率。通过模拟结果可发现,双火花塞气缸内燃烧效率、生成物速率均好于单火花塞气缸内的燃烧效率、生成物速度;双火花塞气缸内的湍流速度要高于单火花塞气缸内的湍流速度。模拟计算结果为汽油机节能提供了一种有效途径,将为汽油机提高经济性提供一定的理论借鉴。  相似文献   

9.
曲轴与轴瓦是发动机的重要机件,其作用是将发动机燃烧做功的动力转变为扭矩形式输出。发动机工作中,曲轴要受到复杂的扭转、弯曲、剪切和拉压等交变应力的作用,以及由扭转振动和弯曲振动而产生的附加载荷的作用。此外,轴颈和轴瓦因受  相似文献   

10.
阐述了稀燃天然气发动机缸内不同气体运动及其产生机理,分析了缸内气体运动对发动机燃烧过程的影响.针对稀燃天然气发动机的燃烧过程,设计了不同结构形状和尺寸的燃烧室,并分别通过数值模拟和试验方法,就不同结构的燃烧室对天然气发动机性能的影响进行了研究.结果显示,产生湍流强度大的燃烧室燃烧速度快,动力性和经济性较好,而NOx排放量也较大.  相似文献   

11.
通过TY1100柴油机直口ω形燃烧室和缩口ω形燃烧室的对比试验、分析,表明:由于燃烧室的缩口,改变了直口ω形燃烧室的温度场与气流运动场;缩短了滞燃期,改善了预混燃烧,能降低发动机最高燃烧压力,减少压力升高率,抑制燃烧嗓声;并有优良的经济性和排烟洁净性。  相似文献   

12.
围绕影响单一燃料天然气发动机压缩着火启动、运转和排放特性的相关因素进行了试验研究。设计开发了新型燃烧系统,通过台架试验研究了不同的辅助加热温度、隔热措施、进气温度及EGR对着火燃烧及排放的影响。试验结果表明电热塞温度、进气温度及主副燃烧室之间的通道直径对发动机的着火和起动性有显著的影响;可以实现仅利用电热塞辅助加热即可在常温进气条件下起动发动机。合适的EGR率可以降低HC和NOx排放量,同时可以稳定天然气发动机的燃烧过程。  相似文献   

13.
为研究燃烧室几何形状对柴油机缸内混合气形成状况及燃烧质量的影响。应用CFD软件F ire对三种不同几何形状的燃烧室内的燃烧过程进行了数值模拟,并比较了燃烧室内速度场、燃油浓度场和温度场在不同曲轴转角时的分布情况。计算结果表明燃烧室几何形状会影响缸内的速度场和燃油分布,从而影响混合气的形成、燃烧的进行、温度场的分布和NO的生成。计算结果为柴油机的改进和优化提供了依据。  相似文献   

14.
结合汽油机爆震控制,对爆震特性进行了实时测量,并对爆震信号进行了时域和频域分析,为爆震控制提供了依据。  相似文献   

15.
设计开发了由PC机控制的天然气复合供气系统和具有低散热结构的分隔式燃烧室组成的新型燃烧系统,采用陶瓷电热塞和进气空气加热的辅助手段,实现了天然气发动机的压缩点火.并对影响压缩点火天然气发动机起动性能、运转范围的相关因素进行了试验研究.  相似文献   

16.
影响直喷式柴油机挤流特征的几个因素   总被引:1,自引:0,他引:1  
对3种不同结构燃烧室所对应的缸内流场进行了模拟研究,系统地分析了挤流的演变过程和柴油机转速、燃烧室结构、进气涡流对其特征的影响。在上止点前或后较大的曲轴转角范围内流场相似,逆挤流叠加于由气体惯性作用保持的环涡之上并集中于燃烧室边缘,燃烧室内速度和湍流度随柴油机转速和燃烧室缩口度同向变化。进气涡流是湍流生成的主要因素并使流场复杂化,随涡流和挤流相对强弱的变化,燃烧室内形成的环涡的个数、转向和强度不同。  相似文献   

17.
影响直喷式柴油机缸内燃烧过程和排放特性的因素可归纳为3个方面,即进气系统参数、喷油系统参数以及燃烧系统参数。基于某企业开发的6缸直喷式柴油机,以AVL公司的FIRE v8.5为平台,以进气系统参数具有代表性的物理参数涡流比为对象,研究了它对直喷式柴油机排放性能的影响规律。在涡流比从1.0增加到2.6的过程中,随着涡流比的增大,喷雾重叠加剧,并向燃烧室挤流区域集中,燃烧室凹坑内空气利用率变差,不利于柴油机的扩散燃烧,Soot排放增大;在涡流比增大的同时,降低了整个燃烧室的平均温度,使NOx的生成量降低。  相似文献   

18.
车用柴油机缩口型燃烧系统参数优化试验研究   总被引:10,自引:2,他引:10  
在小型增压直喷式柴油机上采用缩口排放型燃烧室,对其喷射系统参数进行匹配试验研究。试验结果表明,在不影响柴油机性能的前提下,通过喷射系统参数的优化匹配,有效地改善了排放特性。  相似文献   

19.
根据分层燃烧的理论,设计了分隔室复合供气式压燃天然气发动机。采用化学动力学与CFD耦合的方法,对该发动机在复合供气方式下的着火和燃烧机理进行了模拟计算。结果表明,复合供气模式下由于在主、副燃烧室中可形成较明显的温度分层和浓度分层,实现了分层燃烧方式,获得了较宽的运行范围,平均指示压力达到0.63MPa,比进气道供气模式约高50%。  相似文献   

20.
针对农用拖拉机排放污染严重的问题,特别是限制氮氧化物(NOx)和碳烟(Soot)的排放,以中国一拖集团某型号农用柴油机为研究对象,采用系统建模仿真、台架试验验证和仿真分析结合的方法对发动机排放优化进行了研究。首先构建了农用拖拉机燃烧室三维模型并导入CONVERGE进行燃烧排放模拟与仿真,通过对模型缸内压力、热释放率试验值与仿真值的对比,证明该模型具有较高精确度,能够较好地描述发动机内部燃烧排放过程。之后以燃烧室的缩口率、凸台深度、燃烧室深度为输入,以发动机NOx和Soot排放量为输出建立人工神经网络作为代理模型。计算决定系数R2和平均相对误差(MRE)来验证人工神经网络的精确度。然后在此基础上提出一种改进的粒子群优化算法,从而获得燃烧室缩口率、凸台深度、燃烧室深度的最佳参数组合,形成新的燃烧室结构并导入CONVERGE软件中进行排放模拟计算并与原燃烧室的排放量进行对比。结果表明采用新的燃烧室结构后能够降低发动机NOx和Soot排放,可为相关农用拖拉机燃烧室系统设计和开发提供参考和思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号