首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development and grain-filling. The objective of this study was to identify quantitative trait loci (QTL) associated with heat susceptibility index (HSI) of yield components in response to a short-term heat shock during early grain-filling in wheat. The HSI was used as an indicator of yield stability and a proxy for heat tolerance. A recombinant inbred line (RIL) population derived from the heat tolerant cultivar ‘Halberd’ and heat sensitive cultivar ‘Cutter’ was evaluated for heat tolerance over 2 years in a controlled environment. The RILs and parental lines were grown in the greenhouse and at 10 days after pollination (DAP) half the plants for each RIL received a three-day heat stress treatment at 38°C/18°C day/night, while half were kept at control conditions of 20°C/18°C day/night. At maturity, the main spike was harvested and used to determine yield components. A significant treatment effect was observed for most yield components and a HSI was calculated for individual components and used for QTL mapping. QTL analysis identified 15 and 12 QTL associated with HSI in 2005 and 2006, respectively. Five QTL regions were detected in both years, including QTL on chromosomes 1A, 2A, 2B, and 3B. These same regions were commonly associated with QTL for flag leaf length, width, and visual wax content, but not with days to flowering. Pleiotropic trade-offs between the maintenance of kernel number versus increasing single kernel weight under heat stress were present at some QTL regions. The results of this study validate the use of the main spike for detection of QTL for heat tolerance and identify genomic regions associated with improved heat tolerance that can be targeted for future studies.  相似文献   

2.
Heat stress adversely affects wheat production in many regions of the world and is particularly detrimental during reproductive development. The objective of this study was to identify novel quantitative trait loci (QTL) associated with improved heat tolerance in wheat (Triticum aestivum L.) and to confirm previous QTL results. To accomplish this, a recombinant inbred line (RIL) population was subjected to a three-day 38°C daytime heat stress treatment during early grain-filling. At maturity, a heat susceptibility index (HSI) was calculated from the reduction of three main spike yield components; kernel number, total kernel weight, and single kernel weight. The HSI, as well as temperature depression (TD) of the main spike and main flag leaf during heat stress were used as phenotypic measures of heat tolerance. QTL analysis identified 14 QTL for HSI, with individual QTL explaining from 4.5 to 19.3% of the phenotypic variance. Seven of these QTL co-localized for both TD and HSI. At all seven loci, the allele for a cooler flag leaf or spike temperature (up to 0.81°C) was associated with greater heat tolerance, indicated by a lower HSI. In a comparison to previous QTL results in a RIL population utilizing the same source of heat tolerance, seven genome regions for heat tolerance were consistently detected across populations. The genetic effect of combining three of these QTL, located on chromosomes 1B, 5A, and 6D, demonstrate the potential benefit of selecting for multiple heat tolerance alleles simultaneously. The genome regions identified in this study serve as potential target regions for fine-mapping and development of molecular markers for more rapid development of heat tolerant germplasm.  相似文献   

3.
Summary One main reason for the slow improvement of durum wheat in water-limited environments is the lack of clear understanding of the interrelationships among yield components and their compensatory changes under low and erratic moisture availability. Five cultivars, varying in many physiological attributes, were tested under different drought-stress conditions in field and greenhouse experiments. The cause-effect relationships of duration of vegetative period, duration of grain-filling period, number of spikes per m2, kernels per spike, kernel weight and grain yield per m2 were assessed. Furthermore, yield stability was evaluated. Yield reduction was largest under mid-season stress (58%), followed by terminal stress (30%) and early stress (22%). Cultivar Po was very sensitive to terminal stress.Path-coefficient analysis revealed a complex pattern of relationships among the six variables. An increase in vegetative period reduced the grain-filling period under all conditions. It increased number of kernels per spike under non-stress conditions. The direct effect of spikes per m2 on grain yield was significantly positive. However, more spikes per m2 resulted in fewer kernels per spike and a low kernel weight and, as a result, a negative relationship with grain yield under early stress. Grain-filling period had a strong influence on grain yield via kernel weight. Kernels per spike had the largest direct effect on grain yield. However, it was negatively correlated with kernel weight, especially under terminal stress. Grain yield heavily depended on kernels per spike under early stress and grain-filling period and kernels per spike under terminal stress.Variation in drought susceptibility index among cultivars was significant under early and terminal stress conditions, but not under mid-stress conditions. Yield potential and stability were not correlated for the different drought-stress conditions.Longer grain-filling period, increased number of kernels per spike and limited spike number per m2 can be used as selection criteria for sustainable yield in water-limited environments.  相似文献   

4.
Wheat cellular thermotolerance is related to yield under heat stress   总被引:3,自引:0,他引:3  
Cellular thermotolerance in terms of cellular membrane thermostability is often implied as an indication of crop heat tolerance and it is therefore considered as a possible selection criterion for heat tolerance. While there is ample genetic variability for cellular thermotolerance in wheat and other crop plants its relations to yield under heat stress is not sufficiently established. This study was performed to assess the genetic relations in wheat between cellular thermotolerance and yield under heat stress. In one study the co-segregation among cellular membrane thermostability (CMS), yield under chronic heat stress and yield under non-stress conditions was evaluated in a random inbred line (RIL) population of a cross between heat resistant (Danbata) and heat susceptible (Nacozari) cultivars. In a second study the same association was evaluated for yield under heat stress in 49 F7 breeding lines randomly selected from a breeding program. CMS was assayed in growth chamber grown and heat-hardened seedlings. Yield was evaluated under Mediterranean summer irrigated conditions where chronic heat stress caused a reduction in mean yield of the RIL population by 47% as compared with the normal winter growing conditions (non-stress). The RILs varied significantly (p<0.05) for CMS, biomass and yield under stress and non-stress conditions. The two parent cultivars did not differ in biomass or yield under non-stress (winter) conditions but they widely differed for both traits under heat stress. Yield of RILs under heat stress was well distributed between the extreme values of the parent cultivars. There was a significant RIL by season interaction for biomass (F = 9.74; p<0.0001) and yield (F = 10.08; p<0.0001), indicating specific adaptation to heat stress of certain lines in terms of their productivity. Broad-sense heritability for yield was high and nearly the same in the winter (h 2=0.71)and the summer (h 2=0.67). Broad-sense heritability for CMS was high (h 2=0.74). CMS was positively and significantly (p<0.01) correlated across 98 RILs with biomass (r = 0.60* *) and yield (r = 0.53**) under stress but rot with biomass or yield under non-stress conditions. The 49 breeding lines varied significantly (p<0.01) for CMS and yield under chronic heat stress in the summer season. CMS and yield were significantly correlated (r = 0.56**) across lines. Overall the associations between CMS and yield under heat stress were reasonably strong and significant but not perfect. Other factors besides cellular thermostability may support yield under heat stress. CMS alone cannot be used as the exclusive selection criterion for heat tolerance in wheat breeding. lt may be valuable as a supplemental criterion in the final breeding stages or as a rough selection tool to reduce a large population into the most likely heat tolerant core at the early stages of the breeding program.  相似文献   

5.
Grain yield is one of the most important and complex quantitative traits in maize breeding. In the present study, a total of 11 connected RIL populations, derived from crosses between elite inbreed “Huangzaosi” as the common parent and 11 elite inbreeds, were evaluated for five yield components and kernel-related traits under six environments. Quantitative trait loci (QTL) were detected for the traits under each environment and in joint analysis across all environments for each population. A total of 146 major QTL with R2 > 10 % in at least one environment and also detected based on joint analysis across all environments were identified in the 11 populations. Lqkwei4 conferring kernel weight and Lqklen4-1 conferring kernel length both located in the adjacent marker intervals in bin 4.05 were stably expressed in four environments and in joint analysis across six environments, with the largest R2 over 27 and 24 % in a single environment, respectively. Moreover, all major QTL detected in the 11 populations were aligned on the IBM2 2008 neighbors reference map. Totally 16 common QTL (CQTL) were detected. Seven important CQTL (CQTL1-2, CQTL1-3, CQTL4-1, CQTL4-2, CQTL4-3, CQTL4-4, and CQTL6-1) were located in bin 1.07, 1.10, 4.03, 4.05, 4.08, 4.09 and 6.01–6.02, respectively. These chromosomal regions could be targets for fine mapping and marker-assisted selection.  相似文献   

6.
X. Yin    S. D. Chasalow    P. Stam    M. J. Kropff    C. J. Dourleijn    I. Bos  P. S. Bindraban 《Plant Breeding》2002,121(4):314-319
Genes contributing to the quantitative variation of a complex crop trait can be numerous. However, using existing approaches, the number of quantitative trait loci (QTL) detected for a trait is limited. Therefore, rather than looking for QTL for a complex trait itself, determining QTL for underlying component traits might give more information. In this study the potential of component analysis in QTL mapping of complex traits was examined using grain yield in spring barley as an example. Grain yield was divided into three components: number of spikes/m2, number of kernels/spike, and 1000‐kernel weight. These traits were measured for individuals of a recombinant inbred‐line population in field trials conducted over 2 years. By the use of an approximate multiple QTL model, one to eight QTL were detected for each trait in a year. Some QTL were mapped to similar positions in both years. Almost all QTL for yield were found at the position of or in close proximity to QTL for its component traits. A number of QTL for component traits were not detected when yield itself was subjected to QTL analysis. However, relative to the QTL for yield itself, all component‐trait QTL did not explain the variation in yield better. The results in relation to the potential of using component analysis in studying complex crop traits are discussed.  相似文献   

7.
Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2  = 0.48) was moderate compared to other traits including plant height (h 2  = 0.81) and kernel weight (h 2  = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.  相似文献   

8.
冬小麦品种生育后期的耐热性评价   总被引:2,自引:0,他引:2  
冬小麦品种生育后期耐热性遗传差异的表现受环境影响较大。通过1997~2000年间在北京对群体气-冠温差、灌浆特性、热感指数等三种耐热性评价方法有效性的比较研究,认为热感指数反映品种对后期热胁迫的敏感程度,利用千粒重热感指数可鉴定出后期耐热性较好的基因型。气-冠温差法快速、简便、准确,但叶片持绿期长的品种气-冠温差一般较大,可结合对灌浆速率的评价来筛选生育期适中的耐热基因型。在3年的试验中,小麦品种鲁936098表现耐热性强,千粒重稳定。  相似文献   

9.
A quantitative trait loci (QTL) analysis of grain yield and yield-related traits was performed on 93 durum wheat recombinant inbred lines derived from the cross UC1113 × Kofa. The mapping population and parental lines were analyzed considering 19 traits assessed in different Argentine environments, namely grain yield, heading date, flowering time, plant height, biomass per plant, and spikelet number per ear, among others. A total of 224 QTL with logarithm of odds ratio (LOD) ≥ 3 and 47 additional QTL with LOD > 2.0 were detected. These QTL were clustered in 35 regions with overlapping QTL, and 12 genomic regions were associated with only one phenotypic trait. The regions with the highest number of multi-trait and stable QTL were 3BS.1, 3BS.2, 2BS.1, 1BL.1, 3AL.1, 1AS, and 4AL.3. The effects of epistatic QTL and QTL × environment interactions were also analyzed. QTL putatively located at major gene loci (Rht, Vrn, Eps, and Ppd) as well as additional major/minor QTL involved in the complex genetic basis of yield-related traits expressed in Argentine environments were identified. Interestingly, the 3AL.1 region was found to increase yield without altering grain quality or crop phenology.  相似文献   

10.
The presence or absence of the staygreen trait was screened for 3 consecutive years in 963 wheat lines from various sources, including Indian and CIMMYT germplasm. Staygreen was assessed at the late dough stage by visual scoring (0–9 scale) and the leaf area under greenness (LAUG) measurement. Around 5.5 % of the lines were staygreen, 10.5 % were moderately staygreen, and the remaining lines showed little or no expression of the trait. One hundred lines showing diversity for the staygreen trait were sown under three different sowing dates (timely, late and very late) for 3 consecutive years in three replications to determine the association of staygreen with heat tolerance. There was a decline in yield, biomass, grain filling duration (GFD) and 1,000 grain weight (TGW) under late and very late sowing conditions owing to terminal stress at anthesis and later stages. However, the decline was relatively less in staygreen genotypes compared to the non-staygreen (NSG) ones. The correlation study showed that LAUG and canopy temperature depression (CTD) were strongly correlated. LAUG and CTD were also significantly associated with grain yield, GFD and biomass. To further confirm the association of the staygreen trait with terminal heat stress, individual F2-derived F7 progenies from the cross of the ‘staygreen’ lines with NSG were evaluated for yield and yield traits at the three sowing dates. In each cross, the staygreen progenies showed a significantly smaller decline in yield and TGW under heat stress than the NSG progenies. These results appear to suggest an association between the staygreen trait and terminal heat stress and, thereby, that the staygreen trait could be used as a morphological marker in wheat to screen for heat tolerance.  相似文献   

11.
Terminal heat stress has the potential negative impact on wheat production across the world, especially in South Asia. Under the threat of terminal heat stress, wheat genotypes with stay green trait would suffer from high temperature stress during their long grain filling duration (GFD). The genotypes with short GFD would be advantageous. To identify quantitative trait loci (QTL) for heat tolerance, a RIL population of K 7903 (heat tolerant) and RAJ 4014 (heat sensitive) wheat genotypes was investigated under timely and late‐sown conditions. Heat susceptibility index of GFD, yield components and traits under late‐sown condition were used as phenotypic data for QTL identification. Stable QTLs associated with these traits were identified on chromosomes 1B, 2B, 3B, 5A and 6B. The LOD value ranged from 2.9 to 5.0 and the corresponding phenotyping variation explained ranged from 12.0–22%. QTL for heat susceptibility index for the grain filling duration were colocalized with QTL for productive tillers under late sown and GFD under late‐sown condition on chromosomes 1B and 5A, respectively. These genomic regions could be exploited for molecular wheat breeding programmes targeting heat tolerance.  相似文献   

12.
A durum wheat recombinant inbred line population developed from PDW 233 × Bhalegaon 4 cross was analyzed in five environments to understand the genetic network responsible for test weight (TW), thousand kernel weight (TKW), grain yield (YLD), spike length (SL), spikelets per spike (SPS), kernels per spike (KER) and kernel weight per spike (KWS). Genotype, environment and their interactions were main sources of variance for all the traits. TW and TKW were influenced by 11 main effect QTL and 6 digenic epistatic interactions detected on chromosomes 2A, 2B, 4B and 7A. Grain yield was influenced by three epistatic interactions and five main effect QTL, of which two on chromosome 2A were most consistent. A major QTL for spike length was observed on chromosome 3B. QTL for spike characters were distributed over 9 chromosomes. All the traits showed significant influence of digenic epistasis (QQ) and, to a certain extent, QTL × environment interactions (QQE). Therefore, while breeding for complex traits like kernel characters and grain yield components, these interactions should also be considered important. The consistent QTL on chromosome 2A between the marker interval Xgwm71.2Xubc835.4 with pleiotropic effect on TW and TKW, may be utilized in early generation selection to improve TW and TKW and thereby the milling potential of the durum wheat.  相似文献   

13.
Hong Zhang  Fa Cui  Honggang Wang 《Euphytica》2014,196(3):313-330
In order to detect quantitative trait loci (QTLs) for drought tolerance in wheat during seed germination conditional and unconditional QTL analyses of eight seedling traits were conducted under two water regimes using three related F9 recombinant inbred line populations with a common female parent. A total of 87 QTLs for the eight seedlings traits and 34 specific QTLs related to drought tolerance were detected. Seventy-one of these QTLs were major QTLs with contributions to phenotypic variance of >10 %. Of the 34 QTLs related to drought tolerance only eight were also detected by unconditional analysis of seedling traits under osmotic stress conditions indicating that most of the QTLs related to drought tolerance could not be detected by unconditional QTL analysis. Therefore, conditional QTL analysis of stress-tolerance traits such as drought tolerance was feasible and effective. Of 11 important QTL clusters located on chromosomes 1BL, 1D, 2A, 2B, 2D, 4A, 6B, and 7B, nine were detected in multiple populations and eight were detected by both unconditional and conditional analyses.  相似文献   

14.
H. Funatsuki    M. Ishimoto    H. Tsuji    K. Kawaguchi    M. Hajika    K. Fujino 《Plant Breeding》2006,125(2):195-197
Shattering of soybean pods prior to harvest leads to a reduction in yield. In order to identify simple sequence repeat (SSR) markers linked to quantitative trait loci (QTLs) conditioning pod shattering, QTL analysis was conducted using an recombinant inbred line (RIL) population segregating for this trait. The degrees of pod‐shattering resistance were evaluated by heat treatment applied to pods harvested from plants in the field and in a growth chamber. Composite interval mapping identified one major QTL between SSR markers Sat_093 and Sat_366 on linkage group J for both environments. The position and the effect of this QTL were confirmed in an F2 population derived from a cross between the pod shattering‐susceptible parental cultivar and a pod shattering‐resistant RIL. The SSR markers linked to the major QTL will be useful for marker‐assisted selection in soybean‐breeding programmes.  相似文献   

15.
Flag leaf-related traits (FLRTs) are determinant traits affecting plant architecture and yield potential in wheat (Triticum aestivum L.). In this study, three related recombinant inbred line (RIL) populations with a common female parent were developed to identify quantitative trait loci (QTL) for flag leaf width (FLW), length (FLL), and area (FLA) in four environments. A total of 31 QTL were detected in four environments. Two QTL for FLL on chromosomes 3B and 4A (QFll-3B and QFll-4A) and one for FLW on chromosome 2A (QFlw-2A) were major stable QTL. Ten QTL clusters (C1–C10) simultaneously controlling FLRTs and yield-related traits (YRTs) were identified. To investigate the genetic relationship between FLRTs and YRTs, correlation analysis was conducted. FLRTs were found to be positively correlated with YRTs especially with kernel weight per spike and kernel number per spike in all the three RIL populations and negatively correlated with spike number per plant. Appropriate flag leaf size could benefit the formation of high yield potential. This study laid a genetic foundation for improving yield potential in wheat molecular breeding programs.  相似文献   

16.
Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and molecular markers associated with increased forage yield, resistance to lodging, and spring vigor. A backcross population composed of 128 progeny was developed by crossing the breeding parents DW000577 (lodging susceptible) and NL002724 (lodging-resistant) and back-crossing an individual F1 plant to the maternal parent (i.e. DW000577). A linkage map of NL002724 was developed based upon the segregation of 236 AFLP, SRAP, and SSR markers among the backcross progeny. The markers were distributed among 14 linkage groups, covering an estimated recombination distance of 1497.6 centiMorgans (cM). Replicated clones of both parents and backcross progeny were evaluated in the field for estimated forage yield, lodging, and spring vigor in Washington and Wisconsin during 2007 and 2008. Significant QTL were found for all three traits. In particular, two QTL for lodging resistance were identified that explained ≥14 % of trait variation, and were significant in all years and locations. Major QTL explaining over 25 % of trait variation for forage yield were detected in multiple environments at two separate locations on chromosome III. Several QTL for spring vigor were located in the same or similar positions as QTL for forage yield, possibly explaining the significant correlation between these traits. Molecular markers associated with the aforementioned QTL were also identified.  相似文献   

17.
The goal of this study was to identify quantitative trait loci (QTLs) associated with the maintenance of wheat grain quality following post-anthesis heat stress in a recombinant inbred line (RIL) population. The response to heat stress was measured using the sodium dodecyl sulfate sedimentation test (SDSS), a significant predictor of bread baking quality. SDSS scores were used to identify QTLs associated with grain quality and QTLs associated with quality stability were identified based on percent change in SDSS score between the heat stress and control treatments. Four QTLs were identified, located one each on linkage groups 1B, 1D, 4A, and 7A. The 1B, 1D, and 4A QTLs were associated with grain quality; the QTL on linkage group 7A was associated with quality stability. To confirm the detected QTLs, eighty advanced lines grown at three Texas nurseries were tested for relationships between allelic polymorphism at QTL linked markers and quality traits. Quality trait stability in the advanced lines was estimated using the coefficient of variability (CV%) of quality traits between nurseries. The analysis supported the relationship of the predicted QTLs on linkage groups 1B, 1D, and 4A with quality traits. The confirmed QTLs may be used in marker assisted selection (MAS) to develop wheat lines possessing superior quality traits. In addition, identification of genetic regions associated with this trait will aid the identification of the underlying genes.  相似文献   

18.
Cotton is a high-value per acre crop that is produced as a raw material for the textile industry. With the development of new technologies in the textile industry, much attention has been paid to fiber quality in conjunction with yield. The introgression cultivar “Acala Prema” is extensively planted in the Carolina/USA for its good fiber qualities, high yields and tolerance to Verticillium wilt. To conduct QTL mapping for fiber quality and yield in Acala-Prema, we developed a population of 180 recombinant inbred lines (RILs) from a single seed derived from a cross between this line and Chinese cultivar 86-1. We examined the yield performance of the RILs in five Chinese environments and fiber qualities in seven Chinese environments. A genetic linkage map comprising 279 loci was constructed using this RIL population, chiefly with SSR markers, and QTLs were repeatedly identified across diverse environments using the composite interval mapping method. A total of 86 nonredundant QTLs for yield and its components and fiber qualities were independently detected in five or seven environments; Prema alleles were responsible for the increase in trait values for 46 QTLs, while 86-1 was responsible for 40 QTLs. Notably, we detected the stable fiber strength QTL qFS-D3-1, which explained 4.51–17.55 % of PV, with LOD scores ranging from 2.83 to 7.09, and the fiber length qFL-D11-1, which explained 10.02–25.34 % of the PV. Eighteen environment epistatic QTLs were also detected. The QTLs detected in this study provide new information for improving fiber quality and may be especially valuable for marker-assisted selection.  相似文献   

19.
Quantitative trait loci (QTL) analysis was conducted to identify QTL for seed yield and color retention following processing of a recombinant inbred line (RIL) black bean population. A population of 96 RILs were derived from the cross of black bean cultivars ‘Jaguar’ and 115M and evaluated in replicated trials at one location over 4 years (2004–2007) in Michigan. A 119-point genetic map constructed using simple sequence repeat (SSR), sequence related amplified polymorphism (SRAP), target region amplified polymorphism (TRAP) and phenotypic markers spanned fifteen linkage groups (LG) or 460 cM of the bean genome. Fourteen QTL for yield and color retention in four environments were identified by composite interval mapping on six linkage groups. A major QTL SY10.2J115 for seed yield was identified on LG B10 with additional QTL on B3, B5, and B11. Color retention following processing was associated with loci on B1, B3, B5, B8, and B11. 115M possessed positive alleles for yield, but negative alleles for color retention. Some QTL for yield and color retention co-localized with regions identified in previous studies while others, particularly for color retention, were unique. Additional QTL for agronomic and canning quality traits were detected and individual contributions to future black bean breeding are discussed.  相似文献   

20.
A framework linkage map comprising 214 molecular marker (SSR, AFLP, SAMPL) loci was prepared using an intervarietal recombinant inbred line (RIL) mapping population of bread wheat. The RIL population that was developed from the cross SPR8198 (red-grained and PHS tolerant genotype) × HD2329 (white-grained and PHS susceptible genotype) following single seed descent segregated for pre-harvest sprouting (PHS). The RIL population and parental genotypes were evaluated in six different environments and the data on PHS were collected. Using the linkage map and PHS data, genome-wide single-locus and two-locus QTL analyses were conducted for PHS tolerance (PHST). Single-locus analysis following composite interval mapping (CIM) detected a total of seven QTL, located on specific arms of five different chromosome (1AS, 2AL, 2DL, 3AL and 3BL). These seven QTL included two major QTL one each on 2AL and 3AL. Two of these seven QTL were also detected following two-locus analysis, which resolved a total of four main-effect QTL (M-QTL), and 12 epistatic QTL (E-QTL), the latter involved in 7 QTL × QTL interactions. Interestingly, none of these M-QTL and E-QTL detected by two-locus analysis was involved in Q × E and Q × Q × E interactions, supporting the results of ANOVA, where genotype × environment interaction were non-significant. The QTL for PHS detected in the present study may be efficiently utilized for marker-aided selection for enhancing PHST in bread wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号