首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wood polymer nanocomposites (WPNC) based on nano-SiO2 were prepared by impregnation of styrene acrylonitrile copolymer (SAN), SiO2 nanoparticles modified with γ-trimethoxy silyl propyl methacrylate (MSMA), and nanoclay into wood. The structure of modified SiO2 nanoparticles and WPNC was characterized by Fourier transform infrared spectroscopy (FTIR). XRD analysis showed the delaminated structure of SAN/SiO2/clay-treated wood composites. The synergistic effect of nano-SiO2 and nanoclay was investigated. Thermal stability of SiO2 nanoparticles decreased after modification, while that of wood treated with SAN, SiO2, and nanoclay improved. Morphological characteristics were examined by scanning electron microscopy (SEM). Mechanical properties, water uptake (%), dimensional stability, hardness, and flammability were found to improve due to incorporation of SiO2 and nanoclay into wood polymer composites. Maximum improvement in properties was observed in the wood polymer composites containing SiO2 and nanoclay at the ratio of 1:1.  相似文献   

2.
Wood polymer nanocomposites (WPNCs) based on nano-ZnO and nanoclay were prepared by impregnation of melamine formaldehyde–furfuryl alcohol copolymer, 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU), a cross-linking agent and a renewable polymer obtained as a gum from the plant Moringa oleifera under vacuum condition. Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD) studies were employed for the characterization of modified ZnO and WPNCs. The change in crystallinity index (CrI) value of the cellulose in wood and the distribution of ZnO nanoparticles in composites were determined using FTIR and XRD. Scanning electron microscopy and Transmission electron microscopy showed the presence of nanoparticles and nanoclay in the cell lumen or cell wall of wood. An enhanced UV resistance property was shown by the treated wood samples as judged by lower weight loss, carbonyl index, lignin index, cellulose CrI values, and mechanical property loss compared to the untreated wood samples. Wood polymer composites treated with 3 phr each of nanoclay, ZnO, and the plant gum showed an improvement in mechanical properties, flame-retarding properties, thermal stability, and lower water uptake capacity.  相似文献   

3.
The aim of this research was to synthesize surface-treated nano-titanium dioxide (TiO2) particles and incorporate them into water-based acrylic systems, which could offer long-term protection for UV-sensible wood substrates. To suppress the photocatalytic activity, the surface of TiO2 nanoparticles in rutile crystal structure was coated with amorphous silica (SiO2) layer. The amounts of SiO2 were 5 and 10 wt%, respectively. Formation of SiO2 layer on TiO2 surface was analyzed using scanning and transmission electron microscopy. SiO2 layer thickness increases as a function of precursor loading. In addition, the influence of SiO2 loading on rutile UV-protective properties was determined. Transparent UV-protective coatings were developed by incorporating surface-treated nano-TiO2 into water-based acrylic stain. The particle size distribution was determined using dynamic light-scattering measurements, which indicate that the suspension of surface-treated rutile is stable against agglomeration. Furthermore, the color change and ability of protection against UV light of coatings after nanoparticles incorporation were determined. TiO2, surface treated with 10 wt% of SiO2, yielded coatings of higher transparency; however, TiO2, surface treated with 5 wt% of SiO2, improved UV protection.  相似文献   

4.
A hydrothermal method of fabricating nanomaterials at wood surfaces is described in this paper. Nanomaterials with different morphologies including spherical anatase TiO2, amorphous SiO2, wurtzite ZnO nanorod arrays, intertwining MnO2 nanowires, shuttle-shaped CaCO3 nanorods, and rhombic and cubic NaCl were deposited at wood surfaces. TiO2–ZnO compound nanoparticles and CuO nanoparticles were also created. The surface morphologies and crystalline structures of the prepared samples were characterized by scanning electron microscopy and X-ray diffraction, respectively. No obvious changes in the color of wood were caused by the hydrothermal process except those nanomaterials of Mn or Cu deposited at surfaces.  相似文献   

5.
The present study investigates the effect of heat treatment of untreated and nano-silver-impregnated Populus nigra, Populus deltoides and Fagus orientalis on the physical and mechanical properties. Specimens were impregnated with a 200-ppm aqueous silver nanoparticles suspension. Heat treatment was carried out at temperatures of 135 ± 3 °C and 185 ± 3 °C. Nano-silver impregnation aggravated the effects of heat treatment. Although significant in some cases, nano-silver impregnation did not seem to have great effect on physical properties. It may be concluded that although NS impregnation aggravated the effects of heat treatment on solid woods, other factors may also be involved such as the species and density of the wood.  相似文献   

6.
In order to improve wood properties of triploid clones of Populus tomentosa, urea-formaldehyde (UF) resin was compounded with nano-SiO2, coupling agents and flame retardants in different ways to prepare five kinds of modifiers. The poplar wood samples were impregnated with the modifiers and heated to prepare UF-SiO2-wood composites. The antiswelling efficiency, resistance of water absorption, oxygen index and hardness of the composites were measured. Results show that all of the modifiers reduced water absorption of poplar wood and enhanced flame resistance and hardness. Nano-SiO2 showed a marked effect in improving the hardness of wood. In addition, all of the modifiers, except UF-C-SiO2-polymer, improved the dimensional stability of poplar wood. The UF resin and nano-SiO2 compound improved general properties of poplar wood. __________ Translated from Journal of Beijing Forestry University, 2006, 28(2): 123–128 [译自: 北京林业大学学报]  相似文献   

7.
Effects of zinc-oxide nanoparticles on physical and mechanical properties, as well as biological resistance of untreated and heat-treated beech wood were investigated in this study. Test specimens were prepared from sapwood and impregnated with a 5,000-ppm nano-zinc-oxide (NZ) suspension with a size ranging from 10 to 80 nm at 2.5 bars of pressure and using the Rueping process for 20 min. Control (C) and nano-zinc-oxide-impregnated specimens after (NZA) and before (NZB) heat treatment were divided into four subgroups of unheated (C and CNZ), heated at 50, 145 and 185 °C. Heat treatment resulted in a significant decrease in mechanical strength at temperatures of 145 and 185 °C. Heat-treated specimens showed less dimensional instability and fungal degradation. Impregnation with nano-zinc resulted in a slight and significant increase in weight loss and biological resistance against Trametes versicolor. The results showed that the impregnation significantly decreased the water absorption of the specimens. Impregnation before heat treatment showed considerable effect on the properties of wood compared to that of untreated ones.  相似文献   

8.
The properties of oak heat treated at temperatures of 160–220 °C, oxygen concentrations of 2–10 %, steam pressures of 0.1–0.4 MPa and treatment time of 2–4 h were investigated. Although modulus of elasticity (MOE), modulus of rupture (MOR) and equilibrium moisture content (EMC) of the heat-treated wood (HTW) were reduced, the value of $ \Updelta E^{*} $ was increased, and the dimensional stability [anti-swelling efficiency in radial (ASE-R), anti-humidity efficiency (AHE)] was improved considerably. Six regression equations (temperature, oxygen concentration, steam pressure and time as functions of MOE, MOR, ASE-R, AHE, EMC and $ \Updelta E^{*} $ ) were developed for the estimation and a nonlinear programming model was derived with operation research theory to obtain the most desirable HTW properties under some production constraints.  相似文献   

9.
Lignin containing substantial aromatic rings and high content of carbon has been employed as carbonizing agent to investigate the flame retardancy in the lignin/ammonium polyphosphate (APP) intumescent flame retardant (IFR) system. In addition, owing to the abundant phenolic and aliphatic hydroxyl groups, lignosulfonate, which is considered as a renewable aromatic macropolyols, substituted part of diethylene glycol (DEG) and copolymerized with isocyanate to produce lignosulfonate-based rigid polyurethane (LRPU) foams. Thermal stability was characterized by thermogravimetric analysis (TGA), and flame retardancy was investigated by limiting oxygen index (LOI) and cone calorimetry testing (CCT). Lignosulfonate increases thermal stability of LRPU foams and LRPU containing 15 wt% of lignosulfonate based on DEG (L15RPU) give rise to the best thermal stability. When 15% of lignosulfonate incorporated in the LRPU, reduced the heat release rate (HRR) and total heat release (THR) value 21 kW/m2 and 13 MJ/m2, respectively, and postponed 96 s time-to-peak carbon monoxide production than that of pure DEG rigid polyurethane (RPU) foam, the LOI values increased progressively with lignosulfonate content increasing. These results showed that lignosulfonate polyol may substitute polyol to produce lignosulfonate-based RPU foam and the presence of lignosulfonate could improve the flame retardancy. The mass loss gradually decreases with increasing APP addition, and the highest char yield was obtained from LRPU5 foam which at the lignosulfonate-to-APP ratio is 1:5. At the lignosulfonate-to-APP ratio of 1:5, the LOI value increased over 30%, and the HRR value reduced and the time-to-peak HRR postponed significantly. In addition, LRPU5 foams give rise to the lowest effect heat combustion (EHC) value, less smoke, and carbon monoxide (CO) production. Lignosulfonate acts as carbonizing agent in the lignosulfonate/APP IFR system, and the best fire retardancy is obtained at 1:5 of lignosulfonate-to–APP ratio.  相似文献   

10.
In this paper, the influence of melamine polyphosphate (MPP) and aluminum hypophosphite (AHP) on mechanical properties, flame retardancy and thermal degradation of high-density polyethylene/wood flour composites (HDPE/WF) was investigated. The synergistic effect of MPP and AHP was investigated. Polyethylene grafted with maleic anhydride (PE-g-MAH) was used as coupling agent. The experimental data demonstrated that the HDPE/WF composites with 35 wt% MPP/AHP (3:2) could achieve a LOI value of 29.6 % and UL-94 V-0 rating. In addition, the cone value also revealed that the heat release rate and the smoke production rate were clearly reduced. SEM results showed that the synergistic system (MPP/AHP = 3:2) could form a dense and thick char layer and good adhesion between wood flour and HDPE matrix, which prevented the transfer of heat flux and fuel gases. Incorporation of MPP and AHP improved the thermal stability of HDPE/wood flour as observed from the thermogravimetric analysis results and also enhanced the thermal resistance of char layer at high temperature based on scanning electron microscopy observation.  相似文献   

11.
Authors established a new manufacturing technology for crack-free carbonized boards by pressing and carbonizing the medium-density fiberboard. Industrialization of new functional carbon materials was performed by investigating the fundamental properties of the carbonized boards. To be used as a construction material, the carbonized board needs to satisfy the fire performance regulation. In this study, the carbonized boards were manufactured from medium-density fiberboard (c-MDF) at different temperatures and then fire performance including flame retardancy and smoke toxicity was analyzed using a cone calorimeter and noxious gas analyzer. The results show that as the carbonization temperature increases, weight loss ratio decreases and flame retardancy increases. In the c-MDF at 800 and 1000 °C, no external damage was observed after combustion. These c-MDFs satisfy the total heat release (standard below 8 MJ/m2) and heat release rate (standard below 200 kW/m2) regulations according to the Building Standard Law of Korea and Japan. In addition, the c-MDFs showed the lower total smoke release (TSR, 0.213 m2/m2) than that of virgin MDF (94.281 m2/m2). The c-MDF at 800 and 1000 °C were, therefore, classified as a class III flame retardancy material and can be used as indoor finishing material.  相似文献   

12.
To improve the impregnation of wood, the pre-treatment by compression was systematically studied in terms of effects of compression ratio, compression direction, compression speed and compression-unloading place on the liquid impregnation in poplar and Chinese fir. The results showed: the impregnation increased 0.0065 or 0.0074 g/cm3 for every 1% increase of compression ratio when the compression ratio was lower or equal to 50 and 40% for poplar and Chinese fir, respectively; it continued to increase afterwards while the variation was quite big. There existed a significant difference of the impregnation of wood compressed at different directions in Chinese fir, but not in poplar. There existed a significant difference of the impregnation of wood compressed at different speed in both species. The impregnation of wood is likely to be in favor of radial compression in terms of the amount of impregnation. 5 and 10 mm/min were recommended as a compromise of impregnation and pre-treatment efficiency. The impregnation of wood that the compression unloaded in water was about 18.2 (poplar) and 9.2% (Chinese fir) higher in amount and was much quicker in speed than that the compression unloaded in air, and the difference between them was significant, suggesting that compression unloaded in water is significant to improve the impregnation.  相似文献   

13.
Abstract

This work summarizes the output of durability, reaction to fire properties, and environmental impact of wooden claddings subjected to treatments modified with TiO2 and clay nanoparticles. The objective was to investigate the effects of 1 wt% of TiO2 and clay nanoparticles in existing water-based and stain coatings and preservatives regarding the properties mentioned above. Water vapor resistance properties were used to assess the moisture transfer properties of the specimens by using the cup test. The reactions to fire properties of the specimens were analyzed using small-scale cone calorimeter test. Accelerated aging was used to study the weathering properties of specimens, where the performance of the specimens with aging was characterized using Fourier transform infrared (FTIR) analysis. The effect of increasing the percentage of nanoparticles from 1 wt% to 3 wt% on the weathering properties of the specimens was further analyzed. Moreover, comparison between the overall environmental impact between unmodified water-based paint and water-based paint modified with 1 wt% of TiO2 nanoparticles was performed using available environmental data and weathering test results as analyzed by FTIR.  相似文献   

14.
We evaluated fungal decay and mold resistance, leaching, and water absorption of nano-compounds and Paraloid B72® (PB72) in treated wood specimens to develop new methods of consolidation by combining nano-particles and consolidants. Scots pine wood specimens were treated with dispersions of nano-CuO, nano-ZnO, nano-B2O3, nano-TiO2, and nano-CeO2. PB72 treatments of nano-particle-treated wood specimens were then carried out by either vacuum or immersion for 24 h. Previously, decayed wood specimens were also consolidated with the nano-compounds and PB72. PB72 treatments reduced element release from treated wood specimens. Nearly all nano-compounds + PB72 treatments increased the biological performance of treated wood specimens against decay fungi tested. PB72-only treated wood specimens had the highest weight losses in decay tests. No improvements were obtained in mold resistance tests when the nano-compounds and PB72 were combined. In nano-compound-only treatments, unleached specimens showed slightly lower water absorption values compared to untreated control specimens. Incorporation of PB72 into nano-compound-treated wood specimens resulted in considerably lower water absorption and volumetric swell. In previously decayed specimens treated with the nano-compounds and PB72 solution, water absorption after 2-h immersion declined compared to control specimens.  相似文献   

15.
Summary A study of the wood-inorganic composites prepared by the sol-gel process with a metal alkoxide indicated that an inorganic modification of wood with TiO2 gels from tetraisopropoxytitanium (TPT) can not improve its properties due to the formation of the gels in the cell lumina by high hydrolysis rate of TPT. In this study, therefore, titanium alkoxides or titanium chelates which have the lower rate of hydrolysis and subsequent polycondensation than TPT were used for preparing TiO2 wood-inorganic composites to study the topochemical effects of the TiO2 gels for the property enhancement of wood. As a result, it was found by SEM-EDXA analysis that the TiO2 gels deposited within the cell walls could improve the properties of wood in dimensional stability and fire-resistance, whereas for the gels in the cell lumina, property enhancement could not be achieved, as observed in SiO2 wood-inorganic composites.This research has been performed in Dept. of Wood Sci. & Technol., Kyoto UniversityThis research was supported by a Grant-in-Aid for Scientific Research (B) (No. 06453176, 1994.4–1996.3) from the Ministry of Education, Science, and Culture, Japan. The authors were grateful to Nippon Soda Co., Ltd. for providing titanic reagents.  相似文献   

16.
This study aimed to evaluate radial and among-family variations of wood properties in Picea jezoensis. A total of 174 trees were randomly selected from 10 open-pollinated families in a progeny trial for measuring stem diameter, dynamic Young’s modulus of log (DMOElog), annual ring width (ARW), air-dry density (AD), modulus of elasticity (MOE), and modulus of rupture (MOR). Mean values of DMOElog, AD, MOE, and MOR were 9.60 GPa, 0.41 g/cm3, 9.44 GPa, and 76.6 MPa, respectively. Significant differences among families were observed in all properties. F values obtained by analyzing variance in wood properties were higher than those generally observed in growth traits. In addition, F values in wood properties remained relatively higher from the 1st to 25th annual ring from the pith, although F value in ARW rapidly decreased with each increase in annual ring number. These results indicate that genetic factors largely contributed to the variance in wood properties compared with the growth traits.  相似文献   

17.
Effect of heat treatment intensity on some conferred properties like elemental composition, durability, anti-swelling efficiency (ASE) and equilibrium moisture content (EMC) of different European softwood and hardwood species subjected to mild pyrolysis at 230 °C under nitrogen for different durations has been investigated. Independently of the wood species studied, elemental composition is strongly correlated with the mass losses due to thermal degradations which are directly connected to treatment intensity (duration). In all cases, an important increase in the carbon content associated with a decrease in the oxygen content was observed. Heat-treated specimens were exposed to several brown rot fungi, and the weight losses due to fungal degradation were determined after 16 weeks, while effect of wood extractives before and after thermal treatment was investigated on mycelium growth. ASE and EMC were also evaluated. Results indicated important correlations between treatment intensity and all of the wood conferred properties like its elemental composition, durability, ASE or EMC. These results clearly indicated that chemical modifications of wood cell wall polymers are directly responsible for wood decay durability improvement, but also for its improved dimensional stability as well as its reduced capability for water adsorption. All these modifications of wood properties appeared simultaneously and progressively with the increase in treatment intensity depending on treatment duration. At the same time, effect of extractives generated during thermal treatment on Poria placenta growth indicated that these latter ones have no beneficial effect on wood durability.  相似文献   

18.
An original heat treatment performed under vacuum pressure was investigated. Maritime pine samples were treated at six different temperatures: 140, 160, 180, 200, 230 and 260°C. The physical and mechanical consequences, i.e. bending strength (MOR), modulus of elasticity (MOE), hygroscopic behaviour, equilibrium moisture contents and anti-swelling efficiency (ASE) were studied. A no-choice feeding test according to the NF EN 117 standard was achieved. Temperatures up to 200°C had no significant effect on wood properties. However, at 230 and 260°C, the decrease in MOR was severe, reaching 42.5 and 62.5%, respectively. Whatever the treatment conditions, wood samples were still highly degraded by termites, revealing no increase in their durability.  相似文献   

19.
This paper presents the effects of particle size and mixing ratio on the properties including physical, mechanical, and decay resistance of wood plastic composites (WPCs). In addition, it also presents the effects of immersion temperatures on water absorption (WA) and thickness swelling (TS) of the WPCs. WPCs with a thickness of 6 mm were fabricated from Albizia richardiana King & Prain wood particles and recycled polyethylene terephthalate (PET) by the flat-press method. To prepare the WPCs, two different wood particle sizes (0.5–1.0 and 1.01–2.0 mm) were used along with four different mixing ratios (w/w). Subsequently, the physical properties include density, moisture content, WA, and TS, and mechanical properties include modulus of elasticity (MOE) and modulus of rupture (MOR) of the produced WPCs was evaluated. Furthermore, decay resistance was evaluated by the weight loss percentage method. Moreover, the effects of immersion temperatures on WA and TS of WPCs after 24 h of immersion in water at three different temperatures, i.e., 25, 50, and 75 °C were investigated. Results showed that the wood particle size had impact on WPC’s density (only 6% decreased with the increase of particle size); however, the density decreased by 29% when the wood particle content increased from 40 to 70%. The WA and TS gradually increased with the increase of particle content and decrease of particle size. In addition, WA and TS increased proportionately with increasing immersion temperature from 25 to 75 °C. Furthermore, the highest MOE (2570 N/mm2) was found for the WPCs fabricated from large wood particles having the ration of 50:50 (wood particle:PET). For decay resistance, WPCs consisted of larger particles and higher PET content showed greater resistance against decay. Therefore, it is comprehensible that fabrication of the WPCs from 50% large particles and 50% PET is technically feasible and further improvement of WPC performance like enhancement of MOE and reduction of density using coupling agent and agricultural waste fibers, respectively, in the WPC formulation is recommended.  相似文献   

20.
Laboratory experiments were done to determine the effect of geochemical composition of diatomaceous earth (DE) on insecticidal activity of DE against adults of the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Samples of DE were mined from DE-deposits in Slovenia, Greece, and Serbia. In addition, a commercially available DE formulation (SilicoSec®) was used in the tests and served as a positive control. The bioassays were carried out at temperatures 20, 25, and 30°C, relative humidity levels of 55 and 75%, and at application rates of 100, 300, 500, and 900 ppm. Adult mortality was recorded after 7, 14, and 21 days of exposure. Prior to bioassays with S. oryzae, the geochemical composition of all DEs that were used in the tests was determined by whole rock ICP geochemical analyses. Silica (in the form of SiO2 or opal-A) was the DE ingredient that was significantly correlated with efficacy in most of the bioassays. Some weak positive correlation was observed between S. oryzae mortality and MnO or CaO content. All significant correlations between mortality and Al2O3, Fe2O3, K2O, TiO2, Cr2O3, P2O5, and MgO content were negative, while correlation between Na2O content and mortality was generally not significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号