首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
哺乳母猪自动饲喂机电控制系统的优化设计及试验   总被引:2,自引:4,他引:2  
随着中国规模化、集约化种猪场数字化智能饲喂需求的快速增加,为解决哺乳母猪少吃多餐且随哺乳日龄变化采食量动态增加的饲喂控制需求,该研究以哺乳母猪为试验对象,将机电系统、无线网络技术、Android技术、SQL Lite网络数据库、电子数据交换与哺乳母猪的营养供给模型集成起来,设计了一种哺乳母猪自动饲喂控制智能系统。研究结果表明,组成一个哺乳母猪智能系统的主要部件包括供料线、缓冲料仓、料位控制筒、料位调控杆、下料控制线管、螺旋输送机、中央控制箱、下料触发器、料槽及下料管道等,而且通过在系统的微处理器内存预设的采食量模型与雨刷电机精确旋转的电子控制技术相结合,实现了对预设饲喂量的准确投料;还通过储料仓的料位控制机构及设置的人工观察孔,可控制缓冲料仓的合理贮料量,尤其对泌乳早期(0~10 d)母猪的存贮料量最佳为大约10 d单头母猪的理论采食量,以保持日粮的新鲜度及减少结拱;预设的采食量的动态投料控制量基本符合哺乳母猪实际采食变化规律,且实际采食量的变化轨迹收敛于对数曲线。基于智能自动饲喂系统中采食量模型计算出不同泌乳日期的预测采食量,按4次/d的饲喂频率及变化的投料比例(30%,25%,25%及20%)进行定时与定量投喂,与人工饲喂对比,能显著促进哺乳仔猪采食量的增加(P0.05),以及极显著提高哺乳仔猪的平均体质量日增加量(P0.01)。此外,考虑安装、清理料槽及母猪采食的方便性,建议母猪饲喂器的触发器安装高度大约为10 cm。总之,该文设计的哺乳母猪电子自动饲喂系统无需传感器及电子标识技术的应用,适合在中国中、小型的种猪繁育场的哺乳舍推广应用,且系统设备及相应的软件系统的部署方便。进一步指出,母猪自动饲喂器除需要验证哺乳母猪的采食特性及哺乳的仔猪的断奶性能外,在未来还需要观察母猪的返情率甚至断奶商品猪的成活率等指标,从整个母猪的利用年限评价智能饲喂设备的优劣。  相似文献   

2.
哺乳母猪精准饲喂下料控制系统的设计与试验   总被引:7,自引:3,他引:4  
为满足哺乳母猪获得最大采食量并达到精准饲喂控制等需求,以哺乳母猪为试验对象,设计了一种新型哺乳母猪精准下料控制系统。研究通过控制电动杆的推杆速率、输入电压及电源功率的协同工作,以获得稳定的下料量;采用预设的个性化的采食量模型与变容积的精确控制技术,实现对预设饲喂量的准确投喂。系统设计了下料控制系统,主要由定量仓体、电动推杆、堵料上球及堵料下球等部件及嵌入式控制系统组成。试验结果表明,1)当电源功率为150 W时,推杆启动时电压变化略小,对单机下料的精准性影响较小,且当电动推杆速率为60 mm/s,输入电压为11.5 V,下料效果最好(P0.001),变异系数(CV=3.526%)最小;2)预设的采食量曲线接近哺乳母猪的采食规律,且采食量曲线收敛于对数曲线;3)智能饲喂系统采用4次/d的饲喂频率及与采食曲线的协同工作,与人工饲喂对比,能进一步促进采食量,且采用变化的饲喂时间间隔(06:00,10:00,15:00及22:00),并在不同时间点的饲喂采食量比例分别为30%、20%、20%、30%时,总的采食量最大。综上,该文设计低成本的哺乳母猪精准下料控制系统,采用基于电动推杆的控制机构与嵌入式系统的协同工作,设备控制简单,下料稳定,计量准确,与进口设备及以螺旋输送原理为基础的过往系统比较,成本具有明显优势,适合在中国大、中、小型的种猪场的哺乳车间推广应用。  相似文献   

3.
为解决现有小群妊娠母猪饲喂系统存在猪只攀爬等导致采食通道门异常关闭从而使母猪不能采食的问题,该研究设计了一种自锁式小群妊娠母猪智能饲喂系统。系统由自锁式全机械结构的采食通道与精准下料装置组成。采食通道前门、后门、前门连接件、中间连杆与框架共同构成空间RRRSR(R为转动副,S为球面副)五杆单闭链机构,利用空间连杆机构自锁特性与定轴转动实现采食通道前后门的自锁与互锁。运动学仿真结果表明,前门最大开合角度为92°,后门最大开合角度为63.32°,前、后门完全开启时,母猪可在采食通道内通行。精准下料装置的控制基于FreeRTOS实现,将饲喂过程分为下料、下水、身份识别、数据显示与存储等。样机试验结果表明,系统的采食通道能够稳定自锁,可防止猪只攀爬导致采食通道门异常关闭;精准下料装置可精确识别母猪并精准下料,距离射频识别模块识别板20 cm左右即可识别到耳标,耳标识别后在1 s内开始自动下料下水,单圈下料最大误差不超过2.02%,单次下水最大误差不超过1.80%,研究结果可为研制具有自锁功能的小群妊娠母猪精准饲喂系统提供技术参考。  相似文献   

4.
智能饲喂器对哺乳母猪采食量体况和生产性能的影响   总被引:3,自引:2,他引:1  
为探究不同饲喂方式对哺乳母猪采食量、体况和生产性能的影响,满足哺乳母猪获得最大采食量并达到精准饲喂控制等需求,该文以哺乳母猪为试验对象,比较不同饲喂方式对哺乳母猪采食量、体况和生产性能的影响。试验共选用40只1胎母猪,随机分为3组:试验1组采用智能饲喂器饲喂(6次/d)、试验2组采用人工饲喂(6次/d)、对照组采用人工饲喂(3次/d)。结果表明,在试验环境条件下,哺乳8~21 d、人工饲喂3次/d的采食量(6.46 kg)显著高于智能饲喂6次/d(5.22 kg)(P0.05),2种饲喂方式在母猪的体质量变化、背膘变化、总产仔数、断奶后发情天数、仔猪日增体质量和用水量方面均无显著性差异(P0.05);哺乳母猪在采食过多时可能引起厌食进而降低后期的采食量,应按照饲喂参数逐步增加饲喂量饲喂;在现有设备投资和工资水平下,智能饲喂器正常使用4.5 a可取代1名优秀饲养员。研究结果可为今后智能化饲喂替代有经验人工饲喂、根据饲养条件选择饲喂方式提供参考。  相似文献   

5.
肉鸽规模化养殖是一种具有较高经济效益的新兴养殖产业,人工饲喂工作量大、饲喂精细化水平低、饲料浪费率高。为解决肉鸽工厂化规模养殖的自动饲喂难题,设计了一种肉鸽自动饲喂装置。该装置主要由饲喂食槽、控制箱、行程开关、三相异步电机、行走轮、动力传动系统及机架等组成;控制系统使用变频器控制2台三相异步电机的转速,以行程开关为位置检测元件,用循环时间继电器设定饲喂过程中的行走、停留时间,实现自动饲喂装置工作过程中的行走、停留、反向等行程控制,以保证饲喂的精细程度。试验结果表明,该装置行程精度控制在98%以上,饲料浪费率控制在1%以下,具有良好的稳定性,适合于肉鸽工厂化规模养殖。肉鸽自动饲喂装置适用于肉鸽大规模、工厂化养殖。  相似文献   

6.
奶牛饲喂自动机电控制系统的设计与试验   总被引:3,自引:1,他引:2  
为开展奶牛精准饲喂及采食行为学研究,设计了一种集自动识别、饲喂、数据自动采集、数据分析与处理于一体的奶牛饲喂自动机电控制系统。该系统包括机械装置、电子识别系统、料槽称质量系统、中央控制系统、现场数据存贮及远程数据提取与分析系统等几部分。其中,机械装置包括料斗、支撑座、栏杆和阻挡单元等;电子识别系统包括阅读天线及料门启闭的气动装置;料槽称质量系统除支撑座外,还有嵌入的质量传感器及线路;中央控制系统包括微处理器、看门狗复位电路、读卡器电路、称质量数据采集电路、数据通信电路、数据收发器电路及外围驱动与稳压电路等。现场数据存贮电路接受来自各个饲喂系统的中央控制系统发送的采食行为数据,其主板结构与中央控制系统基本一致,预设可存贮记录数为14 000条,且采用堆栈数据存贮模式。远程PC端数据提取与分析系统实时管理采食行为数据,并提供多功能的数据挖掘分析。系统测试结果表明,对牛只低频RFID(134 kHz)电子耳标的识读率为100%,料及槽的计量范围为0.01~200 kg,最低称量精度10 g,实际称量相对误差≤0.15%,同时满足奶牛对最大采食量及精准饲喂对计量的需求。系统的采食行为试验表明,奶牛的日均采食次数、采食时间及采食量等采食行为均差异显著(P0.05),符合奶牛的采食行为特点。具体地,奶牛日均采食次数10~13次,日均采食时间5.38 h,而奶牛个体实际采食量与NRC(National Research Council)模型预测的采食量有-4.76%~7.83%的偏差,可能是由各种内外部因素及NRC模型的普适度造成的,有待进一步研究。总之,该系统能较好地实现奶牛个体的精细化饲喂,为研究奶牛的采食行为特点提供了在线、智能化的自动数据采集与分析平台。  相似文献   

7.
为初步探讨规模化猪场不同饲养阶段固体粪便的实际收集量,该文选择北京一典型规模化猪场,定期对采用干清粪工艺的保育猪、育肥猪、妊娠母猪和分娩母猪的固体粪便日收集系数进行测量和相关成分测定,为估算规模化猪场固体粪便收集量和相关污染负荷提供依据。结果表明:妊娠后期母猪,妊娠前期母猪,分娩母猪、育肥猪和保育猪的固体粪便平均收集系数分别为2.19±1.10, 1.22±0.3, 1.27±0.32, 0.75±0.26 和 (0.47±0.14)kg·d-1·头-1;各饲养阶段的新鲜固体粪便的含水率基本一致,平均含水率为66%;保育猪和育肥猪的粪便挥发性固体平均含量(干基)为81.8%,分娩母猪与妊娠前期和妊娠后期母猪固体粪便挥发性固体平均含量为(干基)74.4%;保育猪与育肥猪的固体粪便有机物和大部分重金属含量比妊娠母猪和分娩母猪高。  相似文献   

8.
规模化猪场妊娠母猪舍改进湿帘降温系统的环境特性   总被引:2,自引:1,他引:2  
为研究湿帘与地道结合的改进湿帘降温系统对妊娠母猪舍的环境特性,该研究采取现场测试的方法,选取河南地区某规模化母猪场妊娠舍为试验猪舍,对该猪舍夏季和冬季舍内热环境和空气质量环境进行测试和分析,结果表明:1)改进湿帘降温系统夏季对新风的平均降温功率增加了?84.4 kW,提高了25%的降温效果;冬季对新风的平均加热功率增加了121.6 kW且舍内无需供暖,87%以上的节能效果发生在地下风道前半程。2)试验猪舍舍内温湿度、风速分布均匀,且舍内温度波动低于3.7 ℃;综合猪舍母猪体感有效温度和呼吸频率等应激程度指标,母猪冬季处于舒适状态,夏季有轻度热应激状态现象。3)夏季和冬季舍内氨气(NH3)、二氧化碳(CO2)、和粉尘(PM2.5和PM10)的质量浓度分布均匀,且均小于国家标准规定的妊娠舍空气污染物浓度极限水平。综上所述,改进湿帘降温系统不仅降低妊娠母猪舍热环境调控的能耗并维持舍内空气质量环境良好,对建立环境友好型规模化母猪场具有积极意义。  相似文献   

9.
体温是衡量母猪发情与否的关键生理指标。母猪发情期与间情期体温的明显不同,是运用红外热成像监测母猪体温变化以鉴定母猪发情的依据。该研究基于Y3TB01体温筛查智能摄像机和红外热像仪C3实时非接触拍摄母猪红外热图像,并运用图像分析技术获取体温,为非接触式测温用于鉴定母猪典型生理状态提供支持。试验以空怀期、发情期、妊娠1~8 d和妊娠9~16 d大白初产和经产母猪共720头为研究对象,利用红外设备和电子体温计分别测量母猪的眼睛、耳、耳蜗、乳房、外阴、臀部和直肠温度,筛选不同胎次发情母猪和返情母猪的体表关键部位温度,进行差异分析。结果表明:运用Y3TB01体温筛查智能摄像机可以代替直肠温度测定,准确监测母猪体表温度(相关系数为0.973);红外热像仪C3检测体温异常母猪的体表温度,臀部温度可以作为筛选大白初产发情母猪和返情母猪的测定部位(准确率分别为77%和72%),外阴温度可以作为筛选大白经产发情母猪和返情母猪的测定部位(准确率分别为88%和81%)。因此,Y3TB01体温筛查智能摄像机和红外热像仪C3配套技术能准确监测母猪体温和异常体温报警,明确不同胎次不同生理时期大白母猪体表部位温度和体温分布,准确鉴定出发情母猪和返情母猪。研究为非接触式测温鉴定母猪发情技术提供了科学依据,对规模化猪场母猪的饲养管理与疫情防控具有重要意义。  相似文献   

10.
夏季,分别从预产期前35 d、28 d、21 d、14 d和7 d开始提高母猪采食量1 kg/(头·日),研究提高饲喂量对母猪妊娠期天数、产仔数、初生窝重及个体重、断奶窝重及个体重、母猪泌乳力、断奶后发情时间的影响。结果表明,母猪在预产期前21 d开始增料,妊娠期极显著短于预产期前7和14 d增料,仔猪初生窝重、初生个体、断奶窝重、母猪泌乳力、断奶后发情时间以预产期前21 d开始增料为最好,与其他组差异显著或极显著,但增料时间对母猪总产仔数、产活仔数、断奶个体重等方面的影响没有显著差异。  相似文献   

11.
种猪生产性能测定系统开发与性能测试   总被引:1,自引:1,他引:0  
为开展种猪生产性能的智能化、自动化测定及开展种猪采食行为学研究,该研究设计了一种集自动识别、体质量感知、采食行为数据自动采集、数据分析与处理于一体的种猪生产性能智能测定系统。该系统主要由猪只耳标识别模块、精准下料控制模块、料槽及猪只个体称质量模块、现场数据通讯模块及远程中央控制模块组成。系统机械部分主要包括饲喂站的竖直侧墙、称质量平台、活动挡板、下料机构、料仓、控制盒、出料口开关及耳标识读器等组成。电路控制系统包括微处理器(LPC1766,内核为ARM Cortex-M3内核的微控制器)、RS232读卡器接口、数据存储芯片(预设存储256 KB数据)、看门狗电路、称质量电路、外围驱动电路、JTAG接口电路及稳压电源电路。系统性能测试结果表明:1)测量精度如下:饲喂下料没有范围限制,取决于喂料仓的储料状态,单次下料量及动态误差为93±2g;猪只体质量秤量程为0~200 kg,计量精度为10 g,称量动态误差占猪只体质量的0.5%以下,符合测定需求;2)对40头种公猪后裔的生长肥育猪饲喂测试结果表明,在25~60 kg体质量范围内,自由采食日均次数10~12次,日均采食时间78min,测试期间料肉比(FCR)为2.33:1,且生长规律符合Gompertz曲线,通过该模型预测的日增质量下降的拐点发生111~117d之间,对应的拐点体质量在63~64 kg范围内。上述实际观察及预测结果较好地反映了测定对象的生产性能,开发的软件及硬件系统达到了种猪生产性能测定的要求;3)系统下料控制部分,首次采用雨刷电机取代早期采用的步进电机,不仅成本下降,尤其结合圆柱式刮板下料机构,降低了单次下料量,改善了下料的精度;4)系统核心芯片采用进口器件,电路设计采用多重冗余和保护电路,软件的编写采用了多重功能验证,并通过长期可靠性测试;软件和硬件的冗余设计,提高了控制系统的可靠性,消除来自电源、电机、电磁波干扰,该测定系统具有极高的可靠性;测定的数据通过计算机系统可长期保存或升迁,便于数据量的积累和开展种猪选育的大数据挖掘分析。  相似文献   

12.
池塘养殖全自动精准投饲系统设计与应用   总被引:3,自引:1,他引:2  
目前池塘养殖过程中需要人工搬运饲料,劳动强度大、人工成本高。现有投饲设备缺少称量和自动控制功能,存在投饲量控制不精准、自动化程度低、难以集成管控等问题。为此,该研究设计了一种全自动精准投饲系统,主要由机械设备、自动控制系统、信息管理系统等组成。基于"控制在本地、管理在云端"原则确定了系统结构。采用大料仓投饲机和散装饲料实现饲料出厂、运输、装料和投料全程机械化作业。开发了基于可编程逻辑控制器和称重传感器的自动控制系统,实现设备全自动运行和投饲量精准控制。控制系统与信息管理系统对接,实现投饲管控与企业生产经营管理的一体化。通过对视频监控设备的集成实现投饲过程的可视化监控。该系统在某大型养殖企业投入生产应用,建立了800 hm2的全自动投饲养殖示范基地,基本实现投饲过程的无人化作业。与传统小型投饲机、人工搬运和加装饲料的投饲方式相比,该系统可以减少劳动力成本70%、节约饲料用量3%,有效降低成本,取得了良好经济效益,具有实际工程应用价值。  相似文献   

13.
猪床单元宽度及群体位次对妊娠母猪行为的影响   总被引:1,自引:1,他引:0  
猪能自由表达行为被认为是福利养殖的一个重要方面。为探讨自由进出猪床的单元宽度及群体位次对妊娠母猪行为的影响,试验选用18头已配种4周左右的母猪,随机分到3圈栏,每圈栏6头。圈栏内设有6个可自由进出的猪床单元,其长度均为1 500 mm,宽度分别设600、700、800 mm 3种规格各2单元。每圈栏内相同宽度猪床单元相邻排列,不同圈栏内不同宽度猪床单元交叉排列。基于每圈栏猪混群48 h内的争胜行为结果计算出每头猪的位次指数,猪群中群体位次排名1~2的猪被定义为高位次猪,排名3~4的猪为中位次的猪,排名5~6的猪为低位次的猪。结果表明:母猪在600 mm宽的猪床单元内的躺卧时间明显少于在800 mm单元内的(P0.05)。中位次的母猪在猪床单元内的躺卧持续时间显著低于低位次的(P0.05)。高位次与中位次的猪在700 mm单元内侧卧持续时间无显著性差异(P0.05),但二者侧卧持续时间显著少于低位次的猪(P0.05)。母猪采食时所发生的攻击频次在600 mm宽度猪床单元内显著低于其他两者(P0.05)。母猪在600、700和800 mm宽度猪床单元内采食时所发生的取代频次随着猪床单元宽度的增加而增加,并且两两之间均有极显著性差异(P0.01)。高位次和中位次猪在单元内采食所发生的攻击和取代频次均显著高于低位次猪(P0.05),而被攻击和被取代次数均显著低于低位次猪的(P0.05)。3个圈栏中高位次的母猪占据最先投食的猪床单元百分比分别为62.5%、50%和100%。可见,800 mm宽度的猪床有利于猪的躺卧,而不利于猪的采食。高位次的猪占据采食和躺卧的有利资源。  相似文献   

14.
中国畜牧业物联网技术应用研究进展   总被引:6,自引:5,他引:6  
以"感知"为基础的物联网技术迅速发展及产业化逐步渗透到各行各业,包括畜牧业在内的农业物联网的发展也十分迅猛。该文重点从家畜编码规范及标识技术,家畜养殖环境及体征行为远程监测,母猪精细饲喂智能装备及种畜(种猪、奶牛)养殖过程数字化监管与云计算平台构建等多个方面,综述物联网技术在畜牧业领域的应用环节、效果及存在的局限性。综述表明,在感知标识层,关于家畜标识的国际标准主要包括动物管理系列标准ISO/TC 23/SC 19,它负责制订动物管理RFID(radio frequency identification)方面标准,包括ISO 11784/11785和ISO 14223标准,但3个标准内涵的分工不同,而中国的标准包括国家规范、地方标准及企业内部规范,具体包括农业部第67号令,上海地方标准(DB31/T341-2005)和新疆地方标准(DB 65/ T3209-2011)2个动物电子标识规范,以及北大荒及亿利源企业的肉牛内部编码规范。在感知传输层,主要基于不同类型的传感器感知家畜舍环境参数(温湿度、光照强度、氨气及CO2浓度等)及体征行为(视频、质量,体表温度等)。在数据传输层,采用无线公网(2G/3G/4G)网络对家畜舍环境数据及个体的行为状态数据实施远程传输,而视频数据及大量的生产过程数据采用有线网络传输到Internet网路数据库;在数据应用层,典型的应用包括通过移动智能手机终端,依据对采集数据的分析及预警,对远程的环境控制设备(风机、灯电暖、水泵等)进行智能开启与关闭;其次是奶牛繁殖场及种猪养殖场云计算平台的开发与数据挖掘分析应用,以及基于传感器技术及机电控制技术的母猪电子自动与精确饲喂设备的开发与应用。最后,该文从微观到宏观剖析了中国畜牧业物联网当前在技术、产品、应用、政策及认识层面存在的不足,并给出相应的技术与政策建议。综合认为,中国畜牧业发展的现代化需要物联网技术的支撑,物联网技术也必须在领域的应用中寻找正能量,促进畜牧业物联网产业的发展。  相似文献   

15.
河蟹养殖船载自动均匀投饵系统设计及效果试验   总被引:3,自引:5,他引:3  
针对目前河蟹养殖投饵喂料劳动强度大、自动化程度低、投饲饵料分布不均匀等问题,该文提出了一种空气螺旋桨风力驱动船载自动投饵系统及均匀投饵方法。该系统由空气螺旋桨风力驱动船、自动投饵装置、ARM(advanced RISC machine)主控制器、GPRS(general packet radio service)通信模块和GPS(global positioning system)导航装置等组成。采用空气螺旋桨风力驱动,可解决常规作业船水下螺旋桨吸卷缠绕水草影响行驶问题;利用喂料器落料流速可控、抛料器抛幅可调、料仓内剩余饵料量可测的自动投饵装置,可解决投饵喂料分布不均匀问题。该系统以S3C2440为主控制器,通过GPRS通信模块M590接收作业指令。该文对投饵装置抛料器、饲料颗粒斜抛运动、饵料在水面上的累积密度分布进行建模,建立投饵均匀度目标函数,采用遗传算法GA进行最优运行参数求解,确定船载自动投饵系统最优运行参数:当饵料分布密度期望值为9 g/m2时,2个相邻投饵行程宽度的最优值为8.21 m,自动投饵装置投饵扇角的最优值为80°,喂料器单位时间内落料量的最优值为32.01 g/s,下方投饵行程船速的最优值为0.43 m/s,上方投饵行程船速的最优值为0.43 m/s,抛盘转速的最优值为1 480 r/min;并通过GPS导航装置BD982实现路径跟踪,完成自动均匀投饵作业。对饲料颗粒斜抛运动、饵料平均累积密度和分布密度均方差等进行仿真,在水平地面上与人工抛洒饵料进行对比试验,并在池塘内进行投饵试验,结果表明,该系统可使投饲饵料分布均匀度较人工投饵提高3倍以上,投饲饵料分布密度均值与设定值的相对误差为5.11%,为适应河蟹昼伏夜出的生活习性,可在夜晚进行投饲,使用1套该船载自动投饵系统能够精细管理6.67 hm2左右河蟹养殖池塘,相当于5个农村劳动力投饵喂料,节省人力提高效率,提高饲料的利用率15%以上,能使饲料节约15%以上,产量提高20%以上;同时,该船载自动投饵系统可以定时定量均匀投饲,保证养殖的河蟹个头大小均等,提高产值,大幅提高养殖面积增加效益。该文可为河蟹养殖全池自动均匀投饵喂料和其他水产养殖中需要沿池或全池自动均匀投饲研究提供重要参考。  相似文献   

16.
稻田开放式自动化养鸭设备的研制及试验   总被引:1,自引:1,他引:0  
为了解决鸭稻共作过程中依靠人工饲养鸭子费时费力的问题,加速推广具有良好经济效益和社会效益的水稻生态农业模式,该文设计了一种以单片机为控制核心,在无人值守情况下在稻田中自动化养鸭设备。该设备放置在稻田的输水渠上不占农田,由太阳能电池板产生的能量驱动,能够按照昼夜变化规律运行,早晨05:30后自动开门,傍晚18:00奏音乐唤鸭回笼并能自动补料、给水和关门。由于料斗放置在田间,饲料容易受潮而结拱影响补料量控制的精准度,设计了振动式料斗破拱装置,试验确定了破拱装置的振动偏心距为30 mm、转速为1 200 r/min。田间试验结果表明,在自动门延迟关门1 min和声音响度100 d B时,鸭群回笼率达到97.5%以上;自动化养鸭设备饲养鸭群体质量增长与人工喂养无显著性差异(P0.05)。该研究成果对鸭稻共作技术的推广应用具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号