首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Gluten protein determines the processing quality of both durum wheat and bread wheat. The glutenin subunits compositions and associated quality traits of 20 Ethiopian durum wheat varieties were systematically analyzed using SDS-PAGE and Payne numbers. A total of 16 glutenin patterns were identified. At the Glu-A1 locus, all varieties scored the null allele. The predominant glutenin alleles at the Glu-B1 locus were Glu-B1b (7+8) and Glu-B1e (20). In Glu-3, the most abundant glutenin subunits were Glu-A3a and Glu-B3c. Based on the Payne scores, the varieties Yerer, Ginchi, Candate, and Foka were identified to have allelic composition suitable for pasta making. The cluster analysis using agglomerative hierarchical clustering (AHC) method classified the varieties into four similarity classes. Based on the findings of this experiment, suggestions were made for allelic composition improvement through introgression of superior alleles from known Glu-1 and Glu-3 sources.  相似文献   

2.
甲单向一步SDS-PAGE方法分析表明亲本品种Suneca和Cook在麦谷蛋白亚基的5个位点(Glu-B1,Glu-D1,Glu-A3,Glu-B3和Glu-D3)均含不同等位基因。本研究重点对Suneca×Cook的F_4代群体中在麦谷蛋白亚基位点均为纯合基因的60个系的出粉率(FY),面粉蛋白质含量(FP)及和面时间(PTM)进行了分析,以研究麦谷蛋白各亚基位点等位基因变异及位点间互作对小麦品质特性的影响。结果表明,不同基因型间出粉率无显著差异,Glu-D1位点等位基因d和a对FP的效应存在显著差异,Glu-Dld基因(编码5 10亚基)的正效应显著高于Glu-Dla基因(编码2 12亚基);Glu-D1、Glu-A3和Glu-B3位点上基因的等位变异对PTM有显著和极显著影响,含Glu-Dld、Glu-A3b和Glu-B3b基因的系分别比含Glu-Dla,Glu-A3d和Glu-B3h基因的系有较长的和面时间;Glu-B1位点上等位变异i和u以及Glu-D3位点等位基因b和e分别对PTM无明显影响。在这种遗传背景下,麦谷蛋白亚基位点对PTM的效应大小依次排列为Glu-D1>Glu-B3>Glu-A3>GIu-B1=Glu-D3。Glu-1位点和Glu-3位点间对和面特性的影响存在累加效应和互作效应。  相似文献   

3.
Summary High and low molecular weight glutenin subunit (HMW-GS and LMW-GS) compositions of 270 European spelts, 15 Iranian spelts and 25 bread wheat cultivars were analyzed by one- and two-dimensional gel electrophoresis. The results revealed a total of 22 HMW-GS alleles (4 at Glu-A1, 11 at Glu-B1 and 7 at Glu-D1) and 32 allele combinations among the three Glu-1 loci. Two major genotypes of HMW-GS: 1, 13+16, 2+12 and 1, 6.1+22.1, 2+12 were found to occur in Central European spelt wheat cultivars and landraces at higher frequencies of 35 and 28%, respectively. The Glu-B1 locus displayed the greatest variation and genetic diversity index (H) was 0.69 whereas Glu-A1 and Glu-D1 showed H index values of 0.26 and 0.19, respectively. The dendrogram constructed by HMW and LMW glutenin subunit bands revealed that European spelts form a separated cluster from common wheat suggesting that spelt and common wheat form distinct groups. In addition, all 15 Iranian spelt land variety accessions differed from European spelts and possessed similar HMW-GS alleles to common wheat. Because of a wider polymorphism Central European spelt wheats are an important genetic reserviour for improving common wheat quality. Both authors contributed equally to this work  相似文献   

4.
小麦资源胚乳蛋白Glu-1、Glu-3、Gli-1基因位点变异特点   总被引:3,自引:0,他引:3  
141个普通小麦品种及农家种中,由Glu-1位点控制的高分子量谷蛋白亚基共27种图谱,最常见的图谱是(N,7+8,2+12)占22%和(N,7+9,2+12)占19.9%,Glu-A1、Glu-B1、Glu-D1位点控制的均为正效应亚基,其图谱(1,7+8,5+10),(1,14+15,5+10),(1,13+16,5+10),(1,17+18,5+10),(2*,7+8,5+10),(2*,13+16,5+10)占13.4%; 由Glu-3位点控制的低分子量谷蛋白亚基共48种以上的图谱,最常见的图谱是(a, j, c), Glu-A3位点存在6个以上等位基因,新发现的占5.7%, Glu-B3位点存在10个以上等位基因,新发现的占2.8%, Glu-D3位点存在3个等位基因;由Gli-1位点控制的醇溶蛋白共81种以上图谱,Gli-1A1位点存在7个以上等位基因,新发现的占7.1%, Gli-B1位点存在12个以上等位基因,新发现的等位基因占3.5%, Gli-D1位点存在10个等位基因,Gli-B1位点的l为1B/1R易位系,占总数的33.6%; 由Gli-1位点控制的醇溶蛋白和由Glu-3位点控制的低分子量谷蛋白亚基基因变异远比由G1u-1位点控制的高分子量谷蛋白亚基复杂和丰富。  相似文献   

5.
The objective of this study was to identify allelic variations at Glu-1 loci of wheat (Triticum aestivum L.) advanced lines derived from hybridization of bread wheat and synthetic hexaploid wheats (2n = 6x = 42; AABBDD). Locally adapted wheat genotypes were crossed with synthetic hexaploid wheats. From the 134 different cross combinations made, 202 F8 advanced lines were selected and their HMW-GS composition was studied using SDS-PAGE. In total, 24 allelic variants and 68 HMW-GS combinations were observed at Glu-A1, Glu-B1, and Glu-D1 loci. In bread wheat, the Glu-D1 locus is usually characterized by subunits 1Dx2+1Dy12 and 1Dx5+1Dy10 with the latter having a stronger effect on bread-making quality. The subunit 1Dx5+1Dy10 was predominantly observed in these advanced lines. The inferior subunit 1Dx2+1Dy12, predominant in adapted wheat germplasm showed a comparative low frequency in the derived advanced breeding lines. Its successful replacement is due to the other better allelic variants at the Glu-D1 locus inherited in these synthetic hexaploid wheats from Aegilops tauschii (2n = 2x = 14; DD).  相似文献   

6.
HMW-GS和LMW-GS组成及1BL/1RS易位对春小麦品质性状的影响   总被引:19,自引:2,他引:17  
分析了221份春小麦品种(系)的HMW-GS、LMW-GS组成和1BL/1RS易位状况,并用其中104份品种(系)研究了HMW-GS和LMW-GS等位变异及1BL/1RS易位对品质性状的影响。结果表明,1、7+9、5+10、GluA3a和GluB3j分布较广,频率分别为57.5%、45.2%、63.8%、29.0%和42.5%。1BL/1RS易位系相当普遍,西北春麦区和东北春麦区频率分别为44.3  相似文献   

7.
Seed storage proteins of 131 Japanese Norin wheat (Triticum aestivum) varieties were fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis to determine allelic make-up in varieties at each of three loci that control high-molecular-weight (HMW) glutenin subunits. Three alleles were identified at the Glu-A1 locus, six at the Glu-B1 locus and five at the Glu-D1 locus. Twenty-four different, major glutenin HMW subunits were identified and each contained three to five subunits and seventeen different glutenin subunit patterns were observed for 19 subunits in the 131 Japanese Norin varieties. Fourteen alleles were identified by comparison of subunit mobility with that previously found in hexaploid wheat. Japanese Norin varieties showed a specific pattern of allelic variation in glutenin HMW subunits, different from that of Chinese and other country common wheats in allelic frequency at Glu-1 loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The high molecular weight glutenin subunit (HMW-GS) composition of acollection of 107 Argentinean bread wheat cultivars was analysed bysodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE).Allelic variation at the Glu-1 loci was identified and its frequencycalculated. Eleven alleles were detected, three encoded at the Glu-A1locus, six at the Glu-B1 locus and two at the Glu-D1 locus. Alow frequency of the null allele at the Glu-A1 locus and a highfrequency of subunits 5+10 at the Glu-D1 locus were observed.Reversed phase-high performance liquid chromatography (RP-HPLC)analysis was used to further characterise HMW-GS. Two different types ofBx subunit 8 (named subunits 8 and 8) were detected, the latterhaving shorter elution time. Subunit 8 was not identifiable bySDS-PAGE. According to quantification by RP-HPLC analysis, two groupsof subunit 7 were observed. One group, with a relatively high proportionof subunit 7 (approximately 39% of the total amount of HMW-GS)appeared in cultivars with allele 7+8 at the Glu-B1 locus; asecond group of subunit 7 (around 24% of the total amount ofHMW-GS), was found in alleles 7+8, 7+8 and 7+9. Restrictionfragment length polymorphisms (RFLP) analyses of HMW-GS genes werealso carried out after digestion of genomic DNA with HindIII andTaqI restriction enzymes. The relationship between DNA fragment sizeand glutenin subunits, as estimated by electrophoretic mobility inSDS-PAGE, was also examined. The restriction enzyme TaqIdemonstrated to be a useful tool to detect homozygous plants in selectionprograms against the Glu-A1 null allele.  相似文献   

9.
选用我国春播麦区23份(试验I)和北部冬麦区21份(试验II)品种(系),研究了Glu-1位点等位变异及其亚基表达量对谷蛋白聚合体粒度分布的影响。结果表明,Glu-1位点等位变异及其亚基表达量显著影响谷蛋白聚合体的粒度分布,且影响程度受蛋白质含量,尤其是高分子量谷蛋白总量水平的影响。在高分子量谷蛋白总量较低时(试验I),Glu-B1和Glu-D1位点对不溶性谷蛋白大聚体含量(UPP)及其占聚合体蛋白总量的百分比(%UPP)的加性效应都达1%显著水平;Glu-B1和Glu-D1位点单个亚基对两者的贡献分别为7OE+8* >7+9 >17+18 >7+8和5+10 >2+12,具有5+10亚基组合的%UPP显著高于具有2+12的亚基组合。高分子量谷蛋白的亚基表达量与UPP含量呈高度正相关,相关系数为0.79~0.93(P < 0.01)。而在高分子量谷蛋白总量较高时(试验II),仅Glu-D1位点对%UPP的加性效应达5%显著水平,5+10亚基对%UPP的贡献显著高于2+12和4+12;亚基组合间的聚合体粒度分布无显著差异。高分子量谷蛋白的亚基表达量与UPP含量的相关系数为0.42~0.86(P < 0.05或0.01)。结合高分子量谷蛋白表达量和优质亚基进行选择,能有效提高不溶性谷蛋白大聚体的含量和相对比例,有利于面筋强度和加工品质的进一步提高。  相似文献   

10.
Summary Variation for high molecular weight (HMW) glutenin subunits is reported in Afghan hexaploid wheat landraces from different locations in the country ranging in altitude from 395 to 3170 metres. The variation appeared to be independent of the altitude and geographical location of the landraces. Studies of a number of samples from each of five sites revealed that at some sites there was allelic variation at theGlu-A1 andGlu-B1 loci coding from HMW glutenin subunits, but there was no variation at theGlu-D1 locus within and between sites.  相似文献   

11.
A collection of 63 bread wheats (Triticum aestivum L.) and 21 durum wheats (Triticum durum Desf.) commonly grown in Portugal since 1982 were characterized for the composition of wheat storage proteins (WSP), high molecular weight glutenin subunits (HMW-GS), low molecular weight glutenin subunits (LMW-GS) and ω-gliadins. The composition of HMW-GS, LMW-GS and &-gliadins, encoded at loci Glu-1, Glu-3 and Gli-1, respectively, was revealed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. WSP allelic compositions of bread and durum wheat patterns were given. In the bread wheats, a total of 24, 24 and 18 patterns were observed for HMW-GS, LMW-GS and ω-gliadins, respectively. Forty-two different alleles were identified for the nine loci studied, Glu-A1 (3), Glu-B1 (7), Glu-D1 (4), Glu-A3 (5), Glu-B1 (7), Glu-D3 (2), Gli-A1 (2), Gli-B1 (8) and Gli-D1 (4). In the case of durum wheats, 19 alleles were identified: one allele at Glu-A1, two at Glu-B3, Glu-B2 and Gli-A1, three at Glu-B1, four at Glu-A3 and five at Gli-B1. For HMW-GS, LMW-GS and ω-gliadins, three, six and six different patterns were revealed, respectively. This study represents the first attempt to discriminate the bread and durum wheat varieties commonly grown in Portugal by the allelic variation of storage proteins. The database is useful for varietal identification and for plant breeders who seek to devise effective programmes aimed at improving wheat quality.  相似文献   

12.
Variation at Glu-1 Loci in Club Wheats   总被引:1,自引:0,他引:1  
Hexaploid club wheats (Triticum aestivum L.) possess unique end-use quality characteristics and are grouped as a U.S. market subclass of soft white common wheat. Although there have been many reports on associations among high-molecular-weight glutenin storage protein (HMW-Glu) sub-units with end-use quality in hard wheats; there has been very limited work done on surveying the club wheats for these subunits. The HMW-Glu subunits, spike types and grain color were determined for 41 U.S. club wheat cultivars and 79 club accessions obtained from the National Small Grains Collection (NSGC), USDA-ARS. Accession ‘Harlan JR 35’ (PI 420948), which appears morphologically to be a hexaploid club wheat, was determined to be tetraploid. Egyptian line ‘Maya II-Tel's’ (PI 422288) was shown to have previously undescribed HMW-Glu subunits. In the U.S. club wheats the most common HMW-Glu subunits were: null, 49 % (Glu-A1); 6, 37 % (Glu-B1); and 2 + 12, 94 % (Glu-D1). In the NSGC group the most common HMW-Glu sub-units were: 2*, 52 % (Glu-A1); 7 + 8, 31 % (Glu-B1); and 2 + 12, 92 % (Glu-D1). The high frequency of subunits 2 + 12 in the club wheat groups has not been observed previously in numerous surveys of diverse wheat cultivars. The Glu-B1 subunits 6 (without subunit 8) and 20 which have not been reported in US red wheats, were shown to be common in both club wheat groups. A comparison of diversity indices, including previous studies on HMW-Glu subunit frequencies on all market classes of wheat, showed that the club groups are as diverse for the Glu-A1 and Glu-B1 loci and less diverse for the Glu-D1 locus.  相似文献   

13.
An assessment of cultivated emmer germplasm for gluten proteins   总被引:5,自引:0,他引:5  
The storage protein composition of 61 accessions of Triticum dicoccum was analyzed by SDS-PAGE (HMW- and LMW-glutenin subunits) and Acid-PAGE (gliadins). In the HMW-glutenin subunits, four allelic variants at the Glu-A1 and eight at the Glu-B1 locus were detected resulting in a total of 17 patterns. The Glu-B1 locus was found to be more polymorphic than the Glu-A1 locus. Interestingly, the presence of HMW subunits like 13+16, 2 and 1 associated with good quality was observed. Three accessions were null for both the Glu-A1 and Glu-B1 loci. There was less variation for gliadins. Three different gamma gliadin fractions coded by Gli-B1 locus were detected and there were eight different LMW-B glutenin patterns at the Glu-3 loci. The variability can be used to improve the utility of this crop.  相似文献   

14.
Multiplex-PCR typing of high molecular weight glutenin alleles in wheat   总被引:26,自引:0,他引:26  
W. Ma  W. Zhang  K.R. Gale 《Euphytica》2003,134(1):51-60
In Australian commercial cultivars, each high molecular weight glutenin (Glu-1) homoeologous locus consists of one of two predominant alleles: Glu-A1a (subunit Ax1) or Glu-A1b (subunit Ax2*) at the GluA1 locus, Glu-B1b (Bx7 and By8 subunits) or Glu-B1i (Bx17 and By18 subunits) at the Glu-B1 locus, and Glu-D1d (Dx5 and Dy10 subunits) or Glu-D1a (Dx2 and Dy12 subunits) at the Glu-D1 locus. PCR-based assays have been developed in this study to discriminate between these common alleles at each locus. Primers specific for the Glu-A1 Ax2* gene give a single fragment of 1319 bp only in the presence of this gene. Primers targeting the Glu-B1 locus resulted in a co-dominant marker for which the Bx7 genotype produced two fragments (630 bp and 766 bp) and the Bx17 genotype a single fragment (669 bp). The third pair of primers was specific for the Dx5 gene and resulted in a single band of 478 bp. A multiplexed PCR assay was established which permitted the discrimination of the major HMW glutenins in a single PCR reaction and agarose gel assay. As the HMW glutenin composition of a wheat line is extremely important in determining the functional properties of wheat gluten, these markers are useful for the purposes of marker-assisted breeding. These markers may also be useful for the purpose of DNA-based identification of wheat varieties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
选用北方冬麦区近年来育成的优质强筋品种及山东省主栽品种共42份, 采用反相高效液相色谱法(RP-HPLC)和凝胶色谱法(SE-HPLC)对小麦贮藏蛋白组分进行量化, 分析了不同高分子量谷蛋白亚基(HMW-GS)组成对其表达量、面团流变学特性和面包加工品质的影响。结果表明, Glu-D1位点对谷蛋白亚基含量和加工品质的加性效应最大, 达5%显著水平, 贡献率为28.5%~71.3%。在Glu-A1和Glu-D1位点, 单个亚基对谷蛋白亚基含量和加工品质的贡献分别为1>2*>N和5+10>2+12>4+12, 而在Glu-B1位点, 则表现为差异不显著。不同亚基组合的HMW–GS表达量差异达5%显著水平, 相同亚基组合的品种间贮藏蛋白组分表达量的变异较大, 亚基表达量的差异可能是导致品种间品质差异的重要原因。1B/1R易位显著降低LMW-GS、谷蛋白总量和%UPP, 导致加工品质变劣。选择具有优质亚基组合, 且谷蛋白亚基表达量高的类型, 是有效改良面筋强度, 进一步提高优质新品种选育的有效途径。  相似文献   

16.
Summary The high molecular weight (HMW) subunits of glutenin extracted from flour of 36 Yogoslav wheat cultivars were separated by SDS-PAGE to identify their alleles, and the frequency of each allele was calculated. Eleven alleles from the three Glu-loci were recognized, three at the Glu-A1 locus, six at the Glu-B1 locus and two at the Glu-D1 locus. The most frequent allele was a (55.5%) from Glu-D1, which controls synthesis of subunits 2+12. The Glu-1 quality score varied from 4 (KG-III/27, KG-75, Morava and KG-101/7) to 10 (Lepenica). The mean Glu-1 quality score of cultivars and lines from Kragujevac was 6.8, for cultivars from Zagreb 7.2, and for cultivars from Novi Sad was 7.9. Most of the genotypes with a quality score of 8 or above, had high sedimentation values (Zeleny test). There were no significant differences in allelic composition at the Glu-1 loci among wheat genotypes from Kragujevac, Novi Sad and Zagreb.  相似文献   

17.
A collection of 14 triticale (X Triticosecale Wittmack) varieties commonly grown in Portugal were analysed using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to describe allelic diversity in the storage proteins encoded at the Glu-1 (Glu-A1, Glu-B1 and Glu-R1), Gli-1 (Gli-A1 and Gli-B1), Glu-3 (Glu-A3 and Glu-B3), Glu-B2 and Gli-R2 loci. Several alleles were identified: 10 at the loci encoding for high molecular weight(HMW)subunits (seven for glutenin and three for secalins), eight for low molecular weight glutenin subunits, four for γ-gliadins and three for 75K γ-secalins. These results showed that triticale varieties grown in Portugal exhibit great genetic diversity. Knowledge of the diversity of these storage proteins, which are the major gluten components, will greatly increase our understanding of the quality differences that might exist between triticale varieties.  相似文献   

18.
小麦地方品种高分子量谷蛋白亚基多样性分析   总被引:3,自引:0,他引:3  
采用SDS-PAGE方法,对我国9个麦区的76份代表性地方品种的高分子量谷蛋白亚基(HMW-GS)组成比较分析,并探讨其与环境因素(平均海拔、年平均降雨量和年平均温度)的相关性。结果表明,25.0%的品种具有异质性,分别包含2~4种不同HMW-GS组合;在Glu-1位点共检测到14个等位变异,其中Glu-A1、Glu-B1和Glu-D1等位变异数分别为2、7和5;发现了3个新等位变异,包括Glu-B1位点2个和Glu-D1位点1个。所有等位变异构成16种不同的亚基组合类型,以(N, 7+8, 2+12)为主,频率为69.7%。在Glu-1位点上,不同麦区遗传多样性分布存在一定的不均衡性,年平均降雨量和年平均温度与麦区多样性指数呈负相关。推测环境压力可能是地方品种多样性地区分化的重要因素。  相似文献   

19.
HMW-GS和LMW-GS组成对小麦加工品质的影响   总被引:11,自引:0,他引:11  
高分子量麦谷蛋白亚基(HMW-GS)和低分子量麦谷蛋白亚基(LMW-GS)是决定小麦加工品质的重要因素。以小麦品种PH82-2(亚基组成1, 14+15, 2+12和Glu-A3d, Glu-B3d, Glu-D3c)和内乡188(亚基组成1, 7+9, 5+10和 Glu-A3a, Glu-B3j, Glu-D3b)的242份F3和F4株系(试验I)和91份产量比较试验材料(试验II)研究了贮藏蛋白组成对小麦加工品质的影响。结果表明,HMW-GS和LMW-GS等位变异对籽粒蛋白质含量的影响不大,但对加工品质均有极显著影响(P<1%)。就位点的效应而言,Glu-D1位点对加工品质的效应较大,而Glu-D3位点的效应较小。就单个亚基而言,在Glu-B1位点,14+15<7+9;在Glu-D3位点,Glu-D3c>Glu-D3b。1B/1R易位系的部分品质性状,如和面时间、曲线下降斜度和峰积分好于非1B/1R易位系。  相似文献   

20.
利用重组自交系群体--RILL-8群体的131个系为材料,检测和分析了其高分子量麦谷蛋白亚基及亚基组合.结果表明,RIL-8群体Glu-A1、Glu-B1、Glu-D1位点编码的亚基分别为1、N,7 9、7 8和5 10、2 12,主要存在7种亚基组合类型.不同亚基及亚基组合类型在相同位点上仅存在1对等位基因差异,可以用其进行相同位点不同亚基及亚基组合对品质性状效应值的估算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号