首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To explore the role of nucleotide-binding oligomerization domain-like receptor protein 1 (NLRP1) inflammasome in atorvastatin-induced reduction of interleukin-1β (IL-1β) and interleukin-18 (IL-18) releases from the THP-1 macrophages. METHODS: Lipopolysaccharide (LPS, 10 μg/L) was used to trigger the secretion of IL-1β and IL-18 in the THP-1 macrophages. The cells were incubated with different concentrations of atorvastatin (1, 10 and 20 μmol/L) for 24 h, or treated with 10 μmol/L atorvastatin for different time (12 h, 24 h and 48 h). NLRP1 siRNA was transfected into the THP-1 cells. The mRNA expression of NLRP1 inflammasome was detected by RT-PCR. The protein expression of NLRP1 inflammasome was determined by Western blot. The secretion of proinflammatory cytokines IL-1β and IL-18 was quantified by ELISA. RESULTS: Atorvastatin inhibited the mRNA and protein expression of NLRP1 inflammasome in the THP-1 macrophages in a dose- and time-dependent manner. Transfection of NLRP1 siRNA significantly decreased the protein expression of NLRP1 and promoted the suppressive effect of atorvastatin on IL-1β and IL-18 secretion in the THP-1 macrophages. CONCLUSION: Atorvastatin inhibits the production of IL-1β and IL-18 in the macrophages through decreasing NLRP1 inflammasome expression, possibly contributing to the anti-inflammatory effect of atorvastatin on atherosclerosis.  相似文献   

2.
AIM: To observe the changes of cardiomyocytes after stimulation by TNF-α, IL-1β, LPS.METHODS: Cardiac ventricular myocytes were cultured in vitro. Different doses of TNF-α, IL-1β, LPS were added to stimulate the cardiomyocytes, the hypertrophy of cardiomyocytes 8 h, 24 h, and 48 h after stimulation was determined and the apoptosis were also observed 24 h, 48 h, 72 h after stimulation. RESULTS: Compared to the normal myocytes, the cardiomyocytes were hypertrophied after stimulation by 10 μg/L, 15 μg/L of TNF-α, 20 μg/L, 100 μg/L of IL-1β and 10 mg/L, 15 mg/L, 20 mg/L of LPS, and the effect was dose-dependent, the strongest effect was showed in 24 h. Moreover, 20 μg/L of TNF-α, 100 μg/L of IL-1β and 30 mg/L of LPS caused cardiomyocyte apoptosis, especially in 72h. CONCLUSION: TNF-α, IL-1β, LPS induced the cardiomyocyte hypertrophy and apoptosis, suggesting the inflammation may be the main cause of cardiovascular disease.  相似文献   

3.
AIM: To investigate the role of ATP-sensitive potassium (KATP) channels in the inhibitory effect of hydrogen sulfide (H2S) on high glucose(HG)-induced inflammation mediated by necroptosis in H9c2 cardiac cells.METHODS: The expression levels of receptor-interacting protein 3 (RIP3; an indicator of necroptosis) and cyclooxyge-nase-2 (COX-2) were determined by Western blot. The levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by ELISA.RESULTS: After H9c2 cardiac cells were treated with 35 mmol/L glucose (HG) for 24 h, the expression of RIP3 was significantly increased. Pre-treatment of the cells with 100 μmol/L diazoxide (DZ; a KATP channel opener) or 400 μmol/L NaHS (a donor of H2S) for 30 min considerably blocked the up-regulation of RIP3 induced by HG. Moreover, pre-treatment of the cells with 100 μmol/L 5-hydroxydecanoic acid (5-HD; a KATP channel blocker) attenuated the inhibitory effect of NaHS on HG-induced up-regulation of RIP3. On the other hand, co-treatment of the cells with 100 μmol/L necrostatin-1 (a specific inhibitor of necroptosis) or pre-treatment of the cells with 100 μmol/L DZ or 400 μmol/L NaHS attenuated HG-induced inflammatory responses, evidenced by decreases in the expression of COX-2 and secretion levels of IL-1β and TNF-α. However, pre-treatment of the cells with 100 μmol/L 5-HD significantly attenuated the above anti-inflammatory effects of NaHS.CONCLUSION: KATP channels play an important role in the inhibitory effect of H2S on HG-induced inflammation mediated by necroptosis in H9c2 cardiac cells.  相似文献   

4.
AIM: To investigate whether angiotensin-(1-7)[Ang-(1-7)] protects H9c2 cardiac cells against high glucose (HG)-induced injury and inflammation by inhibiting the interaction between Toll-like receptor 4 (TLR4) activation and necroptosis. METHODS: The expression levels of receptor-interacting protein 3 (RIP3; an indicator of necroptosis) and TLR4 were determined by Western blot. Cell viability was measured by CCK-8 assay. The activity of lactate dehydrogenase (LDH) in the culture medium was measured with a commercial kit. The releases of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were measured by ELISA. The intracellular level of reactive oxygen species (ROS) was analyzed by 2', 7'-dichlorfluorescein-diacetate (DCFH-DA) stating followed by photofluorography. Mitochondrial membrane potential (MMP) was examined by rhodamine 123 staining followed by photofluorography. RESULTS: After the H9c2 cardiac cells were treated with HG (35 mmol/L glucose) for 24 h, the expression of RIP3 was obviously increased. Co-treatment of the cells with 30 μmol/L TAK-242 (an inhibitor of TLR4) attenuated the up-regulation of RIP3 induced by HG. Furthermore, the expression of TLR4 was significantly increased after the cells were exposed to HG for 24 h, and co-treatment of the cells with 100 μmol/L necrostatin-1 (Nec-1; a specific inhibitor of necroptosis) and HG for 24 h attenuated the up-regulation of TLR4 expression induced by HG. Moreover, 1 μmol/L Ang-(1-7) simultaneously blocked the up-regulation of the RIP3 and TLR4 induced by HG. On the other hand, co-treatment of the cells with 1 μmol/L Ang-(1-7), 30 μmol/L TAK-242 or 100 μmol/L Nec-1 and HG for 24 h attenuated HG-induced injuries and inflammatory response, leading to the increase in the cell viability, and the decreases in the activity of LDH, ROS generation, MMP loss as well as the releases of IL-1β and TNF-α. CONCLUSION: Ang-(1-7) protects H9c2 cardiac cells against HG-induced injury and inflammation by inhibiting the interaction between TLR4 activation and necroptosis.  相似文献   

5.
AIM:To explore the role of P2X7 receptor in inhibition of lipopolysaccharide (LPS)-stimulated BV-2 cell activation by minocycline. METHODS:BV-2 cells were divided into 5 groups: control group, LPS group, LPS+0.1 μmol/L Mino group, LPS+1 μmol/L Mino group and LPS+10 μmol/L Mino group. The expression of P2X7 receptor was determined by real-time PCR and Western blotting. The levels of TNF-α and IL-1β in the microglia culture supernatants were measured by ELISA. The morphological changes of the cells were also observed. RESULTS:After exposed to LPS, the expression of P2X7 receptor increased in BV-2 cells at mRNA and protein levels. The concentrations of TNF-α and IL-1β in the microglia culture supernatants also increased. Meanwhile, 0.1~10 μmol/L minocycline inhibited those changes in a dose-dependent manner. CONCLUSION:Minocycline inhibits the activation of microglia. The mechanism may be related to the P2X7 receptor.  相似文献   

6.
AIM:To investigate effects of OX-LDL and VitE on the levels of IL-6,IL-8 and TNF-α in human umbilical vein endothelial cells(HUVEC).METHODS: Human umbilical vein endothelial cells were obtained by in vitro culture. HUVEC treated with or without Vit E was incubated with OX-LDL, and the levels of IL-6, IL-8 and TNF-α were determined by enzyme-linked immunosorbent assy technique. RESULTS:50 μg/L,100 μg/L, 200 μg/L OX-LDL induced the release of IL-6,IL-8 and TNF-α by HUVEC in a dose-dependent manner. Compared with the control group , the levels of IL-6 and IL-8 were significantly increased at 6-12 h of stimulation with OX-LDL . Maximal levels of IL-6 and IL-8 occurred after 24-36 h, reaching a plateau maintained for at least 48 h. TNF-α rose after 2-6 h in HUVEC, and reached a maximum after 12 h. In contrast to IL-6 and IL-8, TNF-α declined after 48 h. However, when VitE (50 mg/L,100 mg/L,200 mg/L)was added, it can significant inhibited the release of IL-6, IL-8 and TNF-α in a dose-dependent manner, and after 48 h these cytokines have no diference between OX-LDL+VitE groups and OX-LDL groups. CONCLUSION: OX-LDL can obviously stimulate the production of IL-6,IL-8 and TNF-α in vascular endothelial cells, which can significantly be inhibited by VitE in a short time.  相似文献   

7.
AIM:To investigate whether hydrogen sulfide (H2S) protects the hearts against inflammatory responses induced by acute myocardial ischemia in isolated rat hearts. METHODS:Rat acute myocardial ischemia injury was induced by ligation of the left anterior descending coronary artery for 4 h, and the normal perfusate was replaced with NaHS (5 μmol/L, 10 μmol/L and 20 μmol/L) perfusate accordingly in NaHS groups 2 h after ischemia. The changes of cardiac function in the myocardial ischemic injury rats were observed. The mRNA expression of TNF-α, IL-1β, IL-6, IL-10 and ICAM-1 was detected by real-time PCR. The protein level of nuclear factor-κB (NF-κB) in the myocardial tissues was detected by Western blotting. RESULTS:The cardiac function in ischemia group was lower than that in sham group (P<0.01). Compared with ischemia group, perfusion of NaHS resulted in the improvement of the cardiac function (P<0.05 or P<0.01). Compared with sham group, the mRNA expression of TNF-α, IL-1β, IL-6 and ICAM-1 in the cardiac tissues was significantly increased, and the mRNA expression of IL-10 in the cardiac tissues was significantly decreased in ischemia group (P<0.01). Compared with ischemia group, the perfusion of NaHS significantly decreased the mRNA expression of TNF-α, IL-1β, IL-6 and ICAM-1 (P<0.05 or P<0.01). The perfusion of NaHS at concentrations of 10 μmol/L and 20 μmol/L significantly increased the mRNA expression of IL-10 (P<0.01). The protein level of NF-κB in ischemia group was markedly higher than that in sham group (P<0.01). Compared with ischemia group, the perfusion of NaHS at concentrations of 10 μmol/L and 20 μmol/L significantly decreased the expression of NF-κB (P<0.05 or P<0.01). CONCLUSION:H2S protects the hearts against acute ischemia injury through inhibition of NF-κB activation and subsequent down-regulation of NF-κB-dependent inflammatory gene expression.  相似文献   

8.
AIM: To investigate the effect of artemisinin on lipopolysaccharide(LPS)-induced intestinal epithelial barrier damage in IEC-6 cells and its molecular mechanism. METHODS: Cultured IEC-6 cells were divided to 5 groups: control group, LPS(100 mg/L) group and LPS+Artemisinin(30, 50 and 100 μmol/L) groups. The cytotoxicity was detected by MTT assay. The releases of TNF-α, IL-1β and IL-6 in the IEC-6 cells were measured by ELISA. The transepithelial electrical resistance(TER) was detected by electrical resistance tester, and the horseradish peroxidase(HRP) flux permeability were analyzed by a microplate reader. The expression of tight junction proteins, ZO-1, claudin-1 and occludin, and the expression of TLR4/MyD88/NF-κB at mRNA and protein levels were determined by RT-qPCR and Western blot. RESULTS: Artemisinin alone(up to 100 μmol/L) or in combination with LPS(100 mg/L) was not toxic to IEC-6 cells. Compared with control group, the releases of TNF-α, IL-1β and IL-6 in the culture supernatant of IEC-6 cells significantly increased after treatment with LPS. The expression of TLR4/MyD88/NF-κB was activated by LPS. LPS down-regulated the protein expression of ZO-1, claudin-1 and occludin. However, artemisinin treatment decreased the releases of TNF-α, IL-1β and IL-6 in the culture supernatant of IEC-6 cells. The expression of TLR4/MyD88/NF-κB at mRNA and protein levels was gradually reduced after treatment with artemisinin. In addition, artemisinin upregulated the protein expression of ZO-1, claudin-1 and occludin significantly(P<0.01) in a dose-dependent manner. CONCLUSION: Artemisinin attenuates LPS-induced intestinal epithelial barrier damage by inhibiting TLR4/MyD88/NF-κB activation in the IEC-6 cells.  相似文献   

9.
AIM: To investigate whether the opening of ATP-sensitive K+(KATP) channels protects H9c2 cardiac cells against high glucose(HG)-induced injury and inflammation by inhibiting the Toll-like receptor 4(TLR4)/nuclear factor-κB(NF-κB) pathway. METHODS: The protein levels of TLR4 and NF-κB p65 were determined by Western blot. The levels of interleukin-1β(IL-1β) and tumor necrosis factor-α(TNF-α) were detected by ELISA. The cell viability was measured by CCK-8 assay. Mitochondrial membrane potential(MMP) was examined by rhodamine 123(Rh 123) staining followed by photofluorography. The intracellular levels of reactive oxygen species(ROS) were detected by 2', 7'-dichlorfluorescein- diacetate(DCFH-DA) staining followed by photofluorography. The number of apoptotic cells was observed by Hoechst 33258 nuclear staining followed by photofluorography. RESULTS: After the H9c2 cardiac cells were treated with HG(35 mmol/L glucose) for 24 h, the protein levels of TLR4 and phosphorylated NF-κB p65(p-NF-κB p65) were significantly increased. Pretreatment of the cells with 100 μmol/L diazoxide(DZ, a KATP channel opener) for 30 min before exposure to HG considerably blocked the up-regulation of the TLR4 and p-NF-κB protein levels induced by HG. Moreover, co-treatment of the cells with 30 μmol/L TAK-242(an inhibitor of TLR4) obviously inhibited the HG-induced up-regulation of the p-NF-κB p65 protein level. On the other hand, pretreatment of the cells with 100 μmol/L DZ had a clear myocardial protection effect, which attenuated the HG-induced cytotoxicity, inflammatory response, mitochondrial damage, oxidative stress and apoptosis, evidenced by an increase in the cell viability, and decreases in the levels of IL-1β and TNF-α, MMP loss, ROS generation and the number of apoptotic cells. Similarly, co-treatment of H9c2 cardiac cells with 30 μmol/L TAK-242 or 100 μmol/L PDTC(an inhibitor of NF-κB) and HG for 24 h also obviously reduced the above injuries and inflammation induced by HG.CONCLUSION: The opening of KATP channels protects H9c2 cardiac cells against HG-induced injury and inflammation by inhibiting the TLR4/NF-κB pathway.  相似文献   

10.
AIM:To investigate whether hydrogen sulfide (H2S) attenuates doxorubicin (DOX)-induced inflammation and cytotoxicity in rat cardiomyocytes (H9c2 cells) by modulating nuclear factor κB (NF-κB) pathway. METHODS:The expression of NF-κB p65 was measured by western blotting. The secretion levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor α (TNF-α) were tested by enzyme-linked immunosorbent assay (ELISA). Cell viability was detected by Cell Counting Kit-8 (CCK-8) assay. Hoechst 33258 nuclear staining was used to detect the morphological changes and number of apoptotic cells. RESULTS:Treatment of H9c2 cells with 5 μmol/L DOX significantly up-regulated the expression level of phosphorylated NF-κB p65 (p-p65), and induced inflammation and cytotoxicity, as evidenced by increases in secretion levels of IL-1β, IL-6 and TNF-α and number of apoptotic cells as well as a decrease in cell viability. Pretreatment of H9c2 cells with 400 μmol/L NaHS (a donor of H2S) for 30 min markedly depressed the up-regulation of p-p65 expression induced by DOX. In addition, NaHS pretreatment also reduced DOX-induced inflammatory response and injury, leading to decreases in IL-1β, IL-6 and TNF-α secretion and number of apoptotic cells as well as an increase in cell viability. Similar to the effect of NaHS, pretreatment with 100 μmol/L pyrrolidine dithiocarbamate (PDTC), an inhibitor of NF-κB, also blocked DOX-induced cardiac inflammation and cytotoxicity. Co-administration of IL-1 receptor antagonist (IL-1Ra) and DOX reduced DOX-induced activation of NF-κB and cytotoxicity in H9c2 cells. CONCLUSION:During the DOX-induced cardiomyocyte inflammation, there is positive interaction between NF-κB pathway and IL-1β. H2S may protect cardiomyocytes against DOX-induced inflammatory response and cytotoxicity by inhibiting NF-κB pathway.  相似文献   

11.
AIM: To investigate the effect of macrophage peroxisome proliferator-activated receptor α (PPARα) activation on macrophage inflammation-induced activation and migration of cardiac fibroblasts. METHODS: Mouse bone marrow-derived macrophages were treated with vehicle, PPARα agonist WY14643 (10 μmol/L), angiotensin Ⅱ (Ang II; 1 μmol/L) or Ang II+WY14643 for 24 h, and the supernatants were collected as conditioned medium (CM) to stimulate cardiac fibroblasts for additional 24 h. The mRNA levels of PPARα, interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in the macrophages as well as fibrotic markers collagen type Ⅰ alpha 2 chain (Col1a2), collagen alpha 1 chain (Col3a1) and actin alpha 2 (Acta2) in the cardiac fibroblasts were detected by RT-qPCR. The protein levels of IL-6 and IL-1β in the macrophages as well as collagen I, collagen III and α-smooth muscle actin (α-SMA; encoded by Acta2 gene) in the cardiac fibroblasts were determined by Western blot. Wound-healing assay was applied to eva-luate the migration ability of cardiac fibroblasts. RESULTS: Ang II significantly increased the mRNA levels of pro-inflammatory factors, such as IL-6, IL-1α and TNF-α, but decreased the mRNA level of PPARα in the macrophages. Administration of PPARα agonist WY14643 dramatically decreased Ang II-induced mRNA levels of IL-6, IL-1β and TNF-α in the macrophages, and significantly decreased Ang II-induced protein expression of IL-6 and pro-IL-1β in the macrophages. The CM from Ang II-treated macrophages significantly up-regulated the mRNA levels of Col1a2, Col3a1 and Acta2 in the cardiac fibroblasts, which were inhibited by the CM from WY14643-treated macrophages. The same results were observed in the protein levels of collagen I, collagen III and α-SMA in the cardiac fibroblasts. Moreover, the CM from Ang II-treated macrophages significantly promoted cardiac fibroblast migration, whereas the CM from WY14643-treated macrophages markedly inhibited macrophage inflammation-induced cardiac fibroblast migration. CONCLUSION: WY14643-activated PPARα inhibits activation and migration of cardiac fibroblasts by attenuating Ang II-induced macrophage inflammatory response.  相似文献   

12.
13.
AIM: To investigate the effect of NOD8 on lipopolysaccharide (LPS)-induced releases of nitric oxide (NO), tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) in RAW264.7 cells. METHODS: The plasmids of pEGFP-C2 and pEGFP-NOD8 were transfected into RAW264.7 cells respectively. The transfected and non-transfected cells were stimulated by LPS for 0, 6, 12 and 24 h. NO production was evaluated by Griess reagent assay, and the levels of IL-1β and TNF-α were measured by ELISA. The protein expression of NOD8 and the nuclear translocation of nuclear factor κB (NF-κB) p65 subunit were detected by Western blotting. The level of activated caspase-1 was determined by fluorimetric method. RESULTS: Compared with pEGFP-C2 group, the protein expression of NOD8 was significantly elevated in pEGFP-NOD8+LPS group. The releases of NO, IL-1β and TNF-α were obviously increased after RAW264.7 cells were treated with LPS for 6 h, 12 h and 24 h, and while the secretion of NO was significantly reduced in the cells transfected with pEGFP-NOD8 and induced by LPS for 12 h and 24 h, and the release of IL-1β was also significantly reduced at 6 h, 12 h and 24 h. However, no significant difference of TNF-α release was observed between pEGFP-C2+LPS group and pEGFP-NOD8+LPS group. The activation of caspase-1 in RAW264.7 cells stimulated with LPS for 6 h, 12 h and 24 h was markedly increased, and the expression of NF-κB p65 subunit in the cytoplasm was significantly decreased, indicating that p65 nuclear translocation was increased. In addition, the activation of caspase-1 and the nuclear translocation of p65 were significantly inhibited in pEGFP-NOD8+LPS group. CONCLUSION: NOD8 suppresses the releases of LPS-induced NO and IL-1β in RAW264.7 cells by inhibiting the activation of caspase-1 and NF-κB.  相似文献   

14.
AIM:To investigate the effects of propofol (P) on the inflammatory response of microglia induced by lipopolysaccharide (LPS) and the mechanisms. METHODS:Mouse microglia BV2 cells were treated with LPS at 100 μg/L to establish a neuroinflammatory injury model. The BV2 cells were divided into 4 groups:control group (C group), model group (L group), L+P group and LPS+AMG517 group (L+A group). The level of tumor necrosis factor-α (TNF-α) in the cell culture supernatant was measured by ELISA. The mRNA expression of transient receptor potential cation channel subfamily V member 1 (TRPV1) was detected by real-time PCR. The protein levels of TRPV1, TNF-α, interleukin-1β (IL-1β), interleukin-6 (IL-6) and phosphorylated calcium/calmodulin-dependent protein kinase Ⅱ (p-CaMKⅡ) were determined by Western blot. The content of free Ca2+ in the microglia BV2 cells was detected by Fluo-3 AM assay. RESULTS:Compared with C group, the level of TNF-α was significantly increased in L group (P<0.01), but that in P group was not changed. Compared with L group, the level of TNF-α was significantly lower than that in L+P group within 4 h (P<0.01). Compared with C group, the mRNA expression of TRPV1 was significantly increased in L group (P<0.01). Compared with L group, the mRNA expression of TRPV1 was significantly down-regulated in L+P group (P<0.01).Compared with L group, the protein levels of TNF-α, IL-1β, IL-6 and p-CaMKⅡ and intracellular Ca2+ concentration were significantly lower than those in L+P group and L+A group (P<0.01). CONCLUSION:Propofol inhibits the inflammatory response of microglia by reducing the expression of TNF-α, IL-1 and IL-6, which may be related to the down-regulation of TRPV1 and p-CaMKⅡ and the reduction of intracellular Ca2+ concentration.  相似文献   

15.
16.
17.
AIM: To study the effects of cladribine on growth and secretion activity of human umbilical vein endothelial cell line EA.hy926, and to investigate the mechanism of its anti-tumor effect by inhibiting endothelial cells. METHODS: The effects of cladribine at different concentrations on the cell viability were detected by CCK-8 assay. Apoptosis and cell cycle distribution were examined by flow cytometry. The protein expression levels were determined by Western blot. The levels of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) secreted by EA.hy926 cells with cladribine treatment for 48 h were analyzed by ELISA. The nitric oxide (NO) production was measured by Gries method. RESULTS: Cladribine at 0.4~1 μmol/L inhibited the viability of EA.hy926 cells in time-and dose-dependent manners. The IC50 was about 3.644 μmol/L. The results showed 43.74% cells in S phase when the concentration of cladribine was 0.4 μmol/L, and 77.23% cells in S phase when the concentration of cladribine was 1 μmol/L. The apoptosis was not induced by cladribine at 0.4~10 μmol/L. The protein expression of Bax and caspase-3 did not change. The expression of p21 increased and the p53 decreased (P<0.05). The levels of TNF-α and TGF-β1 secreted by EA.hy926 cells increased after cladribine treatment for 48 h. The levels of VEGF and NO decreased. CONCLUSION: Cladribine obviously inhibits the viability of EA.hy926 cells. The mechanism is related to the cell cycle arrest. Cladribine promotes the secretion of TNF-α and TGF-β1 by EA.hy926 cells and inhibits the secretion of VEGF and NO.  相似文献   

18.
AIM: To investigate the mechanism of juglone on epithelial-mesenchymal transition in prostate cancer cells. METHODS: Human prostate cancer LNCaP cells were divided into control group (without juglone), 12.5 μmol/L juglone group and 25 μmol/L juglone group. LNCaP cells in the latter 2 groups were treated with juglone for 24 h. The invasion ability of the LNCaP cells was detected by Transwell assay. The protein expression of E-cadherin, vimentin, Snail and β-catenin was determined by Western blot. The LNCaP cells were treated with LiCl and juglone in combination for 24 h, and the protein expression of Snail and E-cadherin was detected by Western blot.RESULTS: The results of Trans-well invasion assay showed that the invasion ability in juglone groups was significantly decreased (P<0.01). The protein expression of E-cadherin in the LNCaP cells treated with juglone was increased, and the expression levels of vimentin and β-catenin were reduced (P<0.01). Treatment with LiCl significantly attenuated the inhibitory effect of juglone on Snail expression and subsequent down-regulation of E-cadherin expression. CONCLUSION: Juglone inhibits the epithelial-mesenchymal transition by inhibiting the Wnt/β-catenin/Snail signaling pathway in the LNCaP cells.  相似文献   

19.
AIM: To investigate the protective effect of 1, 3-dicyclopentyl-1, 2, 3, 6-tetrahydropyrimidine-4, 5-dicarboxylic acid diethyl ester (ZL-5015) on lethal endotoxin-challenged mice and to explore the underlying mechanism. METHODS: Mouse model of lethal endotoxin challenge and endotoxemia were established by intraperitoneal administration of lipopolysaccharide (LPS) at a dose of 70 mg/kg to the C57BL/6J mice. Mouse peritoneal macrophages stimulated with LPS (10 mg/L) were used as an in vitro inflammatory model. The levels of interleukin-1β (IL-1β), interleukin-10 (IL-10) and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to evaluate the mRNA expression of the cytokines. RESULTS: Prophylactic treatment of the mice with ZL-5015 (100 and 200 mg/kg, ig) slightly increased the survival rate, extended the survival time, decreased the serum levels of IL-1β and TNF-α, and increased the serum level of IL-10 in the early stage of endotoxemia as compared with model group. The results of in vitro study demonstrated that treatment of the endotoxin-stimulated mouse peritoneal macrophages with ZL-5015 (10, 20 and 40 μmol/L) inhibited the expression of IL-1β and TNF-α at both mRNA and protein levels but promoted the expression of IL-10 at both mRNA and protein levels. CONCLUSION: The tetrahydropyrimidine derivative ZL-5015 shows a moderate anti-endotoxin effect by increasing the survival rate and extending the survival time of the mice challenged by endotoxin, which may result from inhibition of the expression of pro-inflammatory cytokines such as IL-1β and TNF-α, and promotion of the expression of anti-inflammatory cytokine IL-10.  相似文献   

20.
AIM:To purify murine yolk sac endothelial cells (mYS-EC) and investigate the cytokines mRNA expression in mYS-EC. METHODS:The murine yolk sacs were digested with 0.1% collagenase, resuspended in DMEM and counted after digestion and centrifugation. The yolk sac adherent cells were cultured in DMEM containing 15% FBS with 10% mBMEC-CM or 5μg/L VEGF, ECGF and bFGF. The phagocytose function and expression of vWF were evaluated via particle phagocytosis and immunohistochemistry method. Atlas cDNA expression array was used for analysis of cytokine expression in mYS-EC. RESULTS:Colonies consisting of pure yolk sac endothelial cells were obtained in liquid culture system containing 15% FBS and 10% mBMEC-CM or 5μg/L VEGF, ECGF and bFGF. For complete purification of the endothelial cells, subsequent passage was also necessary. Cellular cord formed during passage culture. The endothelial cells were round or oval sharp in morphology, positive in phagocytosis and factor VIII related antigen (von Willebrand's Factor, vWF). The mRNA expressions of cytokines, such as TGF-β2, TNF-α, IFN-γ, FL, BMP-4, MIP-1β, BMP-2A, FLT2, endothelin 2, thymosin β10, IL-6, IL-13, IL-9, SCYA5 and ACBP were detected in mYS-ECs. CONCLUSION:mYS-EC was purified and expanded in vitro. The mRNA expression of 15 kinds of cytokines was detected in mYS-ECs by Atlas arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号