首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
AIM: To investigate the effect of histone deacetylase 1 (HDAC1) silencing on apoptosis of squamous cell carcinoma of skin. METHODS: Skin squamous cell carcinoma A431 cells were transfected with HDAC1 small interfering RNA (HDAC1 siRNA) or small interfering RNA negative control (siRNA NC). The expression levels of HDAC1 in transfected cells were detected by RT-PCR and Western blot. The cell viability was measured by MTT assay, and the apoptosis was analyzed by flow cytometry. The protein levels of STAT3, p-STAT3 and cleaved caspase-3 were determined by Western blot. The inhibitor of STAT3 signaling pathway was used to treat the A431 cells transfected with HDAC1 siRNA. The cell viability was detected by MTT assay, the apoptosis was analyzed by flow cytometry, and the protein levels of STAT3, p-STAT3 and cleaved caspase-3 were determined by Western blot. RESULTS: HDAC1 siRNA inhibited the expression of HDAC1 at mRNA and protein levels in the A431 cells. After interfering with the expression of HDAC1, the cell viability and the protein level of p-STAT3 in the cells decreased, while the apoptotic rate and the protein level of cleaved caspase-3 in the cells were increased. After treatment with the inhibitor of STAT3 pathway, the viability of A431 cells transfected with siRNA and the protein level of p-STAT3 decreased, while the apoptotic rate and the protein le-vel of cleaved caspase-3 in the cells were increased. CONCLUSION: Interference with HDAC1 expression may regulate the STAT3 signaling pathway to inhibit the viability of skin squamous cell carcinoma cells, thus promoting the apoptosis of squamous cell carcinoma of skin.  相似文献   

2.
AIM:To explore the effect of pyrrolidine dithiocarbamate (PDTC),an NF-κB inhibitor,on the proliferation and apoptosis of human multiple myeloma U266 cells and its mechanisms.METHODS:The U266 cells were treated with PDTC at different concentrations (0,25,50,100 and 200 μmol/L)in vitro.The growth inhibitory rate of the U266 cells was detected by CCK-8 assay and cell counting.The cell cycle of the U266 cells was determined by flow cyto-metry,and the apoptosis was examined by flow cytometry with Annexin V-FITC/PI staining.The effect of PDTC on the expression of DNA methyltransferase 1(DNMT1) at mRNA and protein levels was measured by RT-qPCR and Western blot,respectively.The effects of PDTC on the protein levels of NF-κB (P65),DNMT1,Bcl-2,cyclin D1,cleaved caspase-3 and cleaved caspase-8 were determined by Western blot.RESULTS:The protein level of NF-κB (P65) was decreased after treatment with PDTC for 48 h or 72 h.PDTC inhibited the proliferation of U266 cells in both dose-and time-dependent manners.After treatment with PDTC for 48 h,the percentage of U266 cells in G2 phase increased compared with control group (P<0.05).PDTC induced the apoptosis of U266 cells in a dose-dependent manner.The expression of DNMT1 at mRNA and protein levels decreased (P<0.05).The results of Western blot showed that the expression of Bcl-2 in PDTC groups decreased,while the protein levels of cyclin D1,cleaved caspase-3 and cleaved caspase-8 were higher than those in control group (P<0.05).CONCLUSION:The NF-κB inhibitor PDTC inhibits the proliferation of U266 cells by inducing cell apoptosis.It may be related to the down-regulated expression of DNMT1,cell cycle arrest and activation of the apoptotic pathways.  相似文献   

3.
AIM: To study the effect of targeting protein for Xenopus kinesin-like protein 2 (TPX2) expression knockdown on the apoptosis of rectal cancer HR-8348 cells.METHODS: The HR-8348 cells transfected with TPX2 small interfering RNA (siRNA) served as TPX2 siRNA group. The non-transfected cells were used as control group. The cells transfected with siRNA negative control (siRNA-NC) were used as siRNA-NC group. The TPX2 siRNA-transfected cells exposed to p38 MAPK inhibitor SB203580 served as TPX2 siRNA+SB203580 group. The expression of TPX2 at mRNA and protein levels was determined by RT-qPCR and Western blot. The cell viability was measured by MTT assay, the apoptosis was analyzed by flow cytometry. The protein levels of p38 MAPK, p-p38 MAPK, cleaved caspase-3 and Bcl-2 in the HR-8348 cells were determined by Western blot.RESULTS: After transfection, the expression of TPX2 at mRNA and protein levels was decreased in TPX2 siRNA-transfected cells (P<0.05). Transfection with siRNA-NC had no effect on TPX2 mRNA and protein levels in the cells. After knockdown of TPX2 expression, the viability of rectal cancer HR-8348 cells and the expression of Bcl-2 were decreased, while the apoptotic rate and the protein levels of cleaved caspase-3 and p-p38 MAPK/p38 MAPK were increased significantly reduced (P<0.05). Compared with TPX2 siRNA group, the apopto-tic rate and the protein levels of cleaved caspase-3 and p-p38 MAPK/p38 MAPK in TPX2 siRNA+SB203580 group were significantly decreased, while the viability was significantly increased (P<0.05).CONCLUSION: Knockdown of TPX2 expression promotes apoptosis of rectal cancer HR-8348 cells by activating p38 MAPK signaling pathway.  相似文献   

4.
AIM:To investigate the effect of TRIM29 gene expression silencing on the apoptosis and PI3K/AKT signaling pathway in human nasopharyngeal carcinoma 5-8F cells. METHODS:The 5-8F cells were divided into blank group, negative control (NC) group (transfected negative control siRNA) and si-TRIM29 group (transfected TRIM29 specific siRNA). The viability of the 5-8F cells transfected with si-TRIM29 for 0~96 h was measured by CCK-8 assay. The apoptotic rate and the protein levels of TRIM29, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, t-AKT and p-AKT in the 5-8F cells transfected with si-TRIM29 for 48 h were determined by flow cytometry and Western blot, respectively. PI3K/AKT signal specific inhibitor LY294002 at 10 μmol/L and si-TRIM29 alone or in combination were treated with the 5-8F cells, and the cells were divided into blank group, LY294002 group and LY294002+si-TRIM29 group. The apoptotic rates in the 3 groups were detected by flow cytometry. RESULTS:The protein expression of TRIM29 in the 5-8F cells transfected with TRIM29 siRNA was significantly lower than that in blank group (P<0.05). Compared with blank group, the cell viability was significantly decreased, the apoptotic rate was significantly increased, the protein levels of cleaved caspase-3, cleaved caspase-9 and Bax were significantly increased, and the protein levels of Bcl-2 and p-AKT were significantly decreased in si-TRIM29 group (P<0.05). The apoptotic rate in LY294002 group was higher than that in blank group, while that in LY294002+si-TRIM29 group was even higher than that in LY294002 group (P<0.05). CONCLUSION:Silencing of TRIM29 gene expression induces apoptosis of nasopharyngeal carcinoma 5-8F cells by inhibiting PI3K/AKT signaling pathway.  相似文献   

5.
AIM:To study the effect of C/EBP homologous protein (CHOP) on the apoptosis of renal tubular epithelial HK2 cells. METHODS:The serum mRNA levels of CHOP in the patients with acute kidney injury and healthy controls were detected by qPCR. In vitro, renal tubular epithelial HK2 cells were divided into control group, negative group (transfected with negative control siRNA), si-CHOP group (transfected with CHOP siRNA), and induced by transforming growth factor-β1 (TGF-β1). The viability of the cells was measured by MTT assay, and the apoptotic rate was analyzed by flow cytometry. The protein levels of nuclear antigen Ki-67, proliferating cell nuclear antigen (PCNA), caspase-3 and cleaved caspase-3 were determined by Western blot. RESULTS:Compared with the healthy controls, the serum mRNA levels of CHOP in the patients with acute kidney injury were increased significantly (P<0.05). Transfection with CHOP siRNA significantly decreased the expression of CHOP in the renal tubular epithelial HK2 cells (P<0.05). Knock-down of CHOP expression by siRNA significantly increased the viability of renal tubular epithelial HK2 cells (P<0.05), decreased the apoptotic rate (P<0.05), increased the expression of Ki-67 and PCNA (P<0.05), and down-regulated the protein level of cleaved caspase-3 (P<0.05). CONCLUSION:The serum mRNA levels of CHOP were increased in the patients with acute kidney injury. Knock-down of CHOP expression inhibits the apoptosis of renal tubular epithelial cells by regulating the expression of proliferation-and apoptosis-related proteins.  相似文献   

6.
AIM: To study the effect of microRNA (miR)-24 on chemotherapy sensitivity and its possible mechanisms in human lung adenocarcinoma A549 cells. METHODS: The expression of miR-24 in the A549 cells and A549/DDP cells was determined by real-time PCR. Transfection of miR-24 inhibitor was used to down-regulate the miR-24 level in the A549/DDP cells. The viability and apoptosis rate were measured by CCK-8 assay and flow cytometry, respectively. The protein levels of Bcl-2, Bax, cleaved caspase-3, cleaved caspase-9, cytochrome C (Cyt C), phosphorylated extracellular signal regulated kinase (p-ERK) and P53 were detected by Western blot. Luciferase reporter assay was used to predict and identify the target genes of miR-24. RESULTS: The expression of miR-24 was significantly higher in the A549/DDP cells than that in the A549 cells (P<0.05). miR-24 inhibitor induced cell apoptosis and increased the sensitivity of the A549/DDP cells to cisplatin. Furthermore, miR-24 inhibitor down-regulated the ratio of Bcl-2/Bax, while up-regulated the protein levels of P53, p-ERK, cleaved caspase-9, cleaved caspase-3 and Cyt C. Incubation with U0126, a specific ERK inhibitor, partly reversed the viability of miR-24 inhibitor transfected A549/DDP cells. Bioinformatics analysis demonstrated that p53 was a potential target gene of miR-24. Co-teansfection of miR-24 inhibitor and P53 siRNA in A549/DDP cells partially reversed the effect of miR-24 inhibitor on cell viabiltiy. CONCLUSION: Down-regulation of miR-24 increases the sensitivity of A549/DDP cells to cisplatin. The mechanism may be related to directly targeting p53 gene and over-activation of ERK/P53 signaling pathway, thus promoting apoptosis via mitochondrial apoptosis pathway.  相似文献   

7.
LI Jin-xia  MA Li 《园艺学报》2018,34(2):218-224
AIM: To study the effect of poly(ADP-ribose) polymerase-1 (PARP-1) on cisplatin resistance of human breast cancer MCF-7 cells and its possible mechanisms.METHODS: The expression of PARP-1 at mRNA and protein levels in MCF-7 cells and MCF-7/DDP cells was determined by real-time PCR and Western blot. The expression of PARP-1 in the MCF-7/DDP cells was blocked by PARP-1 siRNA. The cell viability and apoptosis were detected by the CCK-8 assay and flow cytometry analysis, respectively. Furthermore, the protein levels of PARP-1, Bcl-2, Bax, cleaved caspase-3, caspase-3, cytochrome C (Cyto-C), extracellular signal-regulated kinase (ERK) and phosphorylated ERK (p-ERK) were detected by Western blot.RESULTS: The expression of PARP-1 at both mRNA and protein levels was significantly up-regulated in the MCF-7/DDP cells. The expression of PARP-1 was increased in the MCF-7 cells treated with cisplatin. Knockdown of PARP-1 induced the apoptosis of MCF-7/DDP cells with an increased sensitivity to cisplatin. Meanwhile, knockdown of PARP-1 down-regulated the protein levels of Bcl-2/Bax and p-ERK, but up-regulated the protein levels of cleaved caspase-3 and Cyto-C. After incubated with a specific ERK inhibitor U0126, the cell viability in PARP-1 siRNA group was down-regulated significantly.CONCLUSION: Knockdown of PARP-1 increases the sensitivity of MCF-7/DDP cells to cisplatin, and promotes the cell apoptosis via mitochondrial apoptosis pathway. The mechanism may be related to the attenuation of ERK signaling pathway by inhibiting phosphorylation of ERK.  相似文献   

8.
AIM: To study the effect of Fas on cisplatin resistance in stomach cancer cells and its possible mechanisms.METHODS: The expression of Fas at mRMA and protein levels in SGC-7901 cells and SGC-7901/DDP cells was determined by RT-qPCR and Western blot. Fas-containing adenovirus vector was transfected into the SGC-7901/DDP cells to upregulate Fas expression. The cell viability was detected by CCK-8 assay. The cell cycle and cell apoptosis were analyzed by flow cytometry. The protein levels of Fas, P38/p-P38, JNK/p-JNK, cleaved caspase-8/caspase-8 and cleaved caspase-3/caspase-3 were detected by Western blot.RESULTS: The expression of Fas at both mRNA and protein levels was significantly downregulated in the SGC-7901/DDP cells. Fas expression was decreased by cisplatin in a dose-dependent manner in the SGC-7901 cells. Overexpression of Fas suppressed the viability and induced apoptosis in the SGC-7901/DDP cells, and upregulated the protein levels of p-P38, p-JNK, cleaved caspase-8 and cleaved caspase-3.CONCLUSION: Overexpression of Fas increases the sensitivity of the SGC-7901/DDP cells to cisplatin, and inhibits the cell growth and promotes cell apoptosis. The mechanism may be related to the activation of JNK and P38 pathway.  相似文献   

9.
AIM: To investigate the effect of DEK downregulation on the apoptosis of gastric carcinoma SGC-7901 cells, and to explore its associations with NF-κB signaling pathway and apoptosis related proteins. METHODS: SGC-7901 cells with different treatments were divided into 3 groups including untreated group, control siRNA group and DEK siRNA group. The expression of DEK at mRNA and protein levels in the SGC-7901 cells was detected by real-time PCR and Western blot. The cell apoptosis was examined by flow cytometry. Furthermore, the activities of caspase-3 and caspase-9 in the SGC-7901 cells were investigated by Caspase-Glo®-3/9 kit. Finally, the expression of key regulatory protein p65 of NF-κB signaling pathway and apoptosis-related proteins Bcl-2 and Bax in the SGC-7901 cells was investigated by Western blot. RESULTS: Compared with untreated group and control siRNA group, the expression of DEK at mRNA and protein levels was significantly downregulated in DEK siRNA group (P<0.05). In addition, the ratios of early phase apoptosis and total apoptosis in DEK siRNA group were markedly higher than those in untreated group and control siRNA group (P<0.05). Most notably, the decrease in p65 and Bcl-2 proteins, increase in Bax protein and the increases of caspase-3 and caspase-9 activities were observed in DEK siRNA group. CONCLUSION: Downregulation of DEK mediates cell apoptosis of gastric carcinoma may be tightly associated with NF-κB signaling pathway.  相似文献   

10.
AIM: To investigate the effect of enhancer of zeste homolog 2 (EZH2) regulating Wnt/β-catenin signaling pathway on the apoptosis of brain glioma cell lines. METHODS: The expression level of EZH2 in glioma cell lines U87, H4 and U251 and normal human astrocytes (NHA) was detected by RT-qPCR and Western blot. The EZH2 siRNA and siRNA control were transfected into the H4 cells. The cell viability was measured by MTT assay. The apoptosis was analyzed by flow cytometry. Caspase-3 activity was detected by spectrophotometry. The expression levels of the key protein β-catenin of the Wnt/β-catenin signaling pathway and the downstream target molecule c-Myc were determined by Western blot. After the H4 cells transfected with EZH2 siRNA were treated with an activator of Wnt/β-catenin signaling pathway, the apoptosis rate was measured by flow cytometry, and the expression of β-catenin and c-Myc was determined by Western blot. RESULTS: The mRNA and protein expression levels of EZH2 in the glioma cell lines U87, H4 and U251 were significantly higher than those in NHA (P<0.05). The expression of EZH2 at mRNA and protein levels in the H4 cells was higher than that in U87 cells and U251 cells (P<0.05). EZH2 siRNA obviously inhibited the expression of EZH2 at mRNA and protein levels in the H4 cells. Knockdown of EZH2 expression decreased the viability of H4 cells, the apoptotic rate was significantly increased, and the activity of caspase-3 was significantly increased in the cells (P<0.05). Knockdown of EZH2 expression also inhibited the expression of β-catenin and c-Myc. The activator of Wnt/β-catenin signaling pathway reduced the apoptosis rate of H4 cells induced by down-regulation of EZH2, and reduced the activity of caspase-3 in the cells. CONCLUSION: EZH2 is over-expressed in glioma cells. Down-regulation of EZH2 expression induces apoptosis of glioma cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

11.
AIM: To investigate the effects of BARF1 down-regulation on EBV-positive gastric carcinoma cell apoptosis, and the molecular mechanisms by BARF1 silencing-mediated apoptosis. METHODS: After NUGC3 and SNU719 cells were transfected with NCsiRNA and siRNA, respectively, the protein levels of BARF1, Bcl-2, Bax, cytochrome C, caspase 3 and capase 9 were detected by Western blot, and the mRNA expression of BARF1, Bcl-2 and Bax was determined by RT-PCR. The cell viability was measured by the method of Trypan blue exclusion and the cell apoptosis was analyzed by flow cytometry analysis with Annexin V-FITC/PI staining. The expression of the apoptosis-related proteins in the cells transfected with siRNA and NCsiRNA was examined by human apoptosis antibody arrays. Mitochondrial membrane potential was determined by flow cytometry. The interaction between Apaf-1 and caspase 9 was confirmed by immunoprecipitation. RESULTS: Compared with untreated and NCsiRNA groups, BARF1 gene silencing significantly inhibited the cell viability, induced apoptosis, and reduced the mitochondrial membrane potential in the NUGC3 and SNU719 cells transfected with siRNA. BARF1 gene silencing up-regulated the expression of pro-apoptotic proteins and down-regulated the expression of anti-apoptotic proteins, and the Bcl-2/Bax ratio was significantly decreased. In BARF1 gene silencing cells, the caspase inhibitor z-VAD-fmk inhibited BARF1 silencing-mediated apoptosis, and significantly increased the levels of cleaved caspase 3 and caspase 9. The concentration of cytochrome C significantly increased as compared with NCsiRNA group, and Apaf-1 interacted with caspase 9 in the cytoplasm. CONCLUSION: BARF1 silencing induces apoptosis via the mitochondrial pathway through regulating the expression of Bcl-2 and Bax proteins in a caspase-dependent manner in the NUGC3 and SNU719 cells.  相似文献   

12.
AIM: To investigate the effect of heat shock protein 75 (Hsp75) over-expression on Aβ-induced neurotoxicity in the neural stem cells and to explore its mechanism. METHODS: An adenovirus-mediated Hsp75 over-expression vector was used in vitro. The mouse neural stem cell C17.2 was cultured in vitro and divided into control group, Aβ group, negative adenovirus vector transfection group and Hsp75 over-expression adenovirus vector transfection group. The transfection and cellular immune identification were detected by fluorescence microscopy. The cell morphology was observed under inverted phase-contrast microscope. The cell viability and apoptosis were detected by MTT assay and flow cytometry, respectively. Hsp75 over-expression and cleaved caspase-3 protein level were measured by Western blot. RESULTS: Observation by fluorescence microscopy indicated that C17.2 cells were successfully transfected and Hsp75 gene was effectively expressed in the neural stem cells after transfection. In addition, the morphology and viability of the cells did not change and these cells did not differentiate after transfection. As compared with control group, the cell viability in Aβ group and negative adenovirus vector transfection group was significantly decreased (P < 0.05), and the cell apoptotic rate and cleaved caspase-3 level (P < 0.05) were increased. As compared with Aβ group and negative adenovirus vector transfection group, Hsp75 over-expression significantly increased the cell viability, and decreased the cell apoptosis and cleaved caspase-3 level (P < 0.05). CONCLUSION: Hsp75 over-expression protects the neural stem cells against Aβ-induced injury. The mechanism may be related to inhibiting caspase-3 pathway-dependent apoptosis.  相似文献   

13.
AIM: To investigate the effect of homeodomain-interacting protein kinase 2 (HIPK2) on the viabi-lity, apoptosis and JAK2/STAT3 signaling pathway in NRK-52E renal tubular epithelial cells induced by hypoxia and reoxygenation (H/R). METHODS: HIPK2 small interfering RNA (siRNA) was transfected into NRK-52E cells by LipofectamineTM 2000, and normal control group (control group) and negative control group (HIPK2-NC group) were set up. After H/R, the cell viability was measured by CCK-8 assay, the apoptotic rate and Ca2+ fluorescence intensity were analyzed by flow cytometry, and the protein levels of Ki67, cleaved caspase-3, caspase-12, Bcl-2, Bax, p-JAK2 and p-STAT3 were determined by Western blot. RESULTS: Compared with control group, the protein expression of HIPK2 in the NRK-52E cells was significantly decreased after transfection with HIPK2 siRNA (P<0.05). Compared with control group, the cell viability and the protein expression of Ki67 and Bcl-2 in H/R group were also significantly decreased, and the apoptotic rate, the Ca2+ fluorescence intensity and the protein levels of cleaved caspase-3, caspase-12, Bax, p-JAK2 and p-STAT3 were significantly increased (P<0.05). Compared with H/R group, the cell viability and the protein expression of Ki67 and Bcl-2 in HIPK2-siRNA+H/R group were significantly increased, while the apoptotic rate, the Ca2+ fluorescence intensity and the protein levels of cleaved caspase-3, caspase-12, Bax, p-JAK2 and p-STAT3 were significantly decreased (P<0.05). CONCLUSION: Inhibition of HIPK2 gene expression promotes H/R-induced growth of NRK-52E renal tubular epithelial cells, and reduces the apoptosis. The mechanism is related to down-regulating the JAK2/STAT3 signaling pathway.  相似文献   

14.
AIM:To evaluate the effect of biological clock gene Timeless (TIM) silencing on the apoptosis and invasion ability of human ovarian cancer SKOV3 cells. METHODS:The protein expression of TIM in the ovarian cancer tissues and normal ovarian tissues was detected by immunohistochemistry, and the correlation between the protein expression of TIM in ovarian cancer tissues and the pathological features was analyzed. The ovarian cancer SKOV3 cells were transfected with PBS (blank control group), control siRNA (siRNA control group) or TIM siRNA (TIM siRNA group). The protein expression of TIM, Bcl-2, Bax, MMP-2, MMP-9, caspase-3 and caspase-9 was determined by Western blot. The apoptosis was detected by flow cytometry. The invasion ability was measured by Transwell chamber test. RESULTS:The positive expression rate of TIM in the ovarian cancer tissues (84.0%) was significantly higher than that in the normal ovarian tissues (10.0%; P<0.01). TIM expression was associated with ovarian cancer differentiation, depth of invasion, lymph node metastasis and TNM stage (P<0.05), but was not associated with age and pathological type (P>0.05). The protein expression levels of TIM, MMP-2, MMP-9 and Bcl-2 in TIM siRNA group were significantly decreased as compared with control group and siRNA control group (P<0.01), and the protein expression of Bax, caspase-3 and caspase-9 in TIM siRNA group was significantly increased as compared with blank control group and siRNA control group (P<0.01). No significant difference of the protein expression of TIM, MMP-2, MMP-9, Bcl-2, Bax, caspase-3 and caspase-9 between blank control group and siRNA control group was observed (P>0.05). The apoptotic rate in TIM siRNA group was significantly higher than that in blank control group and siRNA control group (P<0.01), and that in blank control group and siRNA control group was not significantly different (P>0.05). The penetrated cell number in TIM siRNA group was significantly less than that in blank control group and siRNA control group (P<0.01), and that in blank control group and siRNA control group was not significantly different (P>0.05). CONCLUSION:Silencing of TIM gene in ovarian cancer SKOV3 cells by siRNA promotes apoptosis, and inhibits cell invasion.  相似文献   

15.
AIM: To study the effect of histone deacetylase 1 (HDAC1) on the apoptosis of breast cancer cells.METHODS: The expression of HDAC1 at mRNA and protein levels in normal mammary epithelial cell line MCF-10A and breast cancer cell lines BT549, MCF-7 and MDA-MB-231 was measured by RT-qPCR and Western blot. HDAC1 siRNA was transfected into MDA-MB-231 cells, and then RT-qPCR and Western blot were used to determine the expression level of HDAC1. The cell viability was measured by MTT assay, and apoptosis was analyzed by flow cytometry. The protein levels of β-catenin, c-Myc, cyclin D1 and cleaved caspase-3 were determined by Western blot. Breast cancer cells with HDAC1 knockdown were treated with Wnt/β-catenin signaling pathway activator, and then the cell viability and apoptosis were measured.RESULTS: The expression of HDAC1 at mRNA and protein levels in BT549, MCF-7 and MDA-MB-231 cells was significantly higher than that in normal mammary epithelial cell line MCF-10A, and the highest expression level of HDAC1 was observed in MDA-MB-231 cells (P<0.05). HDAC1 siRNA reduced the expression of HDAC1 at mRNA and protein levels in the breast cancer cells. The viability of MDA-MB-231 cells was decreased after knockdown of HDAC1 expression, the apoptotic rate was increased, the protein level of cleaved caspase-3 in the cells was elevated, and the protein levels of β-catenin, c-Myc and cyclin D1 were decreased (P<0.05). Wnt/β-catenin signaling pathway activator reversed HDAC1 knockdown-induced apoptosis and decrease in viability of MDA-MB-231 cells, and reduced the protein level of cleaved caspase-3.CONCLUSION: Knockdown of HDAC1 expression induces apoptosis of breast cancer cells by inhibiting the activation of Wnt/β-catenin signaling pathway.  相似文献   

16.
AIM: To explore the role of NADPH oxidase 1 (NOX1) in tumor necrosis factor-α (TNF-α)-induced oxidative damage and inflammation in alveolar epithelial cells.METHODS: The mRNA and protein expression levels of NOX1 in alveolar epithelial cells after TNF-α treatment were determined by real-time PCR and Western blot. NOX1 siRNA and its negative control were transfected into the alveolar epithelial cells. After the induction of TNF-α, NOX1 levels in the cells were measured by real-time PCR and Western blot, and the content of malondialdehyde (MDA) in the cells was detected by thiobarbituric acid method. Xanthine oxidation assay was used to detect the activity of superoxide dismutase (SOD) in the cells. The contents of interleukin-4 (IL-4), IL-6 and IL-1β in cell culture medium were examined by ELISA. The rate of apoptosis was analyzed by flow cytometry. Western blot was used to detect the level of apoptotic protein cleaved caspase-3.RESULTS: The expression of NOX1 at mRNA and protein levels in TNF-α-induced cells was increased after induction (P<0.05). After transfection of NOX1 siRNA, the expression of NOX1 at mRNA and protein levels in the cell was downregulated (P<0.05). Transfection of siRNA negative control had no effect on the expression level of NOX1 in the cells. The content of MDA in the cells after TNF-α treatment was increased, the activity of SOD was reduced, the releases of IL-4, IL-6 and IL-1β by the cells were increased, and the apoptotic rate and the level of apoptotic protein cleaved caspase-3 were increased as compared with the cells that were not treated with TNF-α (P<0.05). The content of MDA in the cells with NOX1 knockdown induced by TNF-α was reduced, the activity of SOD elevated, and the releases IL-4, IL-6 and IL-1β, the apoptotic rate and the level of apoptotic protein cleaved caspase-3 decreased, as compared with the cells only treated with TNF-α induction (P<0.05).CONCLUSION: TNF-α induces the expression of NOX1 in the alveolar epithelial cells. Knockdown of NOX1 expression reduces cellular oxidative damage, releases of inflammatory factors, and cell apoptosis.  相似文献   

17.
AIM: To investigate whether Toll-like receptor 4 (TLR4) and Nod-like receptor protein 3 (NLRP3) inflammasome were involved in contrast medium (CM)-induced inflammation and injury in renal tubular epithelial cells. METHODS: Iopromide was used to injure NRK-52E cells in the study. The cell viability was measured by CCK-8 assay. The protein levels of TLR4, NLRP3, apoptosis-associated speckle-like protein (ASC), caspase-1 and cleaved caspase-3 were determined by Western blot. The releases of interleukin (IL)-1β and IL-18 were detected by ELISA. The apoptotic rate was evaluated by Hoechst staining, and mitochondrial membrane potential (MMP) was analyzed by JC-1 staining. siRNA was transfected into the NRK-52E cells to silence NLRP3 expression. RESULTS: CM decreased the viability of NRK-52E cells (P<0.05). CM also elevated the protein levels of cleaved caspase-3, TLR4, NLRP3, IL-1β and IL-18 (P<0.05). Silencing NLRP3 attenuated CM-induced releases of inflammatory cytokines. Moreover, treatment with TLR4 inhibitor TAK-242 or knockdown of NLRP3 by siRNA transfection both attenuated cell apoptosis and loss of MMP caused by CM. CONCLUSION: TLR4/NLRP3 inflammasome takes part in the pathogenesis of CM-induced acute kidney injury, and mediates CM-induced injury and inflammation in renal tubular epithelial cells.  相似文献   

18.
19.
AIM: To investigate the expression changes of glucose-regulated protein 78 (GRP78), calpain-2, caspase-12 and caspase-3 in dithiothreitol (DTT)-induced endoplasmic reticulum stress in rat normal liver cell line BRL-3A, and to explore their effects on apoptosis of BRL-3A cells. METHODS: BRL-3A cells were treated with 2.5 mmol/L DTT to induce endoplasmic reticulum stress. The mRNA expression of GRP78, calpain-2, caspase-12 and caspase-3 was detected by real-time PCR. The protein expression of GRP78, calpain-2, caspase-12 and caspase-3 was detected by cell immunofluorescence technique. The protein levels of cleaved caspase-12 and cleaved caspase-3 were determined by Western blot. The apoptosis of BRL-3A cells was analyzed by flow cytometry. RESULTS: After treatment with DTT for 12 h and 24 h, the mRNA expression of GRP78, calpain-2 and caspase-12 in the BRL-3A cells was obviously increased compared with normal control group (P<0.01), and no significant change of caspase-3 mRNA after treatment with DTT for 12 h and 24 h was observed. The results of immunofluorescence technique and Western blot showed that the protein levels of GRP78, calpain-2, caspase-12, cleaved caspase-12, caspase-3 and cleaved caspase-3 were obviously elevated after treatment with DTT for 12 h and 24 h(P<0.05). In addition, the increased apoptotic rate was also found in the BRL-3A cells treated with DTT for 12 h and 24 h (P<0.05). CONCLUSION: The activation of calpain-2/caspase-12 signaling pathway may be involved in apoptosis of BRL-3A cells induced by DTT.  相似文献   

20.
AIM: To investigate the apoptosis and molecular mechanism of human hepatocellular carcinoma HepG2 cells induced by ginsenoside Rh4. METHODS: Human hepatocellular carcinoma HepG2 cells were treated with ginsenoside Rh4 at doses of 10, 20 and 40 μmol/L, and the inhibitory effect of ginsenoside Rh4 on HepG2 cell viability was measured by MTT assay. The apoptotic rate of HepG2 cells was analyzed by flow cytometry. The morphological changes of the HepG2 cells were observed by Hoechst 33258 and TUNEL staining. The expression of apoptosis-related proteins Bax, Bcl-2, caspase-3 and caspase-9 was determined by Western blot. RESULTS: Ginsenoside Rh4 promoted apoptosis of HepG2 cells in a dose-dependent manner. TUNEL and Hoechst 33258 staining showed that the cells appeared obvious shrinking, swelling and rupture after treated with ginsenoside Rh4 for 24 h. The results of Western blot showed that with the increasing concentrations of ginsenoside Rh4, the expression of pro-apoptotic proteins Bax, cleaved caspase-3 and caspase-9 increased, while anti-apoptotic protein Bcl-2 decreased gradually. CONCLUSION: Ginsenoside Rh4 induces apoptosis of human hepatocellular carcinoma HepG2 cells, and the main mechanism may be related to down-regulation of Bcl-2 and up-regulation of Bax, cleaved caspase-3, and caspase-9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号