首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
AIM: To study the role of p38 mitogen-activated protein kinase (p38MAPK) activation in high glucose-induced collagen Ⅲ synthesis in NRK52E cells. METHODS: Normal rat tubular epithelial cell line NRK52E was cultured in D-glucose of different concentrations, pretreated with SB203580 and collected at different time points. The levels of phospho-p38MAPK and extracellular matrix collagen Ⅲ were examined by Western blotting. RESULTS: The activation of p38MAPK was shown to be dependent upon D-glucose concentration and the time-course. Pretreatment with SB203580 blocked p38MAPK activation induced by high concentration of D-glucose in NRK52E cells. CONCLUSIONS: The activation of p38MAPK induced by high concentration of glucose may play a role in diabetic interstital renal fibrosis. SB203580 has a potential value of clinical applications in the prevention and treatment of diabetic nephropathy.  相似文献   

2.
LU Bang-chao  ZOU Da-jin 《园艺学报》2011,27(9):1832-1835
AIM: To investigate the effect of p38 MAPK signal pathway on cerulein-treated pancreatic acinar AR42J cells.METHODS: AR42J cells were divided into control group, cerulein group (treated with 10-8 mol/L of cerulein), and SB203580 group (treated with 10 μmol/L of SB203580 and 10-8mol/L of cerulein).The cells were harvested 3 h after treatment.Secretion rate of amylase was measured.The translocation of p-p38 MAPK to nuclei was imaged by immunofluorescence.The protein expression levels of p-p38 MAPK and TNF-α were detected by Western blotting.The activation of NF-κB was measured by electrophoretic mobility assay.RESULTS: Compared with control group, cerulein resulted in increases in the secretion rate of amylase and protein level of TNF-α (P<0.01), as well as the expression levels of p-p38 MAPK and NF-κB (P<0.01).Cerulein induced nuclear translocation of p-p38 MAPK.Compared with cerulein group, the secretion rate of amylase and protein level of TNF-α in SB203580 group decreased significantly (P<0.01).The expression of p-p38 MAPK and NF-κB also decreased greatly (P<0.05).Nuclear translocation of p-p38 MAPK was inhibited by SB203580.CONCLUSION: The p38 MAPK pathway involves in cerulein-induced pancreatic inflammatory response via regulating NF-κB.  相似文献   

3.
AIM:To investigate the effect of transforming growth factor-β (TGF-β) activated kinase 1(TAK1) on renal tubular epithelial fibrosis. METHODS:The renal tubular epithelial cell line HK-2 was used as the research object. After induced by TGF-β1, real-time PCR and Western blot were used to detect the expression of TAK1 in the HK-2 cells. TAK1 shRNA lentivirus was used to infect HK-2 cells, real-time PCR and Western blot were used to determine the interference effect on TAK1 expression in the HK-2 cells with TGF-β1 stimulation. Under the condition of treating with p38 MAPK activator anisomycin, the levels of type I collagen and type Ⅲ collagen in the supernatant, and the protein levels of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) and p-p38MAPKThr 180/Tyr 182 in the HK-2 cells with TAK1 knock-down were determined by ELISA and Western blot, respectively. RESULTS:TGF-β1 significantly increased the expression of TAK1 in the HK-2 cells(P<0.05). TAK1 shRNA significantly decreased the expression of TAK1 in the HK-2 cells with TGF-β1 stimulation. Type I collagen and type Ⅲ collagen secreted by the HK-2 cells after treatment with TGF-β1 were increased, the protein levels of α-SMA, CTGF and p-p38MAPKThr 180/Tyr 182 were also increased(P<0.05). Knock-down of TAK1 expression significantly inhibited the secretion of type I and type Ⅲ collagen, reduced the protein levels of α-SMA, CTGF and p-p38MAPKThr 180/Tyr 182 in the TGF-β1-induced HK-2 cells(P<0.05). Treatment with p38 MAPK activator reversed the inhibitory effect of TAK1 knock-down on the secretion of type I and type Ⅲ collagens, and the protein levels of α-SMA, CTGF and p-p38 MAPKThr 180/Tyr 182 in the HK-2 cells(P<0.05). CONCLUSION:Knock-down of TAK1 expression attenuates the TGF-β1 induced fibrosis of renal tubular epithelial cells by inhibiting p38 MAPK signaling pathway.  相似文献   

4.
AIM: To investigate the role of p38 MAPK/ATF-2 pathway in C-relative protein (CRP)-induced endothelial cell activation. METHODS: Human coronary artery endothelial cells (HCAEC) were cultured and were used between passages 3 and 7. CRP served as a stimulus for endothelial cell activation. Western blotting was performed to determine the expression and phosphorylation of eNOS, p38 and ATF2. ELISA was carried out to detect the levels of ICAM-1, VCAM-1 and MCP-1 released from HCAEC. Pharmacological p38 inhibitors SB203580 and SB202190 were used to determine the effect of p38/ATF-2 pathway. RESULTS: CRP reduced the p-eNOS level in a concentration-dependent manner and induced the release of ICAM-1, VCAM-1 and MCP-1. The p38/ATF-2 pathway was activated by CRP treatment. SB203580 and SB202190 partially rescued p-eNOS level and suppressed the secretion of ICAM-1, VCAM-1 and MCP-1. CONCLUSION: p38MAPK/ATF-2 pathway participates in CRP-induced endothelial activation.  相似文献   

5.
AIM: To study the effect of targeting protein for Xenopus kinesin-like protein 2 (TPX2) expression knockdown on the apoptosis of rectal cancer HR-8348 cells.METHODS: The HR-8348 cells transfected with TPX2 small interfering RNA (siRNA) served as TPX2 siRNA group. The non-transfected cells were used as control group. The cells transfected with siRNA negative control (siRNA-NC) were used as siRNA-NC group. The TPX2 siRNA-transfected cells exposed to p38 MAPK inhibitor SB203580 served as TPX2 siRNA+SB203580 group. The expression of TPX2 at mRNA and protein levels was determined by RT-qPCR and Western blot. The cell viability was measured by MTT assay, the apoptosis was analyzed by flow cytometry. The protein levels of p38 MAPK, p-p38 MAPK, cleaved caspase-3 and Bcl-2 in the HR-8348 cells were determined by Western blot.RESULTS: After transfection, the expression of TPX2 at mRNA and protein levels was decreased in TPX2 siRNA-transfected cells (P<0.05). Transfection with siRNA-NC had no effect on TPX2 mRNA and protein levels in the cells. After knockdown of TPX2 expression, the viability of rectal cancer HR-8348 cells and the expression of Bcl-2 were decreased, while the apoptotic rate and the protein levels of cleaved caspase-3 and p-p38 MAPK/p38 MAPK were increased significantly reduced (P<0.05). Compared with TPX2 siRNA group, the apopto-tic rate and the protein levels of cleaved caspase-3 and p-p38 MAPK/p38 MAPK in TPX2 siRNA+SB203580 group were significantly decreased, while the viability was significantly increased (P<0.05).CONCLUSION: Knockdown of TPX2 expression promotes apoptosis of rectal cancer HR-8348 cells by activating p38 MAPK signaling pathway.  相似文献   

6.
AIM: To investigate the expression of p38 mitogen-activated protein kinase (p38MAPK) in the kidney after unilateral ureteral obstruction (UUO) in rats and the functional role of it on apoptosis and fibrosis.METHODS: Eighteen Wistar rats underwent UUO were killed at 3, 7, 14 days. Additional 7 rats were sham operated. Histological changes were observed by HE and Masson staining. Immunohistochemistry study was performed on renal tissue for proliferating cell nuclear antigen (PCNA). Apoptotic cells were determined by terminal deoxynucleotidyl transferase- mediated dUTP nick end labeling (TUNEL) and the electrophoresis analysis of genomic DNA. Western blotting of cysteinyl aspartate specific proteinase-3 (caspase-3), p38MAPK and p-p38MAPK were measured.RESULTS: UUO induced a significant increase in renal tubular and interstitial cell apoptosis, immunohistochemistry of PCNA and Western blotting of caspase-3, p-p38MAPK as well as severe morphology changes. However, there was no significant difference between UUO and the control in Western blotting of p38MAPK.CONCLUSION: An in vivo model of renal fibrosis after UUO demonstrates that activated or phosphorylated p38MAPK plays a role in apoptosis of renal tubulointerstitial cells.  相似文献   

7.
MA Tao  LIU Zhi 《园艺学报》2012,28(11):1943-1949
AIM: To observe the role of p38 mitogen-activated protein kinase (p38 MAPK)-heat-shock protein 27 (HSP27) signaling pathway in lipopolysaccharide-induced acute lung injury (ALI) in rats. METHODS: Wistar rats were randomly divided into control group, ALI group and ALI+SB203580 group. After the experimental model was established, the rats were sacrificed. The pathological changes of the lung and the changes of F-actin and G-actin in the endothelial cells were observed. The ratio of wet weight to dry weight (W/D) of the lung tissues was measured. The protein levels in bronchoalveolar lavage fluid (BALF) were detected. The levels of IL-6 and TNF-α in serum and BALF were tested. The concentrations of p-p38 and p-HSP27 in the lung were determined. RESULTS: In ALI group, the protein levels in BALF and W/D ratio of the lung increased significantly at 2 h. The levels of TNF-α and IL-6 in serum and BALF began to increase at 2 h, which had significant difference as compared with control group. Aleolar epithelial swelling, alveolar walls widening, alveolar interstitial and cavity edema, and the exudation of alveolar inflammation cells, red blood cells and protein were observed in ALI group. The protein levels in BALF and W/D ratio of the lung in ALI+SB203580 group were much less than those in ALI group. The exudation of alveolar inflammation cells, red blood cells and protein, and the interstitial and alveolar edema in ALI+SB203580 group alleviated as compared with ALI group. The expression of p-p38 MAPK and p-HSP27 in the lung at 2 h in ALI group was higher than that in control group. F-actin expression in ALI group obviously increased than that in control group at time points of 0 h and 8 h. Compared with ALI group, the expression of p-HSP27 and F-actin in ALI+SB203580 group was reduced. CONCLUSION: Lipopolysaccharide activates p38 MAPK-HSP27 signaling pathway and induces lung injury. Blockage of p38 MAPK-HSP27 signaling pathway may reduce lung injury.  相似文献   

8.
AIM:To investigate the role of p38 MAPK in cisplatin-induced rat renal proximal tubular cell (RPTC) apoptosis. METHODS:To determine the optimal concentration of cisplatin to induce RPTC apoptosis, the cells were treated with 0, 5, 10 and 20 μmol/L cisplatin for 24 h, and then the cell lysates were collected for Western blot analysis of cleaved PARP, p38 and phosphor ylated p38 (p-p38). To determine the role of p38 MAPK in cisplatin-induced RPTC apoptosis, the cells were divided into control group, cisplatin group (the cells were treated with cisplatin for 24 h) and cisplatin+p38 MAPK inhibitor group (the cells were treated with p38 MAPK inhibitor SB203580 for 1 h, and then treated with cisplatin for another 24 h). The morphological changes of apoptotic cells were observed under phase-contrast fluorescence microscope. The apoptotic rate of the cells were analyzed by flow cytometry. The caspase activity of RPTC lysates was examined using Ac-DEVD-AFC kit. The protein levels of p-p38, p38, cleaved PARP and cleaved caspase-3 were determined by Western blot. The pH value of extracellular environment of the cells was measured by pH meter. RESULTS:Cisplatin at 20 μmol/L obviously induced apoptosis of RPTC. The p38 MAPK was phosphorylated and its phosphorylation peaked at 15 min after cisplatin treatment. The apoptotic rate of RPTC was 12.08% after cisplatin induction. Cisplatin treatment also enhanced caspase activity, and increased cleavage of PARP and caspase-3 proteins (P<0.05). The p38 MAPK inhibitor SB203580 effectively inhibited the phosphorylation of p38 MAPK, down-regulated the RPTC apoptosis rate and caspase activity, and reduced the cleavage of PARP and caspase-3 proteins. The pH value change in RPTC culture medium was also inverted by SB203580. CONCLUSION:The phosphorylation of p38 MAPK is involved in cisplatin-induced apoptosis of RPTC. The apoptosis induced by cisplatin results in the change of acidic extracellular environment, which is inhibited by p38 MAPK inhibitor SB203580.  相似文献   

9.
10.
11.
AIMTo investigate whether minimally modified low-density lipoprotein (mmLDL) affects the quantity and activity of endothelin (ET) type A (ETA) and type B (ETB) receptors in mouse mesenteric artery by activating p38 mitogen-activated protein kinase (MAPK) inflammatory pathway. METHODSThe KM mice were divided into normal saline (NS) group (injection of NS via caudal vein), mmLDL group (injection of mmLDL via caudal vein), LDL group (injection of LDL via caudal vein), mmLDL+SB 203580 group (injection of mmLDL via caudal vein and intraperitoneal injection of p38 MAPK pathway specific inhibitor SB 203580) and mmLDL+DMSO group (injection of mmLDL via caudal vein and intraperitoneal injection of DMSO). Mesenteric artery ring segment vasoconstriction dose-response curves affected by sarafotoxin 6c (S6c) and ET-1 were recorded by the myography system. The mRNA levels of ETB receptor, ETA receptor and interleukin-6 (IL-6) were detected by RT-qPCR. The protein levels of ETB receptor, ETA receptor, IL-6, p38 MAPK, p-p38 MAPK, NF-κB and p-NF-κB were determined by Western blot. The serum concentration of IL-6 was measured by ELISA. RESULTSThe contractile responses of the blood vessel segments to S6c and ET-1 were significantly increased by mmLDL (P<0.01). The mRNA and protein expression levels of ETA receptor, ETB receptor, and IL-6 significantly increased (P<0.01). The protein levels of p-p38 MAPK and p-NF-κB were significantly increased (P<0.01). The serum level of IL-6 was significantly increased (P<0.01). These effects of mmLDL were inhibited by p38 MAPK inhibitor SB 203580. CONCLUSION mmLDL increses the serum concentration of IL-6, up-regulates the expression of IL-6, ETA receptor and ETB receptor in mouse mesenteric artery, and enhances the vasoconstriction function medi?ated by ETA and ETB receptors, which is related to the activation of p38 MAPK inflammatory pathway and downstream NF-κB pathway.  相似文献   

12.
AIM: To study the effect of cellular repressor of E1A-stimulated genes(CREG) and its mechanism on apoptosis of human umbilical vein endothelial cells (HUVECs) induced by etoposide (VP-16).METHODS: Primary HUVECs were cultured. RetroviraI eukaryotic expression vectors pLNCX-CREG and pLXSN-shRNA-CREG were transfected into HUVECs. The stable cell clone was selected and obtained by screening with G418 (800 mg/L) and the puromycin (2.5 mg/L), respectively. CREG expression was detected by Western blotting. The cells with overexpression of CREG (H-C) and those with CREG down-regulation (H-S) were pretreated with apoptotic inducer VP-16 at 100 μmol/L for 6 h. The apoptotic rates of the 3 kinds of cells were analyzed by TUNEL and flow cytometry with annexin V/PI dualstaining. Furthermore, the protein levels of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK) in the 3 kinds of cells were analyzed by Western blotting. The p38-specific inhibitor SB203580(20 μmol/L)was used to investigate the effects of p-p38 expression on apoptosis. RESULTS: Western blotting showed that CREG expression was obviously increased up to 160% in H-C compared to HUVECs. However, CREG expression in H-S cells was identified to be down-regulated to 70% compared with HUVECs. TUNEL assay and annexin V/PI dual-color FACS showed that the apoptotic rate was dramatically increased in H-S cells,but decreased in H-C cells. Subsequently, Western blotting exhibited that p-p38 expression was increased in H-S cells compared to HUVECs and H-C cells. When the H-S was pretreated with SB203580, the apoptotic rate was decreased. CONCLUSION: CREG overexpression might prevent HUVECs from apoptosis by inhibiting p38 MAPK activition.  相似文献   

13.
AIM:To investigate the effect of salvianolic acid B (Sal B) on high glucose-induced phenotypic transition and extracellular matrix (ECM) secretion in human glomerular mesangial cells (HGMCs) and the underlying mechanisms. METHODS:HGMCs were randomly divided into control group, high glucose group and high glucose plus high dose, medium dose and low dose of Sal B groups. The HGMCs except those in control group were exposed to high glucose (33.3 mmol/L) for 72 h, while those in Sal B groups were co-incubated with indicated concentrations of Sal B. The protein levels of α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) and phosphorylated Smad2 and p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. The secretion levels of collagen type I (Col I), collagen type Ⅲ (Col Ⅲ), fibronectin (FN) and laminin (LN) were measured by ELISA. RESULTS:Exposure to high glucose markedly increased the protein expression of α-SMA, TGF-β1, Col I, Col Ⅲ, FN and LN in the HGMCs (P<0.01). The phosphorylation levels of Smad2 and p38 MAPK were also significantly increased (P<0.01). Co-incubation with Sal B evidently decreased the protein expression of α-SMA, TGF-β1, Col I, Col Ⅲ, FN and LN in the HGMCs induced by high glucose (P<0.05 or P<0.01). The phosphorylated levels of Smad2 and p38 MAPK were also reduced noticeably (P<0.05 or P<0.01). CONCLUSION:Sal B significantly suppresses high glucose-induced phenotypic transition and ECM secretion in the HGMCs, which might be attributed, at least partly, to inhibition of TGF-β1/Smad signaling pathway and p38 MAPK activation.  相似文献   

14.
AIM: To study the effects of Chinese herbal monomer naringin (NG) on the MAPK signal pathway in bone marrow mesenchymal stem cells (MSCs) derived from SD rats during the differentiation into osteoblasts in vitro . METHODS: The changes of evaluating indicators alkaline phosphatase (ALP), bone gla protein (BGP) and type I collagen (Col I) in MSCs were observed under the conditions of normal, adding p38 pathway inhibitor SB203580, adding extracellular signal-regulated kinase (ERK) pathway inhibitor PD98059, adding c-Jun N-terminal kinase (JNK) pathway inhibitor SP600125, and adding SB203580, PD98059 and SP600125 together. The protein phosphorylation of p38, ERK1/2 and JNK was measured by Western blotting. The mRNA expression levels of transforming growth factor beta 1 (TGF-β1), bone morphogenetic protein 2 (BMP-2) and core binding factor α1 (Cbfα1) were measured by fluorescence quantitative PCR. RESULTS: The most effective concentration of NG to promote the differentiation of MSCs into osteoblasts was 10-7 mol/L. The highest expression levels of both ALP and BGP were observed in NG group (P<0.05), while the expression of Col I did not reveal significant difference (P>0.05). Compared with NG group, the expression levels of ALP, BGP and Col I decreased differently after adding different inhibitors. Compared with control group, the protein phosphorylation of JNK was increased (P<0.05), and the phosphorylation of p38 was decreased (P<0.05), while the phosphorylation of ERK1/2 did not reveal significant difference (P>0.05) in NG group. Compared with NG group, the protein phosphorylation of p38, ERK1/2 and JNK showed fluctuation with some increasing and others decreasing. Compared with control group, the expression of BMP-2 was increased (P<0.05), and the expression of Cbfα1 was decreased(P<0.05), while the expression of TGF-β1 did not reveal significant difference (P>0.05) in NG group. Compared with NG group, the mRNA expression levels of TGF-β1, BMP-2 and Cbfα1 decreased differently after adding different inhibitors. CONCLUSION: Activation of ERK/JNK signaling and up-regulation of BMP-2 expression may be the main mechanism of NG to promote the differentiation of MSCs into osteoblasts. NG has strong impact on p38 pathway to improve the expression of BMP-2 in MSCs.  相似文献   

15.
AIM: To investigate the effect of polysaccharide from Fructus corni(PFC) on cardiomyocytes against hypoxia/reoxygenation (H/R) injury and its possible relationship with ROS/PKC/p38 MAPK pathway.METHODS: Primary cardiomyocytes were isolated from neonatal SD rats and randomly divided into normal group, H/R group, PFC (20 mg/L, 100 mg/L and 200 mg/L) preconditioning+H/R groups, chelerythrine+PFC (100 mg/L)+H/R group and SB203580+PFC (100 mg/L)+H/R group. The cell viability was measured by inverted microscopic observation. Apoptosis in the cardiomyocytes was detected by Hoechst 33258 staining and fluorescence microscopy. The levels of lactate dehydrogenase (LDH) and superoxide dismutase (SOD) in the cell culture supernatants, and the reactive oxygen species (ROS) in the cells were also measured by microplate reader. The protein levels of PKC, p-p38 MAPK and HSP70 in the cells were detected by Western blotting.RESULTS: Compared with normal group, the cell viability and beating frequency were decreased in H/R group. LDH and ROS contents, apoptotic rate and p-p38 MAPK level increased significantly (P<0.01). Compared with H/R group, PFC preconditioning increased beating frequency, SOD activity and the protein level of PKC and HSP70, and decreased ROS production, the protein level of p-p38 MAPK and cell apoptotic rate. However, the effect of PFC was inhibited by chelerythrine or SB203580.CONCLUSION: PFC may protect cardiomyocytes from hypoxia/reoxygenation injury. Its mechanism is possibly involved in the inhibition of ROS via increasing the activity of SOD and the activation of PKC, and suppression of excessive activation of p38 MAPK.  相似文献   

16.
AIM: To investigate the role of p38 mitogen-activated protein kinase (MAPK) in cyclic mechanical stretch induced the expression of high mobility group box 1 protein (HMGB1) in alveolar macrophages (AMs). METHODS: AMs were cultured and seeded at 1×108 cells/L in 6-well Bioflex cell culture plates. Subsequently, the cells were exposed to cyclic mechanical stretch at 20% (group B) elongation using Flexercell 4000T cell stretching unit. In group C, cells were pre-treated with SB203580 (40 μmol/L) for 2 h before mechanical stretch. Group A served as control. The expression of HMGB1 mRNA in alveolar macrophages was detected by RT-PCR. p38 MAPK activity and the expression of HMGB1 protein were measured by Western blotting analysis. RESULTS: The expression of HMGB1 mRNA and protein, and the activity of p38 MAPK in AMs were significantly increased in group B than those in group A (P<0.05). SB203580, an inhibitor of p38 MAPK, significantly inhibited the inducing effect of mechanical stretch (P<0.05). CONCLUSION: Mechanical stretch regulates the expression of HMGB1 mRNA and protein in alveolar macrophages by activating p38 MAPK signal pathway.  相似文献   

17.
AIM: To explore the mechanism of notoginsenoside monomer R1 (R1) against hypoxic hypercapnia-induced pulmonary vasoconstriction (HHPV) by investigating the effect of R1 on p38 mitogen-activated protein kinase (p38MAPK) signaling pathway in pulmonary arterial smooth muscle cells (PASMCs) under the condition of hypoxia and hypercapnia. METHODS: Primary cultured PASMCs, which were isolated from Sprague-Dawley rats, were incubated in logarithmic growth phase from the 2nd to 5th generation with different concentrations (8, 40 and 100 mg/L) of R1 under the condition of 6% CO2 plus 1% O2 for 24 h. The expression of p38 at mRNA and protein levels was detected by RT-PCR and Western blotting,respectively. RESULTS: The results of Western blotting and RT-PCR analysis indicated that the protein and mRNA expression levels of p-p38 MAPK were significantly higher in hypoxic hypercapnia group with DMSO control than those in normoxia control group (P<0.01). In R1 treatment groups, the levels of p-p38 MAPK protein and p38 MAPK mRNA were markedly decreased (P<0.01) in a dose-dependent manner. CONCLUSION: p38 MAPK signaling pathway may mediate hypoxic hypercapnia pulmonary vasoconstriction in rats. Notoginsenoside monomer R1 attenuates HHPV, which may be related to blockage of p38 MAPK signal pathway.  相似文献   

18.
AIM: To investigate the relationship between up-regulation of plasminogen activator inhibitor-1(PAI-1) expression and activation of p38 mitogen-activated protein kinase(p38 MAPK) and extracellular signal-regulated kinase(ERK) pathways by TGF-β1 in human ovarian cancer cells. METHODS: PAI-1 expression in human ovarian cancer cells treated with TGF-β1(10 μg/L)was assayed by real-time PCR and Western blotting. The activation of p38 MAPK and ERK was determined by Western blotting using phosphorylated p38 MAPK and phosphorylated ERK antibodies. Specific p38 MAPK inhibitor(SB203580) or ERK inhibitor(PD98059) was used to inhibit their activation. RESULTS: TGF-β1 up-regulated the expression of PAI-1, and activated p38 MAPK and ERK pathways in the ovarian cancer cells. Inhibition of p38 MAPK activation by SB203580 resulted in significant inhibition of the mRNA expression of PAI-1 induced by TGF-β1. However, inhibition of ERK activation did not significantly alter TGF-β1-induced increase in PAI-1 mRNA level. CONCLUSION: TGF-β1-activated p38 MAPK pathway contributes to the up-regulation of PAI-1 expression by TGF-β1 in ovarian cancer cells.  相似文献   

19.
AIM: To investigate the effect of high glucose concentration on serum and glucocorticoid induced protein kinase (SGK) mRNA and protein expressions in human proximal tubular epithelial cells (HKC) and the possible role of SGK in the production of extracellular matrix (ECM) of HKC under the condition of high glucose. METHODS: HKC was divided into 3 groups: control glucose group (CG group, 5.5 mmol/L D-glucose); high glucose group (HG group, 25 mmol/L D-glucose) and osmotic control group (MG group, 19.5 mmol/L mannitol and 5.5 mmol/L D-glucose). The expressions of SGK mRNA and protein were assessed by semi-quantitative RT-PCR and Western blotting respectively. The level of secretary and cytoplasmic fibronectin (FN) were detected by enzyme-linked immunoabsordent assay (ELISA) and indirect-immunofluorescence. RESULTS: HKC expressed SGK1, SGK2 and SGK3 at mRNA and protein levels. Their mRNA level were up-regulated since 2 hours after cells exposed to D-glucose and this up-regulation persisted to the end of 8th hour, and SGK1 protein level elevated simultaneously. On the other hand, the increased FN secretion by high glucose was in a time-dependent manner and its improved secretion threshold was just followed by the high expression of SGK1. CONCLUSIONS: In response to high glucose, the expression of SGK1, SGK2 and SGK3 in human proximal tubular epithelial cells were up-regulated which was accompanied with FN accumulation. The high expression of SGK may mediate overproduction of ECM in proximal tubular epithelial cells and contribute to the diabetic nephropathy.  相似文献   

20.
AIM: To investigate the effect of silencing of serum amyloid A (SAA) on the viability, apoptosis, migration and mitogen-activated protein kinase (MAPK) signaling pathway in osteosarcoma U2OS cells. METHODS: Small interfering RNA (siRNA) targeting SAA was transfected into U2OS cells to silence the expression of SAA gene. The U2OS cells were divided into blank control group, negative control group, and experimental group. The cells in negative control group and experimental group were transfected into negative control siRNA and SAA-siRNA, respectively. The cells in blank control group were without any treatment. The viability of the cells was measured by MTT assay and the apoptotic rate was analyzed by flow cytometry with Annexin V-FITC/PI double staining. The migration and invasion abilities of the cells were detected by Transwell chamber assay. The protein levels of SAA, phosphorylated p38 MAPK (p-p38 MAPK) and phosphorylated c-Jun N-terminal kinase (p-JNK) in the cells were determined by Western blot. RESULTS: The protein expression of SAA in SAA-siRNA group was significantly lower than that in blank control group (P<0.05). Compared with blank control group, the cell viability in SAA-siRNA group was significantly decreased (P<0.05), the apoptotic rate was significantly increased (P<0.05), and the invasion and migration abilities were significantly decreased (P<0.05). The protein levels of p-p38 MAPK and p-JNK in SAA-siRNA group were significantly lower than those in blank control group (P<0.05), and no significant difference of total JNK and p38 protein levels was observed. CONCLUSION: Silencing of SAA expression inhibits the viability of osteosarcoma cells, induces apoptosis and decreases the migration of osteosarcoma cells, which may be related to the activation of MAPK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号