首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the regulatory effect of NADPH oxidase-4 (NOX-4) on PI3K signaling pathway in transforming growth factor-β1 (TGF-β1)-induced collagen type I (collagen I)synthesis from lung cancer cells and the mechanisms. METHODS: Human lung cancer A549 cells were cultured in vitro and stimulated with TGF-β1. The expression of NOX family and collagen family at mRNA and protein levels as well as the PI3K class I catalytic subunits and the activation of PI3K signaling pathway was measured. A549 cells were pre-treated with NOX-4 inhibitor diphenyleneiodonium (DPI), and the expression of collagen I at mRNA level as well as the PI3K class I catalytic subunits and the activation of PI3K signaling pathway was measured upon TGF-β1 stimulation. RESULTS: TGF-β1 stimulated the expression of NOX-4 and collagen I at mRNA and protein levels as well as the expression of PIK3CD and the activation of PI3K signaling pathway at a dose-and time-dependent manner. NOX-4 inhibitor DPI partly reversed TGF-β1-induced collagen I expression. Inhibition of NOX-4 down-regulated the degree of TGF-β1-stimulated activation of PI3K signaling pathway without effect on the expression of PIK3CD. CONCLUSION: NOX-4 participates in TGF-β1-induced collagenⅠsynthesis from lung cancer cells via regulating the activation of PI3K signaling pathway. TGF-β1/NOX-4/PI3K signaling pathway axis acts as a regulatory role in collagenⅠsynthesis from lung cancer cells.  相似文献   

2.
AIM To study the effect of dihydroartemisinin (DHA) on the radiotherapy efficiency in hepatocellular carcinoma H22 cell tumor-bearing mice and the role of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in this process. METHODS A model of H22 cell tumor-bearing mice was established. The mice was divided into model group, single radiotherapy group, 5-fluorouracil (5-FU) group, and low-, medium- and high-dose DHA groups. The body weight and tumor volume in each group were measured every other day. At the end of administration, blood was collected from the tail of the mice and the animals were killed by neck removal immediately. The synergistic effect of DHA on radiotherapy was determined, and tumor growth inhibitory rate was calculated. The degree of lymphocyte transformation and natural killer (NK) cell activity were measured by MTT, the serum levels of interleukin-2 (IL-2) and IL-4 were measured by ELISA, and the protein levels of PI3K, AKT and p-AKT were determined by Western blot. RESULTS The H22 cell tumor-bearing mouse model was successfully constructed. Compared with model group, the TGT3 (tumor growth time to reach 3 times of volume) of single radiotherapy group was remarkably increased (P<0.05), while tumor weight, lymphocyte transformation degree, NK cell activity, IL-2 and IL-4 levels, PI3K protein level and AKT phosphorylation level were remarkably decreased (P<0.05). Compared with single radiotherapy group, TGT3, EF (enhancement factor), tumor inhibitory rate, lymphocyte transformation degree, NK cell activity, IL-2 level and IL-4 level were increased with the increase in DHA dose (P<0.05), and the PI3K protein level and AKT phosphorylation level were decreased (P<0.05). CONCLUSION DHA may enhance the immunity of tumor-bearing mice by inhibiting the activity of PI3K/AKT signaling pathway, thereby enhancing the efficacy of radiotherapy.  相似文献   

3.
AIM:To investigate the potential role of endogenous hydrogen sulphide (H2S) in severe acute pancreatitis (SAP). METHODS:A rat model of SAP was used to evaluate the role of H2S on intestinal motility by counting the number of fecal pellets and the effect of H2S on the expression of inflammation-related molecule in intestine was investigated. The colonic muscle cells (CMCs) were treated with plasma of SAP rats, tumor necrosis factor-α (TNF-α) or interleukin-6 (IL-6), and the expression of cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), Sp1 and PI3K/Akt related proteins at mRNA and protein levels were determined by RT-qPCR, Western blot and immunohistochemical staining,respectively. The PI3K inhibitor LY294002 and the siRNA-Sp1 were used to suppress the activity of PI3K/Akt/Sp1 signaling pathway. RESULTS:H2S facilitated an inhibitory effect on the intestinal motility and enhanced the inflammatory responses in SAP (P<0.05). The expression of CSE and CBS in CMCs was significantly increased after treatment with TNF-α or IL-6 (P<0.05). Blockage of the PI3K/Akt/Sp1 signaling pathway remarkably inhibited the synthesis of CSE and CBS in CMCs(P<0.05). CONCLUSION:Inflammation driven activation of PI3K/Akt/Sp1 signaling pathway and endogenous production of H2S play a vital role in the pathogenesis of SAP.  相似文献   

4.
AIM: To investigate the effects of marrow stromal HS-5 cells on hepatocellular carcinoma SMMC-7721 cells in the tumor microenvironment. METHODS: The effects of HS-5 cell-conditioned medium (HS-5-CM) on the proliferation, migration and invasion abilities of SMMC-7721 cells were detected by MTT, wound-healing and Transwell assays. After co-culture of SMMC-7721 cells with HS-5 cells in the Transwell chamber, the expression of chemokine CCL5 and its receptor CCR5 at mRNA and protein levels in SMMC-7721 cells was examined by quantitative real-time PCR (qRT-PCR), ELISA or Western blotting. Akt and p-Akt473 protein levels in SMMC-7721 cells treated with PI3K inhibitor LY294002 were observed by Western blotting. RESULTS: HS-5-CM promoted the proliferation, migration and invasion abilities of SMMC-7721 cells. The expression of CCL5 and CCR5 at mRNA and protein levels in SMMC-7721 cells was increased after co-cultured with HS-5 cells. PI3K inhibitor LY294002 inhibited the activation of PI3K-Akt signaling pathway and the secretion of CCL5 in SMMC-7721 cells after co-cultured with HS-5 cells. CONCLUSION: HS-5 cells significantly promote the proliferation, migration and invasion abilities of SMMC-7721 cells. Co-culture of SMMC-7721 cells with HS-5 cells activates PI3K-Akt signaling pathway to increase the secretion of CCL5 in SMMC-7721 cells.  相似文献   

5.
AIM: To observe the effect of Chlamydia pneumoniae (C.pn) infection on the migration of vascular endothelial cells (VEC) and to investigate its possible molecular mechanism. METHODS: The wound-healing assay and transwell assay were performed to observe the effect of C.pn infection on the VEC migration. The mRNA expression and activity of PI3K were measured by RT-PCR and ELISA. RESULTS: Infection of C.pn promoted VEC migration significantly in a time-dependent manner. The mRNA expression and activity of PI3K were up-regulated. Furthermore, the migration of VEC was suppressed markedly when treated with PI3K inhibitor LY294002, and the mRNA expression and activity of PI3K also decreased correspondingly. CONCLUSION: Infection of C.pn may promote VEC migration via the activation of PI3K signaling pathway.  相似文献   

6.
7.
ATM: To probe the effect and the mechanism of astragaloside IV and ginsenoside Rg1 on autophagy of PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R). METHODS: The autophagy injury model of PC12 cells induced by OGD/R was established(PC12 cells were exposed to 2 h of OGD followed by 24 h of reoxygenation). The effects of astragaloside IV combined with ginsenoside Rg1 on autophagy of PC12 cells were observed, and the mechanism was studied through PI3K Ⅰ/Akt/mTOR and PI3K Ⅲ/becline-1/Bcl-2 signaling pathways. RESULTS: After OGD/R, LC3-Ⅱ/LC3-Ⅰin PC12 cells was increased. Astragaloside IV, ginsenoside Rg1 and astragaloside IV combined with ginsenoside Rg1 restrained the increase in LC3-Ⅱ/LC3-Ⅰ, the effect of the combination was greater than using the drug alone. Ginsenoside Rg1, astragaloside IV combined with ginsenoside Rg1 up-regulated the phosphorylation level of PI3K Ⅰ, Akt and mTOR. The effects of the combination were stronger than those of using the drug alone. Astragaloside IV, astragaloside IV combined with ginsenoside Rg1 inhibited the protein expression of PI3K Ⅲ and becline-1, the effects of the combination were better than those of single astragaloside IV and single ginsenoside Rg1. Meanwhile, the combination treatment increased Bcl-2 protein expression. CONCLUSION: The autophagy of PC12 cells induced by OGD/R is inhibited by astragaloside IV and ginsenoside Rg1. Furthermore, astragaloside IV combined with ginsenoside Rg1 plays synergitic inhibition on autophagy, the mechanism may be related to PI3K Ⅰ/Akt/mTOR and PI3K Ⅲ/becline-1/Bcl-2 signaling pathways.  相似文献   

8.
AIM To investigate the effect of paeonol on the viability and migration ability of hepatocellular carcinoma cells and its molecular mechanism. METHODS Human hepatocellular carcinoma Hep3B cells was treated with paeonol at different concentrations (50, 100, 200 and 400 mg/L). The cell viability was measured by CCK-8 assay to determine the optimal drug concentration. The Hep3B cells were divided into normal control (NC) group, paeonol group, miR-NC group, miR-424-3p group, paeonol+anti-miR-NC and paeonol+anti-miR-424-3p group. The expression level of miR-424-3p was detected by RT-qPCR. The migration ability was detected by Transwell assay. The protein levels of cyclin D1, matrix metalloproteinase 2 (MMP2), MMP9 and PI3K/AKT signaling pathway-related molecules were determined by Western blot. RESULTS Paeonol intervention inhibited the viability of Hep3B cells in a concentration-dependent manner (P<0.05). The concentration of paeonol at 200 mg/L was selected for the following study. Paeonol intervention inhibited the protein expression of MMP2 and MMP9 in the Hep3B cells, and inhibited the migration ability of the Hep3B cells. Paeonol intervention promoted the expression of miR-424-3p in the Hep3B cells (P<0.05). Over-expression of miR-424-3p inhibited the expression of cyclin D1, MMP2 and MMP9 in the Hep3B cells and inhibited cell viability and migration ability (P<0.05). Inhibition of miR-424-3p reversed the effect of paeonol on the viability and migration ability of the Hep3B cells (P<0.05). Paeonol inhibited phosphorylation levels of PI3K and AKT in the Hep3B cells and inhibited the activation of PI3K/AKT signaling pathway (P<0.05). Inhibition of miR-424-3p reversed the effect of paeonol on PI3K/AKT signaling pathway in the Hep3B cells (P<0.05). CONCLUSION Paeonol inhibits the viability and migration ability of hepatocellular carcinoma cells by up-regulating miR-424-3p and inhibiting PI3K/AKT signaling pathway.  相似文献   

9.
AIM: To explore the effect of dual PI3K/Akt/mTOR inhibitor NVP-BEZ235 on autophagy of polycystic kidney (PCK) rat cholangiocytes. METHODS: The protein levels of p-mTOR and p-Akt in the bile duct epithelial cells were examined by immunohistochemistry. The effect of NVP-BEZ235 on the viability of cholangiocytes was detected by WST-1 assay. The levels of PI3K/Akt/mTOR signaling pathway and autophagy-related proteins with NVP-BEZ235 treatment were determined by Western blot. The effects of LC3 and Beclin 1 silencing, and authophagy-specific inhibitor 3-methyladenine (3-MA) on the cell viability were analyzed by WST-1 assay. RESULTS: The protein levels of p-Akt and p-mTOR were highly increased in the bile duct epithelium of the PCK rats. NVP-BEZ235 significantly inhibited the viability of the cholangiocytes in a dose- and time-dependent manner (P<0.05). NVP-BEZ235 significantly reduced the levels of PI3K/Akt/mTOR signaling pathway-related proteins in the PCK rat cholangiocytes. NVP-BEZ235 upregulated the autophagy-specific proteins LC3 II and Beclin 1. The inhibitory effect of NVP-BEZ235 on the cell viability was weakened by treatment with 3-MA and knockdown of LC3 and Beclin 1 (P<0.01).CONCLUSION: The PI3K/Akt/mTOR inhibitor NVP-BEZ235 suppresses the viability of PCK rat cholangiocytes, and the mechanism is closely related with autophagy.  相似文献   

10.
AIM: To investigate the role of PI3K/Akt and JAK2/STAT3 pathways in the protection of sulfur dioxide (SO2) against limb ischemia/reperfusion (I/R)-induced acute lung injury (ALI) in rats. METHODS: ALI was induced by limb I/R in the SD rats. Na2SO3(0.54 mmol/kg, ip)/NaHSO3 (0.18 mmol/kg, ip) as SO2 donor was injected at 20 min before reperfusion. The inhibitors of JAK2/STAT3 and PI3K/Akt pathways, Stattic (3 mg/kg, iv) and LY294002(40 mg/kg, iv), respectively, were injected at 1 h before reperfusion. Peripheral blood and lung tissues were collected for determining the contents of the cytokines, the protein levels of the molecules related to the signaling pathways, apoptosis and histopathologic changes by ELISA, TUNEL and Western blot. RESULTS: Compared with control group, the content of MDA, the activity of MPO, lung coefficient, apoptotic index, cytokine expression, and the protein levels of p-Akt and p-STAT3 in I/R group all increased significantly, and administration of Na2SO3/NaHSO3 attenuated the damage in the lung. Besides, the results of Western blot showed that the rat lung tissues expressed p-STAT3 protein and p-Akt protein. After I/R, the protein levels of p-STAT3 and p-Akt were increased. After using Na2SO3/NaHSO3, p-Akt was increased, but p-STAT3 was decreased (P<0.05). CONCLUSION: Both JAK2/STAT3 and PI3K/Akt pathways are likely involved in the protective effect of SO2 against limb I/R-induced ALI in rats. The activation of JAK2/STAT3 signaling pathway increases I/R injury. Reversely, the activation of PI3K/Akt signaling pathway reduces I/R injury. Besides, JAK2/STAT3 and PI3K/Akt signaling pathways may have crosstalk during I/R-induced ALI and JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway.  相似文献   

11.
AIM: To explore the role of aloperine in ischemia-reperfusion (I/R)-induced H9c2 cardiomyocyte injury and inflammation.METHODS: The H9c2 cardiomyocytes were cultured under hypoxia and re-oxygenation conditions to simulate ischemia-reperfusion (SI/R) injury. After treatment with aloperine at various doses, the cell viability was measured by MTT assay. The cell apoptosis was analyzed by flow cytometry. Simultaneously, the levels of lactate dehydrogenase (LDH), malonaldehyde (MDA) and caspase-3 activity were detected by the commercial kits. The levels of inflammatory cytokines were also detected by ELISA. Moreover, the effects of aloperine on the activation of PI3K/AKT signaling pathway were determined by Western blot.RESULTS: Pre-treatment with aloperine remarkably abated the inhibitory effect of SI/R on H9c2 cell viability, and decreased the elevations of LDH and MDA triggered by SI/R (P<0.05). Pre-treatment with aloperine dramatically suppressed the cell apoptosis induced by SI/R treatment (P<0.05), concomitant with the decrease in caspase-3 activity and increase in Bcl-2/Bax ratio (P<0.05). In contrast to SI/R group, aloperine treatment notably restrained the concentrations of pro-inflammatory cytokines, including interleukin-6, tumor necrosis factor-α and interleukin-1β (P<0.05). Furthermore, aloperine remarkably increased the protein levels of p-PI3K and p-AKT. While blocking the PI3K/AKT pathway with its specific inhibitor LY294002, the viability-promoting, anti-apoptotic and anti-inflammatory effects of aloperine on the H9c2 cells were obviously attenuated (P<0.05).CONCLUSION: Alope-rine protects against cardiomyocytes from I/R injury and inhibits inflammatory responses by activating the PI3K/AKT signaling pathway, implying a potential benefic role of aloperine against myocardial I/R injury.  相似文献   

12.
AIM:To explore the effect of hydrogen sulfide (H2S) on urosepsis-induced acute kidney injury. METHODS:New Zealand white rabbits were randomly divided into control group, sham group, model (sepsis) group, NaHS treatment (NaHS) group, and NaHS combined with TAK-242 (a TLR4 inhibitor) treatment (NaHS+TAK-242) group. After treatment for 72 h, HE staining was used to measure the histopathological changes of rabbit kidney. The levels of blood urea nitrogen (BUN) and serum creatinine (SCr) were detected by automatic biochemical analyzer. The serum levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule 1 (KIM-1), procalcitonin (PCT), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured by ELISA. The TLR4/MyD88/PI3K signaling pathway-related proteins in the kidney were determined by Western blot. RESULTS:Compared with control group, obvious damage was observed in the kidneys of septic rabbits, but the kidneys were markedly improved by treatment with NaHS. The levels of BUN, SCr, NGAL, KIM-1, PCT, IL-1β, IL-6 and TNF-α in the septic rabbits were higher than those in control group, and decreased significantly in NaHS group and NaHS+TAK-242 group. The protein levels of TLR4, MyD88, p-PI3K and p-Akt in septic rabbit kidneys were higher than those in control group. However, NaHS or NaHS+TAK-242 inhibited the activation of TLR4/MyD88/PI3K signaling pathway in the kidneys of septic rabbits. CONCLUSION:H2S play a protective effect on the rabbits with urosepsis-induced acute kidney injury by blocking TLR4/MyD88/PI3K signaling pathway to inhibit inflammatory response.  相似文献   

13.
AIM: To study the effect of interleukin-1β (IL-1β) on neuron activation during the process of medial temporal lobe epilepsy (MTLE).METHODS: IL-1β, rapamycin [an inhibitor of mammalian target of rapamycin (mTOR)]and lentiviral transfection to knockdown PI3K-p85 were used to pre-treat the neurons. The protein levels of PI3K-p85, p-Akt, p-p70S6K and MAP2 were detected and the relationship among the tested cytokines was analyzed. The neuron endocytosis was observed in each group. RESULTS: IL-1β increased the protein levels of PI3K-p85, p-Akt and p-p70S6K, up-regulated the expression of PI3K-p85 binding with IL-1RI in the neurons, and increased the neuron endocytosis compared with control group (P<0.05). These processes were inhibited by rapamycin and silence of PI3K-p85 (P<0.05). Inhibition of the PI3K-p85 binding to IL-1RI decreased the protein levels of p-Akt, p-p70S6K and MAP2 which were increased by IL-1β stimulation (P<0.05). CONCLUSION: IL-1β activates PI3K-p85 by binding with IL-1RI to promote the activation and proliferation of neuron synapses via PI3K/Akt/mTOR signaling pathway, which might be one of the mechanisms in MTLE chronic progress.  相似文献   

14.
AIM:To study of the regulatory effect of lentinan on human leukemic HL-60 cell apoptosis and its effect on PI3K/AKT signaling pathway in HL-60 cells in vitro.METHODS:Lentinan at concentrations of 0 mg/L, 15 mg/L, 30 mg/L and 45 mg/L was applied to HL-60 cells cultured to the logarithmic phase in vitro, and the inhibitory effect of lentinan on the viability of HL-60 cells was measured by MTT assay after 24 h, 48 h and 72 h. The apoptosis induced by lentinan was analyzed by flow cytometry. The protein levels of cleaved PARP, cleaved caspase-9, cleaved caspase-3, cleaved caspase-8, cytochrome C, PI3K, AKT and p-AKT were determined by Western blot. After treatment with PI3K inhibitor LY294002 at 5 mg/L for 72 h, the apoptosis of HL-60 cells was analyzed by flow cytometry. RESULTS:The viability of HL-60 cells was inhibited after treatment with lentinan at concentrations of 15 mg/L, 30 mg/L and 45 mg/L for 24 h, 48 h and 72 h in concentration-dependent and time-dependent manners (P<0.05). The apoptosis of HL-60 cells was promoted after treatment with lentinan (15 mg/L, 30 mg/L and 45 mg/L) for 72 h in a concentration-dependent manner (P<0.05). The protein levels of cleaved PARP, cleaved caspase-9, cleaved caspase-3 and cytoplasmic cytochrome C in the HL-60 cells induced by 30 mg/L lentinan were increased significantly with the increase in the treatment time (P<0.05), but caspase-8 did not show any change. The protein levels of PI3K, AKT and p-AKT were decreased obviously with the increase in the lentinan concentration (P<0.05). Treatment of HL-60 cells with LY294002, a PI3K pathway inhibitor, produced apoptosis-inducing effect similar to lentinan (P<0.05). CONCLUSION:Lentinan induces HL-60 cell apoptosis by inhibiting PI3K/AKT signaling pathway.  相似文献   

15.
AIM:To investigate the inhibitory effects of resveratrol on chondrosarcoma and the relation with mitochondrial and PI3K/Akt pathways. METHODS:Chondrosarcoma SW1353 cells were treated with resveratrol at concentrations of 25, 50 and 100 μmol/L for the time intervals of 24 h, 48 h and 72 h. The viability and apoptosis of the SW1353 cells in the presence or absence of resveratrol were analyzed by CCK8 assay and Hoechst 33258 staining, respectively. The protein levels of Bcl-2, Bax, activated caspase-3, Akt and p-Akt were detected by Western blotting. The cell migration ability was determined by wound scratch assay. RESULTS:Exposure of the cells to resveratrol resulted in a decrease in the cell viability in a dose- and time-dependent manner (P<0.05). visible nuclei with apoptotic characteristics in resveratrol group were observed. The protein levels of activated caspase-3 and Bax were increased, and Bcl-2 and p-Akt were decreased compared with control group. The total Akt were not significantly changed. Resveratrol also significantly reduced the migration of tumor cells. CONCLUSION:Resveratrol induces apoptosis of chondrosarcoma, which plays a role of part through mitochondrial and PI3K/Akt signaling pathways.  相似文献   

16.
AIMTo investigate whether Rho-associated coiled-coil kinase (ROCK) is involved in high glucose-induced apoptosis of primary cardiomyocytes by regulating PI3K/Akt signaling pathway. METHODSPrimary Wistar rat cardiomyocytes were cultured and identified by α-sarcomeric actin (α-SCA) immunohistochemistry. Cardiomyocytes were treated with 5.5, 33 and 40 mmol/L glucose for 48 h. The cell viability was measured by MTT assay, and the mRNA expression of ROCK1 and ROCK2 in the cardiomyocytes was detected by RT-qPCR. Flow cytometry was used to analyze the apoptosis of the cardiomyocytes. The protein levels of ROCK1, ROCK2, cleaved caspase-3, Bcl-2, PI3K, Akt and p-Akt were determined by Western blot. In order to confirm the regulatory effect of ROCKs on PI3K/Akt signaling pathway, the cells were divided into control group (5.5 mmol/L glucose), high glucose group (33 mmol/L glucose) and high glucose+Y27632 (ROCK inhibitor) group. Western blot was used to detect the protein levels of ROCK1, ROCK2, PI3K, Akt and p-Akt. RESULTSAfter 48 h of high glucose exposure, the values of relative cell viability in 33 and 40 mmol/L glucose groups were (79.71±2.43)% and (68.41±7.49)%, respectively, both of which were significantly decreased compared with normal control group (P<0.05). After 48 h of high glucose exposure, the relative mRNA levels of ROCK1 and ROCK2 in 33 and 40 mmol/L glucose groups were significantly increased compared with normal control group (P<0.05). Compared with normal control group, the apoptotic rate in 33 and 40 mmol/L glucose groups was increased significantly (P<0.05). Compared with normal control group, the protein expression of ROCK1, ROCK2 and cleaved caspase-3 in 33 and 40 mmol/L glucose groups was increased (P<0.05), while the protein expression of Bcl-2 was decreased (P<0.05). No significant difference in the protein levels of PI3K and Akt among the 3 groups was observed, while the protein level of p-Akt in 33 and 40 mmol/L glucose groups was decreased compared with normal control group (P<0.05). Compared with high glucose group, the expression of ROCK1 and ROCK2 was decreased in high glucose+Y27632 group. No significant difference in the protein levels of PI3K and Akt among the 3 groups was observed. Compared with normal control group, the protein level of p-Akt in high glucose group was decreased, and the protein level of p-Akt in high glucose+Y27632 group was increased significantly compared with high glucose group. CONCLUSION Under high glucose environment, ROCK may reduce the level of p-Akt by inhibiting the PI3K/Akt signaling pathway, thus promoting the apoptosis of cardiomyocytes.  相似文献   

17.
AIM:To observe the effects of shikonin on the apoptosis and autophagy of human cervical cancer HeLa cells, and to explore the possible role of PI3K/Akt/mTOR signaling pathway in these processes. METHODS:The HeLa cells were treated with shikonin, and the cell viability was detected by CCK-8 assay. The apoptosis was detected by Annexin V/PI double staining. The autophagosome was observed by transfection with GFP-LC3 into the HeLa cells. After the treatment with shikonin combined with autophagy inhibitor 3-methyladenine (3-MA) or apoptosis inhibitor Z-DEVD-FMK, the protein levels of autophagy-and apoptosis-related molecules microtuble-associated protein 1 light chain 3 (LC3) and cleaved caspase-3 in the HeLa cells were determined by Western blot. The protein levels of phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-Akt) and phosphorylated mTOR (p-mTOR) were also determined by Western blot. RESULTS:Shikonin significantly inhibited the viability of HeLa cells (P<0.05). Compared with control group, shikonin significantly induced apoptosis of HeLa cells (P<0.05). The results of GFP-LC3 plasmid transfection analysis showed that green dot-like congregate autophagosomes appeared in the cytoplasm of the HeLa cells after shikonin treatment, while the autophagosomes were rarely observed in control group. Compared with shikonin group, LC3-Ⅱ/LC3-I was significantly decreased and cleaved caspase-3 was significantly increased in shikonin+3-MA group (P<0.05). Compared with shikonin group, LC3-Ⅱ/LC3-I was significantly increased and cleaved caspase-3 was significantly decreased in shikonin+Z-DEVD-FMK group (P<0.05). Compared with control group, shikonin significantly decreased the protein levels of p-PI3K, p-Akt and p-mTOR (P<0.05). CONCLUSION:The apoptosis and autophagy of the HeLa cells are induced by shikonin, these two processes are complementary. The mechanism may be related to inhibition of PI3K/Akt/mTOR signaling pathway.  相似文献   

18.
CHEN Long-yun  LIU Ye 《园艺学报》2018,34(11):1976-1980
AIM: To investigate whether quercitrin induces apoptosis of gastric cancer cell line SGC7901 by inhibition of PI3K/AKT signaling pathway. METHODS: The human gastric cancer SGC7901 cells were selected as the research object. The cytotoxicity of quercitrin was detected by MTT assay, and IC50 value of quercitrin was calculated. The SGC7901 cells were divided into control group, quercitrin group (incubated with 200 μmol/L quercitrin), insulin-like growth factor-1 (IGF-1) group (incubated with 100 μg/L IGF-1) and quercitrin+IGF-1 group (incubated with 200 μmol/L quercitrin and 100 μg/L IGF-1). After 48 h, the apoptosis of SGC7901 cells was analyzed by flow cytometry, and the protein levels of cleaved caspase-3, p-AKT (Ser473), AKT, p-PI3K (Tyr508) and PI3K were determined by Western blot. RESULTS: The viability of SGC7901 cells was significantly decreased as the concentration of quercitrin increased, starting at 100 μmol/L (P<0.05). The IC50 value of quercitrin for 48 h was 275.40 μmol/L. After treatment with 200 μmol/L quercitrin for 48 h, the apoptosis rate and the protein level of cleaved caspase-3 in quercitrin group were significantly increased (P<0.05), and the phosphorylated levels of AKT and PI3K were significantly decreased compared with control group (P<0.05). Treatment with quercitrin and IGF-1 inhibited the effect of quercitrin on SGC7901 cells compared with quercitrin group. CONCLUSION: Quercitrin may induce apoptosis of gastric cancer cell line SGC7901 by inhibiting the activation of PI3K/AKT signaling pathway.  相似文献   

19.
AIM:To investigate the effect of extracellular heat-shock protein 70 (HSP70)/HSP70-peptide complexes (HSP70-PCs) on epithelial-mesenchymal transition (EMT) of human hepatocellular carcinoma HepG2 cells and its probable mechanism. METHODS:HepG2 cells were divided into 3 groups: control group, HSP70/HSP70-PCs (2 mg/L) group and LY294002+HSP70/HSP70-PCs group. The mRNA and protein expression of epithelial cell surface marker E-cadherin, mesenchymal cell surface marker α-smooth muscle actin (α-SMA), phosphatidylinositol 3-kinase (PI3K) and hypoxia-inducible factor 1α (HIF-1α) was examined by real-time RT-PCR and Western blotting. RESULTS:Extracellular HSP70/HSP70-PCs promoted the initiation of EMT of HepG2 cells. The expression of HIF-1α and PI3K significantly increased in the process of EMT of HepG2 cells. After PI3K was blocked by LY294002, EMT did not occur and HIF-1α was not up-regulated in HepG2 cells. CONCLUSION:Extracellular HSP70/HSP70-PCs may promote EMT of hepatocellular carcinoma cells via PI3K/HIF-1α signaling pathway.  相似文献   

20.
AIM: To investigate the effects of silent information regulator 1 (SIRT1) over-expression on the apoptosis and the level of reactive oxygen species (ROS) in high glucose-induced H9c2 cardiomyocytes. METHODS: H9c2 cardiomyocytes were transfected with empty plasmid (pcDNA3.1-NC) and SIRT1 over-expression plasmid (pcDNA3.1-SIRT1), and then stimulated by high glucose. The H9c2 cells were divided into control group, high glucose group, high glucose + pcDNA3.1-NC group and high glucose + pcDNA3.1-SIRT1 group. The expression of SIRT1 at mRNA and protein levels in each group was determined by qPCR and Western blot. The viability of the cells was measured by MTT assay. The apoptotic rate was analyzed by flow cytometry. The protein levels of phosphatidylinositol 3-kinase (PI3K), phosphorylated PI3K, AKT and phosphorylated AKT were examined by Western blot. RESULTS: SIRT1 was significantly decreased in high glucose-induced H9c2 cardiomyocytes, the cell viability was significantly decreased compared with control group, while the ROS levels and apoptotic rate were increased, and the phosphorylated PI3K and AKT protein levels were down-regulated (P<0.05). Over-expression of SIRT1 significantly promoted the viability of H9c2 cardiomyocytes induced by high glucose, decreased the ROS levels and apoptotic rate, and up-regulated phosphorylated PI3K and AKT protein levels (P<0.05). CONCLUSION: SIRT1 over-expression reverses the decrease in the viability of high glucose-stimulated H9c2 cardiomyocytes, and the increases in apoptotic rate and oxidative stress by regulating PI3K/AKT signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号