首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the effect of Buyanghuanwu decoction, a Chinese medicine, on the ability of learning and memory in the rats with vascular dementia (VD) and on the protein expression of extracellular signal-regulated kinase 2(ERK2) and calcium/calmodulin-dependent protein kinase Ⅱβ(CaMKⅡβ) in hippocampus CA1 area.METHODS: The rats were divided into 4 groups: sham group, VD group, VD+Buyanghuanwu decoction group and VD+nimodipine group. The VD rat model was prepared by Pulsinelli's four-vessel occlusion. At 7th day, 14th day or 28th day after operation, the behaviors of the rats were tested by Morris water maze. The morphological changes of the neurons in hippocampus CA1 area were observed by HE staining 30 d after operation. Western blotting was used to observe the protein expression of ERK2 and CaMKⅡβ in the brain tissues of hippocampal CA1 area of the VD rats. RESULTS: Compared with sham group, the pathological changes such as irregular arrangement, coagulation necrosis and obvious deletion in the neurons of hippocampus CA1 area in VD group appeared significantly. The obstacle of learning and memory ability was observed and the protein expression of ERK2 and CaMKⅡβ in hippocampal CA1 area was significantly decreased (P<0.05). Compared with VD group, the neurons in hippocampal CA1 area of VD+Buyanghuanwu decoction group and VD+nimodipine group were in eumorphism, lined up in order, and the structure was close to that in sham group. The ability of learning and memory also significantly improved (P<0.05). The protein expression of ERK2 and CaMKⅡβ in hippocampal CA1 area significantly increased (P<0.05). CONCLUSION: Buyanghuanwu decoction promotes the protein expression of ERK2 and CaMKⅡβ in hippocampus CA1 area to protect the neurons from injury, builds up the synapses and promotes the ability of learning and memory in VD rats.  相似文献   

2.
AIM:To investigate the regulatory effects and underlying molecule-mechanism of clonidine on learning and memory in rats with chronic cerebral ischemia. METHODS:Sprague-Dawley rats (n=45) were randomly divided into sham-operation group, cerebral ischemia model group and clonidine group, 15 rats in each group. The chronic cerebral ischemia rat model was established by right middle cerebral artery occlusion for 2 h and reperfusion for 30 d. Clonidine was administrated by i.g. for 7 days in clonidine group. The ability of spatial reference memory of the rats with cerebral ischemia was tested by Morris water maze. The protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (p-ERK1/2), cAMP-response element binding protein (CREB) and phosphorylated CREB (p-CREB) were determined by immunohistochemistry and Western blot. RESULTS:The results of Morris water maze test showed that compared with the sham-operation group, the ability of spatial reference memory was obviously impaired in the cerebral ischemia model group. Compared with the cerebral ischemia model group, the ability of spatial reference memory in the clonidine group were improved. Compared with the sham-operation group, the protein levels of p-ERK1/2 and p-CREB in hippocampus were increased in model group (P<0.01). Compared with the cerebral ischemia model group, the protein levels of p-ERK1/2 and p-CREB in hippocampus were decreased in the clonidine group (P<0.01). CONCLUSION:Clonidine improves the learning and memory abilities of the rats with cerebral ischemia, and ERK1/2 and CREB are involved in this process.  相似文献   

3.
AIM: To evaluate the role of concentrated decoction of Chinese herbal compound Buyanghuanwutang (BYHWT) in cyclic adenosine monophosphate(cAMP)-protein kinase A(PKA)-cAMP response element-binding protein(CREB) signaling pathway in hippocampus of rats with vascular dementia (VD). METHODS: The rats were randomly divided into sham operation group (sham-operated rats treated with normal saline), VD model group (VD rats treated with normal saline), BYHWT treatment group (VD rats treated with BYHWT) and nimodipment treating group (VD rats treated with nimodipine). The rat model of VD was build by the method of four-vessel occlusion. The rats in all 4 groups were administered with the corresponding reagents for successive 30 days. The content of cAMP was measured by radioimmunoassay. The expression of PKA catalytic subunit (PKAc) was observed by Western blotting. The changes of DNA-binding activity of CREB in rat hippocampus were detected by electrophoretic mobility shift assay. RESULTS: The content of cAMP, the expression of PKAc and the DNA-bingding activity of CREB in the hippocampus of VD rats were lower than those in the hippocampus of sham-operated rats (P<0.01). The above indexes in both nimodipine treatment group and BYHWT treatment group were definitely higher than those in VD model group (P<0.01). CONCLUSION: BYHWT increases the content of cAMP, the expression of PKAc and the DNA-binding activity of CREB in VD rat hippocampus, thus strengthening the cAMP-PKA-CREB signaling pathway.  相似文献   

4.
AIM: To investigate the effects of Ginkgo biloba extract 761 (Egb761) on synaptophysin (SYN) expression in hippocampus of vascular dementia (VD) rats.METHODS: VD rat models, established by repeatedly cerebral ischemia/reperfusion, were randomly divided into two groups: model group and EGb761 treated group (both n=30), and another 30 condition-matched rats were selected as the sham-operated controls. Spatial learning and memory abilities of rats were assessed by Morris water maze (MWM) task, and SYN expression in hippocampal formation of rats in different groups was detected by immunohistochemical technique and image analysis.RESULTS: The MWM escape latency (EL) in model group was highly longer than that in the sham-operated group (P<0.01), while the EL of EGb761-treated group was significantly shorter than that in model group, but still longer than that in the sham-operated group at 1 m, 2 m and 4 m after VD modeling operation (P<0.05 or P<0.01). Immunohistochemical analysis showed that the SYN immunoreactive expression in hippocampal formation in model group greatly decreased and mean optical density of SYN expression highly increased compared with both sham-operated group and EGb761-treated group at three time points (P<0.01).CONCLUSION: EGb761 can increase the expression of SYN in hippocampus, which may be one of important mechanisms of EGb761 in improving learning and memory dysfunction of VD rats.  相似文献   

5.
6.
AIM: To evaluate the effect of curcumin on impaired learning-memory ability and the expression of high mobility group box protein 1 (HMGB1) and c-Jun N-terminal kinase (JNK) in a rat model of Alzheimer disease (AD). METHODS: Male Sprague-Dawley rats, weighing 250~270 g, were randomly divided into 4 groups (n=9): blank control group (group A), model group (group B), curcumin treatment group (group C, curcumin injected intraperitoneally at 100 mg·kg-1·d-1 for 6 consecutive days) and solvent control group (group D). The rats of AD model were induced by injection of ibotenic acid into the nucleus basalis of Meynert (NBM) bilaterally. All rats were trained in Morris maze to assess the ability of learning and memory. The expression of HMGB1 and JNK in the hippocampus was detected by the methods of immunohistochemistry and Western blotting. RESULTS: Compared with group A, the average escape latency (AEL) in groups B and D were obviously longer (P<0.05), while AEL in group C in the 5th and 6th days were significantly shorter (P<0.05). The releases of HMGB1 in the CA1 and CA3 areas in groups B and D from the nucleus were abundant. Compared with groups B and D, HMGB1 in hippocampal CA1 and CA3 areas in group C secreted out of the nucleus decreased obviously (P<0.05). No significant difference of the release of HMGB1 between group A and group C was observed (P>0.05). No significant difference in the expression of HMGB1 in the hippocampus among the 4 groups was found (P>0.05). However, compared with groups B and D, the expression of JNK in group C was decreased obviously (P<0.05). CONCLUSION: Curcumin significantly improves the learning and memory ability of AD rats. The probable mechanisms may be related to inhibiting the release of HMGB1 from the nucleus of hippocampal neurons and decreasing the expression of JNK in the hippocampus.  相似文献   

7.
AIM: To observe the alterations in cognition of growing rats exposed to chronic intermittent hypoxia (CIH) and to explore its underlying mechanisms. METHODS: Forty male Sprague-Dawley rats (3-week-old~4-week-old and 80 g to 100 g), which had been trained to complete the 8-arm (4-arm baited) radial maze, were randomly divided into 4 groups: 2-weeek-CIH group (2IH), 4-week-CIH group (4IH), 2-week-control group (2C) and 4-weeek-control group (4C). The intermittent hypoxia model was induced by putting the animals in an intermittent hypoxia cabin. When intermittent hypoxia was terminated, spatial memory of these growing rats was tested by 8-arm (4-arm baited) radial maze task, then, one rat in each group was randomly selected for ultrastructural observation. The hippocampus and prefrontal cortexes of the rats were collected for analyzing the mRNA and protein expression of CREB by RT-PCR and Western blotting, respectively. RESULTS: (1) In the 8-arm (4-arm baited) radial maze task, the results indicated that the rats in the 4 groups displayed significant difference in their performance assessed by three measuremens: the reference memory error, the working memory error and total memory error (P<0.05, respectively). (2) Early apoptosis and destructure of the neurons in the hippocampus and prefrontal cortex were observed under electron microscope in CIH exposed groups, especially in 4IH group, but not detected in 2C and 4C groups. (3) The expression levels of CREB mRNA and p-CREB protein in 2IH and 4IH groups were less than those in 2C and 4C groups in the hippocampus and prefrontal cortex (P<0.05, respectively), especially in the hippocampus of 4IH group (P<0.01). No difference was found within control groups (P>0.05, respectively). CONCLUSION: Exposure to experimentally-induced IH in growing rats is associated with time related spatial memory impairment. Chronic intermittent hypoxia leads to the disorders of neuron ultra-structure in memory related brain regions. It also inhabits the CREB transduction, expression and CREB phosphorylation, decreases the synthesis of the memory related protein. These factors maybe contribute to learning-memory impairment of growing rats exposed to chronic intermittent hypoxia.  相似文献   

8.
AIM: To investigate the effects of rolipram on the ability of learning and memory and the activity of PDE4 in hippocampus following the focal brain injury induced by ischemia- reperfusion in rats. METHODS: The cerebral ischemia-reperfusion injury model was made by middle cerebral artery occlusion (MCAO) in rats. The rats were randomly divided into sham-operated group, model group, and rolipram group. Rolipram was administered once a day (1 mg/kg, ip) from 6 h after the onset of the operation for 2 weeks. Then the learning and memory abilities were tested after Morris water maze and step-though training. The activity of PDE4 in hippocampus was evaluated by HPLC. RESULTS: In the Morris water maze test, compared to sham-operated group, the platform-finding time and swimming distance in model group were significantly longer (P<0.05). Compared to model group, the platform-finding time and swimming distance in rolipram group were significantly shorter (P<0.05). In the step-through test, compared to sham-operated group, the lantent period in model group was significantly shorter (P<0.01) and the error times were statistically increased(P<0.05). Compared with model group, the lantent period in rolipram group were significantly longer (P<0.05), and the error times were markedly decreased. The assay of the HPLC demonstrated that the activities of PDE4 in hippocampus in model group were higher than those in the sham-operated group and rolipram group. CONCLUSION: Rolipram reduces the activity of PDE4 in hippocampus and enhances the ability of learning and memory after the injury induced by ischemia-reperfusion.  相似文献   

9.
AIM: To investigate the effect of bone marrow mesenchymal stem cell (BMSC) transplantation on learning and memory abilities and pathological changes of Alzheimer disease (AD) mice and the molecular mechanisms. METHODS: C57/BL6 wild-type (WT) and transgenic (Tg) mice were randomly divided into 4 groups:WT/PBS group, WT/BMSCs group, Tg/PBS group and Tg/BMSCs group. The mice were administered with PBS or BMSCs via intracerebroventricular injection. Spatial learning and memory abilities of the mice were evaluated by Morris water maze test on the 3rd day after surgery. Real-time PCR was applied to detect the mRNA expression of CX3C chemokine ligand 1 (CX3CL1), CX3C chemokine receptor 1 (CX3CR1), IL-1β, TNF-α, Nurr1, YM1, insulin-degrading enzyme (IDE) and matrix metalloproteinase 9 (MMP9). The protein levels of CX3CL1 and Aβ42 were measured by ELISA. Western blot was used to detect the protein expression of postsynaptic density protein 95 (PSD95) and synaptophysin (SYP). RESULTS: The transplanted BMSCs were observed near the hippocampus of APP/PS1 mice on the 10th postoperative day. The escape latency of the mice in Tg/PBS group was significantly longer than that in the WT/PBS mice (P<0.05). Compared with Tg/PBS group, the escape latency of Tg/BMSCs group was significantly shorter (P<0.05), and the mRNA and protein levels of CX3CL1 in Tg/BMSCs group were significantly higher than those in Tg/PBS group (P<0.01). The results of immunohistofluorescence staining showed that BMSC transplantation promoted the activation of microglia in the brain of WT and Tg mice. The mRNA expression of YM1 was up-regulated in WT/BMSCs group and Tg/BMSCs group (P<0.05). Compared with WT/PBS mice, the mRNA expression of TNF-α in the cortex and hippocampus of Tg/PBS group was significantly increased (P<0.05), and the mRNA expression of Nurr1 in the cortex was significantly decreased (P<0.01). Meanwhile, the mRNA expression of TNF-α in the cortex of Tg/BMSCs mice was decreased (P<0.01) and the mRNA expression of CX3CR1 and Nurr1 was up-regulated compared with Tg/PBS group (P<0.05). The results of Western blot showed that the protein levels of PSD95, p85, p110 and p-Akt in Tg/BMSCs group were significantly higher than those in Tg/PBS group (P<0.05). Finally, BMSC transplantation reduced the protein level of Aβ42 in APP/PS1 mice (P<0.05), and increased the mRNA expression of IDE and MMP9 in the hippocampus (P<0.05). CONCLUSION: BMSC transplantation modulates neuroinflammatory responses and promotes neuroprotective factor and synaptic protein expression, thus improving the learning and memory abilities in the APP/PS1 mice, which may be achieved by up-regulating the expression of CX3CL1.  相似文献   

10.
AIM: To investigate the protective mechanism of extract of Ginkgo biloba (EGB) on apoptosis of hippocampus neuronal cells in type 1 diabetic encephalopathic rats. METHODS: Thirty-six male Sprague-Dauley rats were divided into 3 groups: control group, diabetic group and EGB-treated group. Streptozotocin was injected intraperitoneally to the animals in later two groups to induce diabetes. The rats in EGB-treated group were injected intraperitoneally with EGB, and the same volume of normal saline was injected to the rats in other groups. At the end of the 12th week, the spatial learning and memory abilities of rats in each group were examined by Morris water maze test. Blood glucose and serum insulin concentration were measured. The neuron densities in hippocampus were measured by Image-Pro Plus 6.0 software. The expressions of Bax, Bcl-2, caspase-3 were assayed by Western blotting and immunohistochemistry. RESULTS: Compared to control group, the level of blood glucose (P<0.01), the protein expression of Bax (P<0.01) and caspase-3 (P<0.01) in hippocampus neuronal cells, and the ratio of Bax/Bcl-2 (P<0.01) and the escape latency (P<0.01) in diabetic group, were significantly increased, while the serum insulin concentration (P<0.01), the neuronal density (P<0.05) in CA1,CA2 hippocampal regions and the platform searching score (P<0.01) were significantly deceased. After treated with EGB, the serum insulin concentration (P<0.05), the neuronal density (P<0.05) in CA1,CA2 hippocampal regions and the platform searching score (P<0.01) were significantly increased, while the level of blood glucose (P<0.01), the protein expression of Bax (P<0.05), caspase-3 (P<0.05) in hippocampus neuronal cells, the ratio of Bax/Bcl-2 (P<0.01) and the escape latency (P<0.05) were significantly deceased than those in diabetic group. The protein expression of Bcl-2 in hippocampus neuronal cells did not alter in any experimental rats. CONCLUSION: EGB improves the spatial learning and memory capacity in diabetic rats by decreasing the expression of Bax, Bax/Bcl-2 ratio and down-regulating caspase-3 to reduce neurocyte apoptosis and increase the neuron density in CA1, CA2 hippocampal regions, suggesting that effective regulation of neuron apoptosis associated genes may be one of the mechanisms for EGB to treat diabetic encephalopathy.  相似文献   

11.
AIM: To investigate the change of long-term potentiation (LTP), and the expression of 5-hydroxytryptamine 1A receptor (5-HT1A receptor) and postsynaptic density protein 95 (PSD-95) in the hippocampus of the rats with posttraumatic stress disorder (PTSD), and to explore the mechanism of 5-HT1A receptor in the regulation of spatial memory in the PTSD rats.METHODS: Healthy adult SD rats (n=36) were randomly divided into control group and model group, with 18 rats in each group. The rats in model group were treated with single prolonged stress to construct the model of PTSD. Morris water maze (MWM) was used to test the learning and memory ability. The LTP induced by high-frequency stimulation (HFS) was detected by electrophysiological method. The protein expression of 5-HT1A receptor and PSD-95 in the hippocampus was determined by Western blot and immunofluorescence. RESULTS: The MWM analysis showed that the latency of the rats searching for the underwater platform in model group was significantly longer than that in control group (P<0.01). The results of electrophysiological analysis showed that the amplitude of the evoked potential in both groups were significantly increased after HFS in the hippocampus, but that in model group was significantly lower than that in control group (P<0.01). The results of Western blot and immunofluorescence analysis showed that compared with control group, the protein expression of 5-HT1A receptor was obviously increased (P<0.05), while the expression of PSD-95 was obviously decreased in model group (P<0.05).CONCLUSION: The spatial memory impairment in the PTSD rats may be associated with the increase in the expression of 5-HT1A receptor and the decrease in the expression of PSD-95 in the CA1 region of hippocampus.  相似文献   

12.
AIM:To observe the effect of electroacupuncture (EA) on the inflammatory response and hippocampal JAK2/STAT3 signaling pathway in the rats with chronic cerebral hypoperfusion (CCH), and to explore the mechanism of EA attenuating the spatial learning and memory impairment induced by CCH. METHODS:Adult male Sprague-Dawley rats were randomly divided into sham group, model group and EA group (n=10). Modified permanent bilateral common carotid artery occlusion was used to establish animal model. The rats in EA group were stimulated at "Baihui" and "Dazhui" acupoints by 2/15 Hz frequency (30 min/d for 4 weeks), while the rats in the other 2 groups received balanced treatment. The spatial learning and memory ability and regional cerebral blood flow (rCBF) were detected by the methods of Morris water maze and laser Doppler flowmetry. The concentrations of interleukin (IL)-6 and IL-1β, the mRNA expression of JAK2 and STAT3, and the phosphorylated JAK2 and STAT3 protein levels in the hippocampus were determined by ELISA, RT-PCR and Western blot. The pathological changes of the hippocampus were observed with HE staining. RESULTS:In EA group, the rCBF, the average escape latency at every time point, and the original platform quadrant residence time were better than those in model group (P<0.01 or P<0.05). The level of IL-1β in EA group was significantly lower than that in model group (P<0.05), and the level of IL-6 was significantly increased (P<0.05). The mRNA expression of JAK2 and STAT3, and the protein levels of p-JAK2 and p-STAT3 in EA group were significantly higher than those in model group (P<0.05). The impairment of nerve cells in the hippocampal CA1 region was reduced. CONCLUSION:Electroacupuncture inhibits inflammatory response, and alleviates the hippocampal damage and the cognitive disorder by regulating IL-6/JAK2/STAT3 signaling pathways.  相似文献   

13.
AIM:To investigate the expression of synaptophysin in the CA1 region of hippocampus and prefrontal cortex (PFC) of rats with posttraumatic stress disorder (PTSD), and to explore the mechanism of spatial memory changes in PTSD rats.METHODS:Healthy adult SD rats (n=36) were randomly divided into 2 groups:control group and model group, with 18 rats in each group. The rats in model group was continuously given single prolonged stress (SPS) to construct the PTSD model. Morris water maze (MWM) was used to test the learning and memory ability of the rats in the 2 groups. The protein expression of synaptophysin in the hippocampal CA1 area and PFC was examined by immunohistochemistry, Western blot and immunofluorescence experiments. RESULTS:The latency of the rats in searching for the underwater platform in model group was significantly longer than that in control group from the 2nd day (P<0.01) in the MWM experiment, the target quadrant swimming time was significantly shortened (P<0.01), and the times of crossing the platform were also significantly reduced (P<0.01). The results of immunohistochemistry, Western blot and immunofluorescence experiments showed that the expression of synaptophysin was obviously reduced in the CA1 region of hippocampus and PFC in model group as compared with control group (P<0.05 or P<0.01).CONCLUSION:The reduction of spatial memory ability in PTSD rats may be associated with the decreased expression of synaptophysin in the CA1 region of hippocampus and PFC.  相似文献   

14.
AIM: To investigate the effects of TNF-α induced insulin resistance (IR) on INSIG1, INSIG2, SCAP and SREBP expressions in mice. METHODS: Male C57BL/6J mice were randomly divided into 4 groups. The mice were given an intraperitoneal injection of TNF-α (6 μg·kg-1·d-1; 3 μg·kg-1·d-1 and 1 μg·kg-1·d-1) and saline (NC group) twice daily for 7 d. The insulin sensitivity and glucose metabolism in awaken mice were evaluated by intravenous glucose tolerance test (IVGTT). The mRNA expression and protein levels of gene were measured by RT-PCR and Western blotting. RESULTS: After TNF-α treatment, fasting blood glucose (FBG), plasma insulin and free fatty acids (FFA) were significantly elevated in TNF-α (6 μg·kg-1·d-1) group compared to NC, TNF-α (1 μg·kg-1·d-1) and TNF-α (3 μg·kg-1·d-1) groups (P<0.01 and P<0.05, respectively). There was a lower glucose tolerance in TNF-α (6 μg·kg-1·d-1) group than that in other three groups during IVGTT. In TNF-α (6 μg·kg-1·d-1) group, the insulin release of glucose-stimulation was higher than that in NC and TNF-α (1 μg·kg-1·d-1) groups (P<0.01 and P<0.05). The INSIG2 mRNA expression of adipose tissues in TNF-α (6 μg·kg-1·d-1) group was significantly increased compared with NC group (P<0.01), and INSIG2 protein levels were also increased (P<0.05). In TNF-α treatment mice, SCAP mRNA level in adipose tissues was significantly up-regulated than that in the controls (P<0.05). The mRNA expressions of INSIG1 and SREBP1 in two groups were not significantly changed (P>0.05). CONCLUSION: In TNF-α induced insulin resistance, INSIG2 and SCAP may be involved in the pathways of lipid metabolism.  相似文献   

15.
AIM: To observe the treatment effect and its immune regulation of human amnion epithelial cells (hAECs) on Alzheimer's disease (AD)-like pathology rat model. METHODS: The hAECs were isolated from amnion with trypsin digestion, and the phenotype of hAECs was analyzed by flow cytometry. SD rats (n=48) were randomly divided into sham control group, model group, medium group and hAECs group. AD-like pathology rat model was induced by bilateral intraventricular injection of lipopolysaccharide (LPS). hAECs (5×105) were injected into the hippocampus of the AD-like pathology rats. At 2 weeks after transplantation, the animals were tested by Morris water maze to observe the function of learning and memory. The pathological change of the brain was observed by HE staining. The expression of amyloid β-protein 42(Aβ42) and Tau protein and the level of acetylcholine (ACh) in the injury brain were determined by immunohistochemistry. The survival and differentiation of hAECs in the hippocampus were measured by immunofluorescent technique. The percentages of lymphocyte subsets in the peripheral blood mononuclear cells were analyzed by flow cytometry. The contents of serum cytokines were detected by cytometric bead array. RESULTS: Compared with model group and medium group, hAECs group showed shortened escape latency (P<0.01), increased frequency of going through the platform (P<0.05), reduced loss of hippocampal neurons, decreased expression of Tau protein and Aβ42 in the hippocampus (P<0.05), increased ACh level in the hippocampus (P<0.05), decreased percentages of Th1 and Th17 subsets, increased percentages of Th2 and Treg cells (P<0.05), decreased concentrations of IFN-γ and IL-2 in the serum, and increased concentration of IL-4(P<0.05). CONCLUSION: hAECs improve the cognitive learning and memory function and alleviate pathologic damage of hippocampus through immune regulation in AD-like pathology rats.  相似文献   

16.
AIM: To investigate the effect of nimodipine on the neurodegeneration induced by aluminum overload.METHODS: One hundred and five mice were divided into control group, aluminum overload group and aluminum overload+nimodipine group. The mice was intracerebroventricularly injected with aluminum chloride solution (2 μL of 0.25%) once a day for 5 days to induce neurodegeneration in aluminum overload+nimodipine group and aluminum overload group. The mice in control group were injected with artificial cerebrospinal fluid (2 μL) in the same way. Nimodipine was administered by intragastric gavage (80 mg/kg) twice a day for 30 days in aluminum overload+nimodipine group. The normal saline was administered in the same way in control group and aluminum overload group. Histological observation was performed to evaluate the neural damage. The ability of learning and memory was detected by step-down test. Heme oxygenase (HO) activity was measured by spectrophotometer. The expression of HO-1 was determined by Western blotting and immunohistochemistry. The levels of aluminum and iron were examined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). RESULTS: Compared with control group, the ability of learning and memory was significantly impaired (P<0.05), and neurons were seriously damaged in aluminum overload group. HO-1 protein expression, HO activity and iron level in aluminum overload group were significantly increased (P<0.05). Compared with aluminum overload group, the impaired ability of learning and memory was significantly improved (P<0.05) and neural damage was ameliorated in aluminum overload+nimodipine group. HO-1 protein expression, HO activity and iron level in aluminum overload+nimodipine group were significantly decreased (P<0.05).CONCLUSION: Nimodipine relieves the neurodegeneration induced by aluminum overload through inhibiting the expression of HO-1 and keeping the homeostasis of iron.  相似文献   

17.
18.
AIM: To study the influences of vitamin E (Vit-E) on the mtDNA damage and Ca2+ homeostasis in hippocampus and antioxidative ability in aging brain induced by D-galactose.METHODS: D-galactose (1 000 mg·k-1·d-1 ) was injected into mice hypodermically for 8 weeks to induce aging animal model, and Vit-E (100 mg·kg-1; 250 mg·kg-1) was administered for 6 weeks by ig at the 3rd week of making model. After Vit-E treatment for 8 weeks, water maze test was used to determine the ability of mice’s learning and memory. The activities of glutathione peroxidase (GSH-Px) and succinate dehydrogenase (SDH), the content of nitric oxide (NO) and activity of nitric oxide synthase (NOS) in the brain tissue were detected separately. Fura-2/AM, double-wave-length fluorospectrophotometer and PCR method were used to measure the concentration of calcium ion and mtDNA mutation in the hippocampus cells.RESULTS: Administration of Vit-E improved significantly the ability of learning and memory in model mice, inhibited the activity of NOS and decreased the amount of NO, and increased the activities of GSH-Px and SDH respectively in brain tissues, decreased the concentration of calcium ion (P<0.01, P<0.05), and prevented the damage of mtDNA in hippocampus.CONCLUSION: Vit-E can enhance the antioxidative ability, regulate the homeostasis of Ca2+ and inhibit the damage of mtDNA caused by oxidative stress in aging brain, and improve the ability of learning and memory in aging mice.  相似文献   

19.
AIM To investigate the effect of hyperbaric oxygen (HBO) on synaptic damage of hippocampal neurons in APP/PS1 transgenic (TG) mice and its possible mechanism. METHODS The 6-month-old male APP/PS1 TG mice were randomly divided into TG group, HBO group and cAMP response element binding protein (CREB) inhibitor H89 group, with 10 mice in each group. Ten male wild-type (WT) C57BL/6 mice of the same age were used as negative control group (WT group). The mice in HBO and H89 groups were treated with HBO for 6 cycles, while the mice in WT group and TG group were not treated. The learning and memory abilities were observed by Morris water maze. The nesting ability of the mice was detected by nesting test. The Nissl bodies in hippocampal neurons were observed by Nissl staining. The mRNA expression of CREB and brain-derived neurotrophic factor (BDNF) in hippocampus was detected by real-time PCR. The protein levels of synapsin (SYN), postsynaptic density protein 95 (PSD95), growth-associated protein 43 (GAP43), CREB, phosphorylated CREB (p-CREB) and BDNF in the hippocampus were determined by Western blot. RESULTS Compared with WT group, the learning and memory abilities of the mice in TG group were signilficantly reduced (P<0.05). In addition, the nesting score, the number of Nissl bodies in the hippocampal neurons, the mRNA expression of CREB and BDNF, and the protein levels of SYN, PSD95, GAP43, p-CREB and BDNF were also decreased significantly (P<0.05). Compared with TG group, the learning and memory abilities of the mice in HBO group were improved (P<0.05). Meanwhile, the nesting scores of the mice were significantly increased (P<0.05), the neurons in the hippocampus were arranged neatly, and the number of Nissl bodies, the relative mRNA expression of CREB and BDNF,and the protein levels of SYN, PSD95, GAP43, p-CREB and BDNF were also increased significantly (P<0.05). Compared with HBO group, the mice in H89 group had poor learning and memory abilities, lowered nesting scores and decreased number of Nissl bodies. Futhermore, the relative mRNA expression of CREB and BDNF, and the protein levels of SYN, PSD95, GAP43, p-CREB and BDNF were also decreased significantly (P<0.05). CONCLUSION HBO improves the learning and memory abilities of APP/PS1 TG mice, and its mechanism may be related to activating the CREB/BDNF signaling pathway to reduce synaptic damage of hippocampal neurons in mice.  相似文献   

20.
AIM: To investigate the effects of hydrogen on the memory damage caused by chronic hypoxia-hypercapnia in rats. METHODS: Twenty-four SD rats trained by eight-arm radial maze test were randomly divided into 3 groups:normal control group (NC), hypoxia-hypercapnia+saline group (MS) and hypoxia-hypercapnia+ hydrogen group (MH). The rats in the latter 2 groups were placed in a closed cabin for 8 h/day,6 days/week and lasted for 4 weeks, in which O2 was 9%-11% and CO2 was 5%-6%. In every time after the animals were out of the cabin, the MS rats were intraperitoneally injected with saline (5 mL/kg) and the MH rats were intraperitoneally injected with hydrogen solution at the same dose. The learning and memory function, the activity of superoxide dismutase (SOD), the content of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) were examined after the cabin training. The ultramicrostructures of hippocampus were also observed. RESULTS: (1) Compared with NC group, the number of working memory errors, the total errors, the content of hippocampus 8-OHdG and serum MDA in MS and MH groups were higher and the activity of serum SOD was lower (P<0.05). The hippocampus structure was destroyed and some degree of edema and more apoptosis in the neurons were obserued in MS group and MH group. (2) Compared with MS group, the number of working memory errors(WME), the total errors, the content of hippocampus 8-OHdG and serum MDA were lower and the activity of serum SOD was higher in MH group (P<0.05). In MH group, the morphology of hippocampus structures kept nearly normal arrangement and the only mild edema and fewer apoptosis in the neurons were found. CONCLUSION: Hydrogen may attenuate chronic hypoxia-hypercapnia-induced memory damage in rats by inhibiting apoptosis of the neurons and decreasing detrimental free radicals reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号