首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present status of pyrethroid resistance in vectors of malaria; Anopheles culicifacies and Anopheles subpictus, was tested in two malarious Districts, Anuradhapura and Trincomalee, of Sri Lanka. Both species were resistant to permethrin and susceptible to cypermethrin and cyfluthrin. An. subpictus were resistant to deltamethrin. λ-Cyhalothrin and etofenprox resistance was shown only by Anuradhapura An. subpictus. Although there were no differences among the populations for esterase and glutathione S-transferase activities, increased monooxygenase levels were found among Trincomalee populations. The voltage-gated sodium channel gene, the target site gene of pyrethroids, was partially sequenced to screen for mutations previously associated with insecticide resistance. The classic leucine to phenylalanine substitution, TTA to TTT, was detected in An. subpictus. It appears that both kdr type and monooxygenase resistance underlie pyrethroid resistance in these two malaria vectors of Sri Lanka.  相似文献   

2.
Unprecedented incidence of dengue has been recorded in Sri Lanka in recent times. Source reduction and use of insecticides in space spraying/fogging and larviciding, are the primary means of controlling the vector mosquitoes Aedes aegypti and Ae. albopictus in the island nation. A study was carried out to understand insecticide cross-resistance spectra and mechanisms of insecticide resistance of both these vectors from six administrative districts, i.e. Kandy, Kurunegala, Puttalam, Gampaha, Ratnapura and Jaffna, of Sri Lanka. Efficacy of the recommended dosages of frequently used insecticides in space spraying and larviciding in dengue vector control programmes was also tested.  相似文献   

3.
The western flower thrips, Frankliniella occidentalis Pergande (Thysanoptera: Thripidae) is a serious pest on a wide range of crops throughout the world. F. occidentalis is difficult to control with insecticides because of its thigmokinetic behaviour and resistance to insecticides. Pesticide resistance can have a negative impact on integrated pest management programmes with chemical control as one of the components. Resistance to a number of different insecticides has been shown in many populations of F. occidentalis. This flower thrips has the potential of fast development of resistance owing to the short generation time, high fecundity, and a haplodiploid breeding system. The mechanisms conferring insecticide resistance in insects can be divided into four levels. First, an altered behaviour can aid the insect to avoid coming into contact with the insecticide. Second, a delayed penetration through the integument will reduce the effect of the insecticide at the target site. Third, inside the insect, detoxification enzymes may metabolise and thereby inactivate the insecticide. Fourth, the last level of resistance mechanisms is alterations at the target site for the insecticide. Knowledge of resistance mechanisms can give information and tools to be used in management of the resistance problem. Recently, studies have been carried out to investigate the underlying mechanisms conferring resistance in F. occidentalis. It appears that resistance in F. occidentalis is polyfactorial; different mechanisms can confer resistance in different populations and different mechanisms may coexist in the same population. Possible resistance mechanisms in F. occidentalis include: reduced penetration, detoxification by P450-monooxygenases, esterases and glutathione S-transferases, and alterations of acetylcholinesterase, the target site for organophosphate and carbamate insecticides. Target site resistance to pyrethroids (knockdown resistance) may also be a resistance mechanism in F. occidentalis.  相似文献   

4.
Insecticide resistance in the bedbug Cimex hemipterus was investigated using 4211 bedbugs collected from three districts of Sri Lanka. Insecticide bioassays were carried out with discriminating dosages of deltamethrin, permethrin, DDT, malathion, and propoxur. Activity levels of insecticide metabolizing enzymes and the insecticide target site acetylcholinesterase were monitored using biochemical assays. Percentage survivals after DDT, malathion, and propoxur exposure were 41-88%, 18-64%, and 11-41%, respectively. For deltamethrin and permethrin, KT50/KT90 (time to knock-down 50%/90% of the population) values were 0.5-24/1.0-58 and 1.3-10/2.5-47 h, respectively. Both elevated esterase and malathion carboxylesterase mechanisms were present in bedbug populations. Monooxygenase levels were heterogeneous. Organophosphate and carbamate target site acetylcholinesterase, was insensitive in 29-44% of the populations. High DDT resistance was probably due to glutathione S-transferases. Malathion carboxylesterases are mainly responsible for high malathion resistance. High tolerance to both DDT and pyrethroids suggests the presence of ‘kdr’ type resistance mechanism in one population.  相似文献   

5.
Malathion resistance was first detected in Sri Lankan Anopheles culicifacies in limited regions of the island in 1982. The frequency of resistance has been increasing slowly since then, but is not yet high enough to be considered an operational problem. Malathion toxicity is synergised in the resistant population by triphenyl phosphate, and metabolism studies suggest the involvement of a carboxylesterase enzyme. The spread of general esterase activity in individuals in an area of the island where resistance is present is wider than that in a totally malathion-susceptible area. However, the frequency of individuals with high esterase activity does not correlate well with resistance in the two field populations studied in detail. This suggests that a qualitative rather than a quantitative change in esterase activity may be involved in this resistance. Extrapolation from similar qualitatively changed carboxylesterases in other anophelines leads us to predict that the resistance in A. culicifacies will be malathion specific and inherited as a single semidominant characteristic.  相似文献   

6.
Insecticide resistance is an ever escalating problem worldwide in many pest populations and numerous cases of insecticide resistance are polygenic. Therefore, it is important to investigate the types of interactions that occur between insecticide resistance loci as this will dictate the level of resistance (and effectiveness of a chemical control strategy). Interactions also play a role in the evolution and/or maintenance of multigenic resistance in the field. Given that a limited number of mechanisms confer resistance, it might be possible to establish general rules for interactions between mechanisms. Several variables might dictate the type of interaction, such as the nature of the resistance mechanisms, genotype, etc. Interactions can be synergistic, antagonistic or additive. Based on this literature review, the most common interaction of multiple homozygous resistance loci is synergistic and additive when loci are heterozygous. When one locus is homozygous and the other locus is heterozygous the most common interaction was synergistic, although very few studies have examined this type of interaction. Possible factors that drive these interactions, exceptions to the trends, and future research needs are discussed.  相似文献   

7.
The following possible methods of minimising the risks of resistance are considered: (a) adjustment of the dosage and frequency of spraying so that resistance genes are effectively recessive; (b) detection and eradication of new foci of resistance before they have a chance to spread; (c) spraying a ‘mosaic’ of unrelated insecticides with the intention that immigrants from one sector of the mosaic to another will ‘dilute’ the frequency of resistance genes; (d) re-introduction of susceptibility genes into the progeny of wild females by the release of heterozygous males with resistance genes translocated on to their Y chromosome so that they are protected from insecticidal killing but will pass susceptibility to their female progeny; (e) replacement of a resistant by a susceptible population by means of a negatively heterotic system such as bidirectional cytoplasmic incompatibility. A plausible case can be made for each of these methods based on theoretical models and appropriate assumptions. However, an assessment of whether any of them will really beof any value depends on the answers to certain questions in the field. Therefore field projects have been initiated on Anopheles culicifacies in Sri Lanka and Pakistan, Culex quinquefasciatus in Tanzania and Anopheles arabiensis in Sudan. The results so far are summarised.  相似文献   

8.
Insecticide sprays were applied to Myzus persicae (Sulzer) populations carrying various combinations of three insecticide resistance mechanisms (esterase-based metabolic resistance and two target site mechanisms, known as MACE and kdr), supported on host plants growing in field simulator cages. The study showed that MACE confers extreme resistance to pirimicarb and triazamate (carbamate insecticides) but not to deltamethrin + heptenophos (16 + 1) (Decisquick) or dimethoate (an organophosphorus insecticide). Resistance to dimethoate depends solely on levels of esterase-based resistance, while resistance to Decisquick depends on kdr and esterase. None of the four insecticides is effective against aphids carrying MACE combined with extreme esterase-based resistance. This knowledge, in association with current monitoring of the mechanisms, will play an important role in making decisions on insecticide use against M persicae in the UK. © 1999 Society of Chemical Industry  相似文献   

9.
BACKGROUND: Among target pests of the insecticide spinosad is the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). In Cyprus, spinosad has been sporadically used since its registration in 2002, whereas in Greece its use has been very limited since its registration in 2004, particularly in biological olive cultivars in Crete. By contrast, in California it has been the only insecticide used against the olive fruit fly since its registration in 2004. This study aimed at examining the resistance status of the olive fruit fly to spinosad. RESULTS: Populations from California, Greece and Cyprus, plus a laboratory population, were tested. Bioassays were performed by oral or topical application of different concentrations of the insecticide. Cypriot populations demonstrated no resistance as compared with that of the laboratory population. Among the Greek populations, only one from Crete demonstrated a fourfold increase in resistance, whereas five populations from California demonstrated a 9–13‐fold increase. CONCLUSION: The observed resistance increase was associated with spinosad applications in the respective areas. These values are relatively low and do not yet pose a serious control problem in the field. However, the observed variation documents that spinosad tolerance has increased in areas where the insecticide has been more extensively used. Copyright © 2010 Society of Chemical Industry  相似文献   

10.
Widespread use of Bt crops for control of lepidopterous pests has reduced insecticide use and provided the tarnished plant bug the opportunity to become a serious pest on mid-South cotton. Organophosphate insecticides have predominantly been used against plant bugs in recent years due to the reduced efficacy of other insecticides. In this study, a biochemical approach was developed to survey enzymatic levels associated with organophosphate resistance levels in field populations of the tarnished plant bug. Forty-three populations were collected from the delta areas of Arkansas, Louisiana, and Mississippi. Three esterase substrates and one substrate each of glutathione S-transferase (GST) and acetylcholinesterase (AChE) were used to determine corresponding detoxification enzyme activities in different populations. Compared to a laboratory susceptible colony, increases up to 5.29-fold for esterase, 1.96-fold for GST, and 1.97-fold for AChE activities were detected in the field populations. In addition to the survey of enzyme activities among the populations, we also examined the susceptibility of major detoxification enzymes to several inhibitors which could be used in formulations to synergize insecticide toxicity against the target pests. As much as 52-76% of esterase, 72-98% of GST, and 93% of AChE activities were inhibited in vitro. Revealing variable esterase and GST activities among field populations may lead to a better understanding of resistance mechanisms in the tarnished plant bug. This study also reports effective suppression of detoxification enzymes which may be useful in future insecticide resistance management program for the tarnished plant bug and other Heteropteran pests on Bt crops.  相似文献   

11.
Beet armyworm, Spodoptera exigua is a major insect pest of vegetables in China, and has been reported to develop resistance to many broad-spectrum insecticides. Recently registered chlorantraniliprole provides a novel option for control of this pest resistant to other conventional insecticides. The susceptibilities of field collected populations were measured by diet incorporation assay with neonate, obvious variation of susceptibility was observed among the 18 field populations with LC50 values varying from 0.039 to 0.240 mg/liter. Moderate resistant level was discovered in 8 of 18 field populations, other 8 populations had become low level tolerance to chlorantraniliprole, and only one population in all the field colonies remained susceptible. Biochemical assays were performed to determine the potential mechanisms involved in tolerance variation. Field populations displayed varied detoxification enzyme activities, but the regression analysis between chlorantraniliprole toxicities and enzyme activities demonstrated each field population might have specific biochemical mechanisms for tolerance. Artificial selection in laboratory with chlorantraniliprole was carried out, 23 generations of continuous selections resulted in 11.8-fold increase in resistance to chlorantraniliprole, and 3.0-fold and 3.7-fold increases in mixed function oxidase and esterase, respectively. Compared with the susceptible strain kept in laboratory the selection strain had developed 128.6-fold resistance to this insecticide. Synergism assays showed the detoxification enzymes might not involved in the resistance observed in field collected populations and the selected strain.  相似文献   

12.
The rice stem borer, Chilo suppressalis (Walker), an important insect pest of rice in China, has developed resistances to several classes of insecticides in field. In order to investigate multiple resistance mechanisms, synergistic tests were conducted with the Ruian (RA) population and Lianyungang (LYG) population, two representative populations to different insecticides. Results showed that diethyl maleate (DEM), S,S,S-tributyl phosphorotrithioate (DEF) and piperonyl butoxide (PBO), had no significant synergistic or inhibitory effect on the high level of resistance to monosultap (313.4-fold) and moderate level to chlorpyrifos (36.9-fold) in Ruian field population from the year 2011 (RA11). DEF significantly synergized the activity of triazophos in RA11 population (536.8-fold), with synergism ratio of 1.92. DEF and PBO significantly suppressed 43.3% and 40.4% of resistance to fipronil in RA11 population (48.4-fold), respectively, with the synergistic ratios of 1.76 and 1.69. When pretreated with PBO, the activity of deltamethrin against RA11 population were significantly synergized, with synergism ratio of 9.57, and with reducing resistance levels from 152.5- to 15.9-fold. The results of this study indicated that resistance to several classes of insecticide among the field populations of C. suppressalis might be provided by the combination of the multiple resistance mechanisms. Metabolic resistance mechanism might be the major reason for the evolution for resistance to deltamethrin and fipronil, while resistance to monosultap, triazophos and chlorpyrifos is not associated with metabolic resistance.  相似文献   

13.
Only a few of the registered insecticides against Cydia pomonella L. are still effective in areas where insecticide resistance has emerged in this pest. Resistance mechanisms are multiple, and their lone or cumulative effects in a single population are not completely understood. A detailed estimation of resistance spectrum is still required to define the suitable insecticides to use against a given population. The efficacy of ten insecticides was therefore investigated together with the resistance mechanisms expressed in four laboratory strains and 47 field populations of C. pomonella from five countries. Bioassays were performed using topical applications of diagnostic concentrations on diapausing larvae, and resistance mechanisms were analysed on adults emerging from control insects. All populations exhibited a reduced susceptibility to at least one insecticide when compared with the susceptible laboratory strain. Cross-resistances were observed between azinphos-methyl or phosalone and more recent compounds such as spinosad and thiacloprid. Resistances to azinphos-methyl, diflubenzuron, spinosad, tebufenozide and thiacloprid were significantly correlated with mixed-function oxidase activity, while increased glutathione-S-transferase and reduced non-specific esterase activities were correlated with resistance to azinphos-methyl and emamectin, respectively. Conversely, resistances to azinphos-methyl, tebufenozide and thiacloprid were negatively correlated with increased esterase activity. None of the observed mechanisms explained the loss of susceptibility of populations to chlorpyrifos-ethyl, and no significant correlation was detected between resistance to deltamethrin and the presence of the kdr mutation. The suitability of such non-target instars to monitor insecticide resistance in field populations is discussed.  相似文献   

14.
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an economically important pest of a wide range of crops grown throughout the world. Insecticide resistance has been documented in many populations of WFT. Biological and behavioural characteristics and pest management practices that promote insecticide resistance are discussed. In addition, an overview is provided of the development of insecticide resistance in F. occidentalis populations and the resistance mechanisms involved. Owing to widespread resistance to most conventional insecticides, a new approach to insecticide resistance management (IRM) of F. occidentalis is needed. The IRM strategy proposed consists of two parts. Firstly, a general strategy to minimise the use of insecticides in order to reduce selection pressure. Secondly, a strategy designed to avoid selection of resistance mechanisms, considering cross-resistance patterns and resistance mechanisms.  相似文献   

15.
BACKGROUND: A wide range of methods has been used for monitoring resistance in Cydia pomonella L. However, the results from specific tests are not always concordant and they generate doubts over the extent to which the data represent the field situation. Therefore, the variability in the expression of resistance mechanisms and in resistance ratios between developmental stages and their reliability in a field situation were studied. RESULTS: Neonate larvae showed the highest insecticide resistance, except to spinosad. Resistance ratios were from 2 to 9.5, depending on the insecticide and the strain tested, when compared with the susceptible strain. Spinosad exhibited the highest resistance ratio for diapausing larvae (4.4, 12.2 and 4.4 for Raz, Rdfb and RΔ strains, respectively). Enzymatic ratios were higher in adults than in neonates or diapausing larvae, and the highest enzymatic ratios were observed for mixed‐function oxidases (7.3–36.7 for adults of resistant strains). CONCLUSIONS: The sensitivity of different instars depends on the insecticides used, and there is a differential expression of resistance mechanisms between stages. For the population considered in this study, tests on neonates provided the most consistent results to the field situation, but adult response to chlorpyrifos‐ethyl and azinphos‐methyl in the laboratory was also consistent with the field results. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
Because of their special behaviour, physiology and close relationship with humans, mosquitoes act as one of the most important vectors of human diseases, such as filariasis, Japanese encephalitis, dengue and malaria. The major vector mosquitoes are members of the Culex, Aedes and Anopheles genera. Insecticides play important roles in agricultural production and public health, especially in a country with a huge human population, like China. Large quantities of four classes of insecticides, organochlorines, organophosphates, carbamates and pyrethroids, are applied annually to fields or indoors in China, directly or indirectly bringing heavy selection pressure on vector populations. The seven major species of vector mosquito in China are the Culex pipiens L. complex, C. tritaeniorhynchus Giles, Anopheles sinensis Wied., A. minimus Theobald, A. anthropophagus Xu & Feng, Aedes albopictus (Skuse) and Ae. aegypti L., and all have evolved resistance to all the above types of insecticide except the carbamates. The degree of resistance varies among mosquito species, insecticide classes and regions. This review summarizes the resistance status of these important vector mosquitoes, according to data reported since the 1990s, in order to improve resistance management and epidemic disease control, and to communicate this information from China to the wider community.  相似文献   

17.
Weedy rice (Oryza sativa f. spontanea) is a notorious weed that infests paddy fields worldwide. Understanding the morphological variation pattern of this weed in a given rice‐planting region will facilitate its effective management and use. Here, 29 populations, covering nearly all the rice‐cultivation regions in Sri Lanka, were characterized in a common‐garden cultivation experiment that was based on 13 morphological traits. The variation level of the weedy rice populations was considerably high, as estimated by the Simpson and Shannon–Weaver indices. An ANOVA revealed a higher level of among‐population variation than within‐population variation. Seed shattering was the most variable trait and the seed length and width were the least variable traits, as indicated by their coefficient of variation. The results of the principal component analysis, in which the first two principal components represented 57.5% of the total variation, indicated the important role of such traits as plant height, seed weight and number of tillers and panicles in the divergence of the weedy rice populations. However, the variation was not associated with their geographical locality. Knowledge of such a morphological variation pattern provides opportunities to design strategic management methods for weedy rice control in Sri Lanka, in addition to the proper use of it as a genetic resource for rice improvement.  相似文献   

18.
The massive use of DDT as an insecticide between 1940 and 1970 has resulted in the emergence of a resistant population of insects. One of the main metabolic mechanisms developed by resistant insects involves detoxification enzymes such as cytochrome P450s. These enzymes can metabolise the insecticide to render it less toxic and facilitate its elimination from the organism. The P450 Cyp6g1 was identified as the major factor responsible for DDT resistance in Drosophila melanogaster field populations. In this article, we review the data available for this gene since it was associated with resistance in 2002. The knowledge gained on Cyp6g1 allows a better understanding of the evolution of insecticide resistance mechanisms and highlights the major role of transposable elements in evolutionary processes. © 2016 Society of Chemical Industry  相似文献   

19.
Ten populations of Radopholus similis from various locations and one population of Radopholus sp. from Indonesia were tested for their reproductive fitness and specific pathogenicity on Musa AAA, Cavendish cv. Poyo under controlled experimental conditions in a constant environment chamber. In addition, five of these populations were tested on Musa AAA, Ibota cv. Yangambi. Reproductive fitness of the populations tested on the two cultivars, measured as the ratio of the final number of nematodes per root system (Pf) to the number of nematodes inoculated (Pi), differed significantly. Greatest fitness was observed among R. similis populations collected from banana in different African countries (Cameroon, Uganda and the Ivory Coast) and one population from arecanut in Sri Lanka. In contrast, a population from tea in Sri Lanka and the population of Radopholus sp. from turmeric in Indonesia were the least fit. Specific pathogenicity was estimated at 8 weeks and 12 weeks after inoculation using three plant growth parameters: fresh root weight, fresh shoot weight and plant height, compared to uninfected control plants. Reduction in plant root weight was the best indicator of pathogenicity. While the R. similis populations from Uganda and the Ivory Coast were highly pathogenic, other populations with great reproductive fitness (i.e. isolates from Cameroon and Sri Lanka) did not significantly reduce root weight. In cv. Poyo, no linear correlation was found between final numbers of nematodes per gram of root (Pf) and the decrease of root weight.  相似文献   

20.
Imidacloprid is a key insecticide universally used for control of brown planthopper (BPH), and its resistance had been studied previously with laboratory selected strains. When the failure in field control happened in China in 2005, imidacloprid resistance in field populations of BPH (AQ, NJ, GL and WJ) was monitored and studied. The results demonstrated that the BPH of field populations had developed moderate to high level of resistance to imidacloprid. This resistance is attributed mainly to the enhanced P450 monooxygenases detoxification and could be enhanced in the same growing season if the insecticide was sprayed over and over. Further studies revealed that imidacloprid resistant hoppers did not show cross-resistance to all the neonicotinoid insecticides and high level of imidacloprid resistance in BPH was very unstable. Thus, efficient substitute neonicotinoids could be selected and “window control” could be implemented in resistance management. For checking the resistance mutation previously reported in laboratory selected strains, new corresponding target subunit genes were cloned and sequenced, but no mutations were found associated consistently with resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号