首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
烯啶虫胺在水稻和稻田环境中的残留及消解动态   总被引:1,自引:0,他引:1  
采用高效液相色谱-紫外检测器(HPLC-UVD)测定了烯啶虫胺在稻田水、土壤、水稻植株和糙米样品中的消解动态及最终残留。田水样品用二氯甲烷萃取;土壤样品用水提取后经二氯甲烷萃取;水稻植株和糙米样品依次用水、丙酮提取,提取液经液液萃取及柱层析净化;HPLC-UVD检测。当烯啶虫胺在田水和土壤中的添加水平为0.1~5 mg/L和0.1~5 mg/kg,在植株和糙米中的添加水平为0.2~5 mg/kg时,其平均添加回收率在77.2% ~100.3%之间,相对标准偏差 (RSD)在1.9% ~12.9%之间。烯啶虫胺在稻田水、土壤、植株和糙米中方法的定量限(LOQ)分别为0.1 mg/L和0.1、0.2、0.2 mg/kg,检出限(LOD)分别为0.04 mg/L和0.04、0.08、0.08 mg/kg。温室模拟消解动态试验结果显示,以推荐使用高剂量的20倍(有效成分1 500 g/hm2) 施药,烯啶虫胺在稻田水、土壤以及水稻植株中的消解动态规律均符合一级动力学方程,其半衰期分别为0.58、3.31及2.70 d,消解速率较快。最终残留试验表明,于大田分蘖期按推荐使用高剂量的1.5倍(有效成分112.5 g/hm2)分别施药3次和4次,间隔期为7 d,距最后一次施药7 d后采样,糙米中烯啶虫胺的残留量均低于LOD值(0.08 mg/kg)及日本规定的最大残留限量(MRL)值(0.5 mg/kg)。  相似文献   

2.
高效液相色谱法测定稻田样品中喹啉铜残留   总被引:4,自引:2,他引:2  
采用高效液相色谱仪,建立了喹啉铜在稻田水、稻田土壤、水稻植株、稻秆、谷壳和糙米中残留量的检测方法。稻田水、水稻植株、稻秆、谷壳和糙米用乙腈和1 mol/L的盐酸提取,土壤用乙腈和2 mol/L的氢氧化钠提取。稻田水无需净化,其余样品用正己烷和乙腈净化后,采用带有紫外检测器的高效液相色谱仪测定,流动相为V(磷酸盐缓冲液)∶V(乙腈)=60∶40,流速0.8 m L/min,紫外检测波长为250 nm。结果表明:在0.05~5 mg/L范围内,喹啉铜质量浓度与其相对应的色谱峰面积之间呈良好的线性关系,线性方程为y=231.55x-15.064,决定系数(R2)为0.998 5,达极显著水平。在0.05~1 mg/kg添加水平下,稻田水、稻田土壤、水稻植株、稻秆、谷壳和糙米中喹啉铜的平均回收率在83%~103%之间,相对标准偏差(RSD,n=5)在1.5%~6.6%之间。该方法的前处理过程较简单,且准确度、精密度和灵敏度均符合农药残留分析的技术要求。  相似文献   

3.
建立了超高效液相色谱-串联质谱(UPLC-MS/MS)检测稻田土壤、田水、水稻植株、谷壳和糙米样品中速灭威残留的分析方法。样品经乙腈提取及盐析处理后,用乙二胺-N-丙基(PSA)和白炭黑(SiO2·nH2O)净化,UPLC-MS/MS 多离子反应监测模式下测定。结果表明,在0.005~1 mg/L 范围内,速灭威的仪器响应值与进样质量浓度间呈良好线性关系,相关系数(r)大于0.98。当添加水平为0.01~5 mg/kg(田水样品中为0.005~1 mg/L)时,速灭威在不同样品基质中的平均回收率为76.7% ~107.8%,相对标准偏差(RSD)为1.7% ~8.5%,最小检出量(LOD)均为2.0×10-13g,最低检测浓度(LOQ) 除在田水样品中为0.005 mg/L外,其余均为0.01 mg/kg。当按推荐剂量的1.5倍(有效成分45 g/hm2)分别施药2次和3次后,采用所建方法测得距最后一次施药10、14和21 d采收的糙米样品中速灭威的最终残留量均为未检出(低于0.01 mg/kg)。  相似文献   

4.
采用高效液相色谱-串联质谱(HPLC-MS/MS)建立了水稻中多杀霉素的残留分析方法。样品经乙腈提取,乙二氨基-N-丙基硅烷(PSA)和石墨化碳黑(GCB)净化,HPLC-MS/MS检测。结果表明:多杀霉素A在0.006 ~1.2 mg/L范围内线性关系良好,相关系数(R2)为0.990 5;多杀霉素D在0.001~0.2 mg/L范围内线性关系良好, R2 为0.994 9。多杀霉素A和D的检出限(LOD)在田水中均为0.001 mg/L,在稻田土壤、水稻植株、糙米、稻壳和稻杆中均为0.005 mg/kg;多杀霉素A和D的定量限(LOQ)在田水中均为0.005 mg/L,在稻田土及各水稻基质中分别为0.06和0.01 mg/kg。在添加水平为0.005~6.0 mg/kg范围内,稻田土壤、田水及水稻各基质中多杀霉素A和D的平均回收率为72.9%~107.9%,相对标准偏差( RSD )为1.7%~13.5%。采用该方法对多杀霉素在田间水稻中的消解动态和最终残留进行了测定。结果表明,多杀霉素在稻田土壤、田水和水稻植株样品中的消解均符合一级动力学方程,半衰期分别约为7.5、1.2和 4.8 d,属于易降解农药。  相似文献   

5.
研究了稻田施用氯氟吡氧乙酸后,其在水稻植株、糙米、稻壳、稻田土壤和田水中的残留动态。样品采用氢氧化钠-甲醇溶液振荡提取,二氯甲烷液液分配,甲酯化后经气相色谱-电子捕获检测器(GC-ECD)测定。结果表明:氯氟吡氧乙酸在水稻植株、稻田土壤、田水、糙米和稻壳中的平均 回收率在85.5% ~103.2%之间,相对标准偏差在1.9% ~9.9%之间;其最小检出量为2.0×10-12g, 在植株、糙米、稻壳、土壤和田水中的最低检测浓度分别为 0.005,0.02,0.005,0.002 mg/kg 和0.001 mg/L。2007和2008年在安徽潜山、广东广州两地的田间残留试验结果表明:氯氟吡氧乙酸在水稻植株中的降解半衰期为4.9 ~6.0 d,土壤中为5.5 ~8.6 d,田水中为11.0~13.8 d;收获的糙米中氯氟吡氧乙酸的最终残留量在未检出~0.13 mg/kg之间,均低于其在糙米上的最大残留限量(MRL)值0.2 mg/kg(中国)。建议5%氯氟吡氧乙酸可湿性粉剂用于防治水稻田杂草时,施药剂量按有效成分计不得超过168.8 g/hm2,于返青期施药1次。  相似文献   

6.
采用高效液相色谱(HPLC)法研究了0.2%苄嘧磺隆·丙草胺颗粒剂在稻田环境中的消解动态和最终残留。稻田水、谷壳、稻秆和水稻植株样品用二氯甲烷提取,土壤样品用V(二氯甲烷):V(甲醇)=9:1的混合液提取,糙米样品用V(二氯甲烷):V(甲醇)=7:3的混合液提取后再用二氯甲烷萃取;HPLC法测定。结果表明:当添加水平在0.05~1 mg/kg(或mg/L)时,苄嘧磺隆和丙草胺的平均回收率均在75%~103%之间,相对标准偏差(RSD)为1.6%~13%;苄嘧磺隆和丙草胺的检出限(LOD)均为0.02 mg/L,最小检出量均为4.0×10-10 g,在稻田水中的最低检测浓度(LOQ)均为0.001 mg/L,在稻田土壤中的LOQ均为0.005 mg/kg,在水稻植株、谷壳和糙米中的LOQ均为0.01 mg/kg。在水稻移栽后5~7 d,采用直接撒施法在高剂量(270 kg/hm2,其中苄嘧磺隆有效成分为67.5 g/hm2,丙草胺有效成分为472.5 g/hm2)下施药1次的消解动态试验结果表明:在稻田水、土壤和水稻植株中,苄嘧磺隆的消解半衰期分别为5.06~5.83 d、9.76~11.55 d和4.52~4.82 d,丙草胺的消解半衰期分别为5.94~6.45 d、7.70~9.90 d和4.11~4.89 d。分别按低剂量(180 kg/hm2,其中苄嘧磺隆有效成分为45 g/hm2,丙草胺有效成分为315 g/hm2)和高剂量(270 kg/hm2)施药1次,在正常收获期收获的糙米中均未检出苄嘧磺隆和丙草胺残留。  相似文献   

7.
建立了气相色谱-离子阱质谱(GC-ITMS)检测稻田水、土壤、糙米、稻壳和植株中噻呋酰胺残留的分析方法,通过田间试验研究了噻呋酰胺在稻田中的残留及消解动态。结果表明:在0.03~6 mg/L范围内,噻呋酰胺的进样质量浓度与色谱峰面积间呈良好的线性关系;在添加水平为0.03、0.3和3 mg/L时,噻呋酰胺在田水、土壤、糙米、稻壳和水稻植株中的平均回收率在71%~100%之间,相对标准偏差(RSD)在1.8%~11.4%之间。噻呋酰胺在以上基质中的方法定量限(LOQ)为0.03 mg/kg,检出限(LOD)为0.01 mg/kg。分别用一级动力学方程和二级动力学方程对消解动态试验数据进行了拟合,田水中噻呋酰胺的消解半衰期为2.4~9.2 d,土壤中的为1.8~10.3 d,植株中的为1.3~4.1 d。本研究结果表明,在有效使用剂量不高于169.2 g/hm2,水稻生育期施药次数不超过3次的条件下,稻谷成熟收获时噻呋酰胺在稻谷中的残留量远低于中国国家标准中规定的3 mg/kg。  相似文献   

8.
陈国  朱勇  赵健  杨挺  张艳  吴银良 《农药学学报》2014,16(2):153-158
采用超高效液相色谱-串联质谱(UPLC-MS/MS)方法,研究了乙基多杀菌素中2种主要组分(XDE-175-J和XDE-175-L)在稻田水、土壤和水稻植株中的残留分析及消解动态。土壤和植株样品采用乙腈提取,乙二胺-N-丙基硅烷(PSA)净化;田水样品用0.1%甲酸溶液和乙腈稀释;UPLC-MS/MS分析。结果表明:XDE-175-J和XDE-175-L在田水、土壤和植株中的检出限(LOD)分别为2.5×10-4mg/L和5.0×10-4、0.001 mg/kg,定量限(LOQ)分别为0.001 mg/L和0.002、0.005 mg/kg。当添加水平为0.001~0.5 mg/kg(L)时,乙基多杀菌素在田水、土壤和水稻植株中的平均回收率为83%~102%,相对标准偏差(RSD)为1.9%~6.2%。消解动态试验结果表明:6%乙基多杀菌素悬浮剂(SC)按1.5倍推荐使用高剂量(有效成分40.5 g/hm2)于水稻拔节期施药1次,乙基多杀菌素在田水、土壤及水稻植株中的消解动态规律均符合一级动力学方程,半衰期分别为0.35、6.8和1.1 d;施药21 d后,其在水稻植株和田水中的消解率均在95%以上,在土壤中的消解率为86.1%;属易消解型农药。  相似文献   

9.
BACKGROUND: Pyrazosulfuron ethyl, a new rice herbicide belonging to the sulfonylurea group, has recently been registered in India for weed control in rice crops. Many field experiments revealed the bioefficacy of this herbicide; however, no information is available on the persistence of this herbicide in paddy soil under Indian tropical conditions. Therefore, a field experiment was undertaken to investigate the fate of pyrazosulfuron ethyl in soil and water of rice fields. Persistence studies were also carried out under laboratory conditions in sterile and non‐sterile soil to evaluate the microbial contribution to degradation. RESULTS: High‐performance liquid chromatography (HPLC) of pyrazosulfuron ethyl gave a single sharp peak at 3.41 min. The instrument detection limit (IDL) for pyrazosulfuron ethyl by HPLC was 0.1 µg mL?1, with a sensitivity of 2 ng. The estimated method detection limit (EMDL) was 0.001 µg mL?1 and 0.002 µg g?1 for water and soil respectively. Two applications at an interval of 10 days gave good weed control. The herbicide residues dissipated faster in water than in soil. In the present study, with a field‐soil pH of 8.2 and an organic matter content of 0.5%, the pyrazosulfuron ethyl residues dissipated with a half‐life of 5.4 and 0.9 days in soil and water respectively. Dissipation followed first‐order kinetics. Under laboratory conditions, degradation of pyrazosulfuron ethyl was faster in non‐sterile soil (t1/2 = 9.7 days) than in sterile soil (t1/2 = 16.9 days). CONCLUSION: Pyrazosulfuron ethyl is a short‐lived molecule, and it dissipated rapidly in field soil and water. The faster degradation of pyrazosulfuron in non‐sterile soil than in sterile soil indicated microbial degradation of this herbicide. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
乙草胺在水稻环境中的残留及消解动态   总被引:2,自引:1,他引:1  
采用气相色谱-电子捕获检测器(GC-ECD)测定了乙草胺在水稻植株、稻田水样及土壤中的消解动态和最终残留。水稻和水样样品用二氯甲烷提取,土壤用甲醇提取,经液液分配净化, GC-ECD检测,外标法定量。结果表明:当乙草胺在植株、水样和土壤中的添加量在0.05~1.0 mg/kg 水平时,添加回收率分别为87.2% ~96.8%、94.0% ~99.3%和83.6% ~93.7%,相对标准偏差分别为3.80% ~7.66%、3.46% ~7.54%和2.70% ~6.41%。乙草胺的最小检出量(LOD)为1.29×10-11 g,在稻米中的最低检测浓度(LOQ)为1.3×10-3 mg/kg。乙草胺在植株、水样和土壤中的半衰期分别为1.21 ~2.07 d、1.30 ~2.56 d和1.22 ~2.41 d。施药浓度为推荐剂量1次,在收获的稻米中乙草胺的残留量均低于最低检测浓度。  相似文献   

11.
五氟磺草胺在稻田中的消解动态及残留特性   总被引:3,自引:3,他引:0  
建立了超高效液相色谱-质谱联用检测五氟磺草胺在水稻植株、稻田土壤、田水和糙米中残留的分析方法,结合田间试验研究了五氟磺草胺在稻田环境中的消解及残留特性,并对稻米中五氟磺草胺残留的膳食暴露进行了初步评估。结果表明:在0.005~0.5 mg/L范围内,五氟磺草胺的质量浓度与对应的峰面积间呈良好线性关系,检出限(LOD)为0.001~0.002 mg/kg,定量限(LOQ)为0.003~0.005 mg/kg。在0.005~0.5 mg/kg添加水平下,五氟磺草胺在水稻植株、稻田土壤、田水和糙米中的平均回收率在89%~106%之间,相对标准偏差在2.8%~8.5%之间。浙江、福建和黑龙江2年3地的田间试验表明:0.025%五氟磺草胺颗粒剂在水稻植株、稻田土壤和田水中的消解半衰期分别为1.5~3.3,3.0~4.7和1.6-3.0 d,说明该药剂在稻田环境中消解速率较快。以五氟磺草胺有效成分含量37.5和56.3 g/hm2分别施药1次,于水稻成熟期采样检测,发现其在糙米中的残留量低于0.005 mg/kg,表明其膳食摄入风险很低,该研究结果可为五氟磺草胺风险评估提供一定参考。  相似文献   

12.
水稻田样品中噻呋酰胺残留检测方法研究   总被引:4,自引:2,他引:2  
建立了噻呋酰胺在稻田土壤、稻田水、水稻秸秆、水稻绿色植株、谷壳和糙米中的残留检测方法。稻田水中的噻呋酰胺用LC-18固相萃取小柱分离、净化和富集;稻田土壤、水稻秸秆、谷壳和糙米样品采用V(丙酮):V(石油醚)=1:1超声提取,硅胶柱净化;绿色植株样品用石油醚超声提取,硅胶柱净化。提取净化后的所有样品均采用气相色谱-电子捕获检测器(GC-ECD)测定。结果表明,噻呋酰胺在0.005~10 mg/L范围内线性关系良好,相关系数(r)为0.999 1。其方法检出限分别为:稻田水中0.005 mg/L,土壤、水稻秸秆、绿色稻株、谷壳及糙米中均为0.004 mg/kg。 在水样中添加水平为0.05、0.5和1 mg/L及在土壤、秸秆、绿色稻株、谷壳和糙米中添加水平为0.04、0.4和4 mg/kg时,添加回收率均在86.6%~106.2%范围内,相对标准偏差(RSD)为1.3%~9.9%。  相似文献   

13.
为评价呋虫胺在水稻生态系统中的残留与消解行为,分别在海南、湖南和黑龙江省3地进行了规范残留试验。建立了超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测呋虫胺 (DNF) 及其代谢物1-甲基-3-[(3-四氢呋喃) 甲基]脲 (UF) 与1-甲基-3-[(3-四氢呋喃) 甲基]二氢胍盐 (DN) 在水稻稻株、土壤、田水、糙米和稻壳中残留的分析方法。样品经含体积分数为1%的乙酸水溶液或乙腈溶液提取,QuEChERS方法净化,以甲醇-水混合溶液为流动相梯度洗脱,多反应监测 (MRM) 模式扫描,外标法定量。结果表明:3种分析物的进样浓度与其峰面积之间呈良好线性相关,R2>0.999。DNF、UF和DN在稻株、土壤、田水、糙米和稻壳中的平均回收率在71%~102%之间,在稻株、土壤、田水和糙米中的相对标准偏差 (RSD) 在1.2%~8.3%之间,在稻壳中的RSD在4.4%~20%之间。3种分析物在稻株、土壤、田水、糙米和稻壳中的最低检测浓度 (LOQ) 分别为0.1 mg/kg、0.02 mg/kg、0.01 mg/L、0.02 mg/kg和0.1 mg/kg。DNF、UF和DN的最小检出量分别为1、0.4和4 pg。3种分析物的消解半衰期分别为:DNF在稻株上为0.41~2.7 d,土壤中为1.6~4.2 d,田水中为0.90~2.2 d;DN在稻株上为2.9~13 d,土壤中为64~65 d,田水中为4.2 d;UF在稻株上为0.43~3.1 d。20%呋虫胺悬浮剂以有效成分120~180 g/hm2的剂量于水稻抽穗期施用2~3次,施药间隔期21 d,分别于距末次施药后14 d与21 d采收,呋虫胺在糙米中的残留最大值为0.11 mg/kg,低于中国制定的其在糙米上的最大残留限量标准1 mg/kg。  相似文献   

14.
The metabolism of the insecticide SD 8280 [2-chloro-1-(2,4-dichlorophenyl)vinyl dimethyl phosphate] in rice plants has been examined. When rice seedlings were treated with [14C]-SD 8280 the major metabolite was 1-(2,4-dichlorophenyl)ethanol which was present mainly conjugated with plant carbohydrates. This compound was also the major metabolite present in grain and straw from rice treated with [14C]-SD 8280 and grown to maturity under paddy conditions both in the glasshouse and in an outdoor enclosure. Other metabolites detected in the mature plants included 2-chloro-1-(2,4-dichlorophenyl)vinyl methyl hydrogen phosphate and 2,4-dichloro-benzoic acid, both of which occurred in free and conjugated forms. Paddy water was sampled at intervals after the application of [14C]-SD 8280 and the total residue in the water fell from initial levels of 0.28–1.1 μg/ml (expressed as SD 8280 equivalent) immediately after treatment to <0.01 μg/ml after 2–3 weeks. The total residues in the soil from these experiments were low and did not exceed 0.20 mg/kg (SD 8280 equivalents) through the 0–15 cm profile.  相似文献   

15.
高效液相色谱法测定稻田样品中3种新烟碱类杀虫剂残留   总被引:2,自引:0,他引:2  
采用带紫外检测器的高效液相色谱仪(HPLC-UV),建立了同时检测呋虫胺、吡虫啉和啶虫脒在稻田水、稻田土壤、水稻植株、稻秆、稻壳和糙米中残留量的检测方法。稻田水、稻田土壤、水稻植株、稻秆、稻壳样品用乙腈提取,糙米样品用V(乙腈)∶V(水)=1∶1混合溶液提取。稻田水无需净化,其余样品用弗罗里硅土柱净化。HPLC-UV测定,流动相为V(甲醇)∶V(水)=30∶70,流速采用梯度流速,紫外检测波长为254 nm。结果表明:在0.05~10 mg/L范围内,3种农药的质量浓度与其相对应的色谱峰面积之间呈良好的线性关系,线性方程分别为呋虫胺:y=62.55x+4.039 2(R2=0.999 2);吡虫啉:y=99.968x+7.525 1(R2=0.998 6);啶虫脒:y=97.084x+6.072(R2=0.999 4)。在0.05~2 mg/kg添加水平下,样品中呋虫胺、吡虫啉和啶虫脒的平均回收率在81%~99%之间,相对标准偏差(RSD,n=5)在1.2%~7.9%之间。该方法的前处理过程较简单,且准确度、精密度和灵敏度均符合农药残留分析的技术要求。  相似文献   

16.
建立了超高效液相色谱-串联质谱测定糙米、谷壳、稻秆、土壤和稻田水中环戊草酮残留的分析方法,结合田间试验研究了环戊草酮在稻田中的残留及消解动态。结果表明:在0.01~1 mg/L范围内,环戊草酮的质量浓度与相应的峰面积间呈良好的线性关系。在0.02、0.05和0.5 mg/kg添加水平下,环戊草酮在糙米、谷壳、稻秆、土壤和稻田水样品中的平均回收率在75%~95%之间,相对标准偏差在1.5%~9.5%之间,检出限 (LOD) 为0.01 ng,在糙米、谷壳、稻秆、土壤和稻田水中的最低检出浓度 (LOQ) 为0.02 mg/kg。浙江、山东和湖南3地2年的田间试验表明:环戊草酮在稻秆和土壤中的半衰期分别为4.2~9.0 d和7.0~11.6 d,其消解规律符合一级反应动力学方程。分别以有效成分含量375(低剂量) 和562.5 g/hm2(高剂量)2个剂量施用90 g/L环戊草酮悬浮剂1次,于收获成熟期采样检测发现,环戊草酮在糙米中的最终残留量均小于0.02 mg/kg,该研究结果可为制定环戊草酮在糙米中的最大残留限量值 (MRL) 提供数据支撑。  相似文献   

17.
In order to obtain residue data from the application of the algicide endothal in Italian rice paddy fields, two experiments were carried out using a 50 g kg?1 granular formulation in a small pond and the same granular and two liquid formulations in actual paddy fields of the Italian rice growing area. Endothal decay in the pond water was very rapid, reaching residue levels of 0·01-1·02 mg litre?1 in two days and 0·004-0·01 mg litre?1 at the third day. The muddy soil of the pond was free from measurable endothal residues( <0·02 mg kg?1). In the paddy-field waters, the endothal decay was slower, with an average half-life time of 3·3 days, independently of the type of formulation. The actual residues in water after 6 days ranged from 0·3 to 1·3 mg litre?1 according to the initial amount of product applied, and, consequently, to the initial concentration in water. Rice samples collected at the normal harvest time from the two paddy fields, treated with three different formulations, showed no endothal residue at the minimum detectable level of 0·01 mg kg?1.  相似文献   

18.
嘧草醚在水稻及其环境中的残留   总被引:1,自引:0,他引:1  
采用改良的QuEChERS-高效液相色谱-质谱 (HPLC-MS) 技术,建立了嘧草醚在水稻及其环境中残留量的检测方法。样品经V (乙腈) : V (甲酸) = 199 : 1的混合溶液提取,由十八烷基键合硅胶 (C18) 或C18 + 丙基乙二胺 (PSA) 吸附剂净化。以V (乙腈) : V (0.1%甲酸水溶液) = 70 : 30的混合溶液为流动相,经ZORBAX Eclipse XDB-C18色谱柱分离,采用电喷雾正离子 (ESI+) 模式扫描,HPLC-MS检测,外标法定量。结果表明:在0.01~1 mg/L范围内嘧草醚的峰面积与其质量浓度间线性关系良好,在乙腈、稻田水、土壤、稻株、糙米和稻壳中的相关系数均大于0.99。嘧草醚在稻田水中的检出限 (LOD) 为0.0015 mg/L,定量限 (LOQ) 为0.005 mg/L,在土壤、糙米、稻壳和稻株中的LOD分别为0.003、0.015、0.015 和0.003 mg/kg,LOQ分别为0.01、0.05、0.05 和0.01 mg/kg。在0.005、0.01和0.1 mg/L (或mg/kg) 添加水平下,嘧草醚在稻田水、土壤和糙米中的平均回收率分别为95~109%、92%~106%和89%~107%,相对标准偏差 (RSD) 分别为3.0%~5.0%、1.1%~2.9%和3.1%~3.7%;在稻壳和稻株中的平均回收率分别为95%~102%和93%~107%,RSD分别为1.1%~3.8%和3.5%~9.9%。该方法灵敏度、精密度和准确度均符合农药残留分析要求。  相似文献   

19.
The dissipation of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in a California rice field was investigated. Samples of water, rice plants and mud were collected at intervals for 20 days and analysed for MCPA by established methods for plants and mud, and by a novel method utilising XAD-2 macro-reticular resin for water. Water residues declined to less than 0.01 parts/106 of MCPA within 14 days after application; plant residues declined from 20 parts/106 to 1 part/106 within 20 days; mud residues remained constant at about 0.1 parts/106. Photolysis of dilute aqueous MCPA solutions with either sunlight or an indoor photoreactor yielded 4-chloro-2-methylphenol as the major product; o-cresol and 4-chloro-2-formylphenol also were identified. While photosensitisation was observed with water taken from the rice field, microbial degradation proceeded at an even faster rate. All environmental compartments except air contained measurable amounts (>0.01 parts/106) at some time, but water contained the bulk of the applied MCPA whose eventual disappearance was shown to be due to biological and chemical degradation and not dilution.  相似文献   

20.
采用高效液相色谱-串联质谱法(HPLC-MS/MS),建立了稻田水、土壤、水稻植株、稻秆、稻壳及糙米基质中吡嘧磺隆和苯噻酰草胺的残留分析方法。样品经20 m L V(乙腈)∶V(水)=70∶30的混合溶液提取,提取液用20 mg石墨化碳黑(GCB)与30 mg乙二氨基-N-丙基硅烷(PSA)净化,HPLC-M S/M S检测。吡嘧磺隆在上述各基质中的添加回收率在76%~107%之间,相对标准偏差(RSD)在1.5%~14%之间,定量限为0.004~0.01 mg/kg;苯噻酰草胺的添加回收率在77%~101%之间,RSD在2.4%~13%之间,定量限为0.001~0.01 mg/kg。实现了对两种除草剂同时简便、快速测定的要求。采用该方法测定了26%吡嘧磺隆·苯噻酰草胺水面扩展粒剂在稻田施用后,其有效成分吡嘧磺隆和苯噻酰草胺在实际样品中的残留量。结果表明,两种除草剂均属于易降解农药,在本试验条件下其在糙米中的残留量均低于我国最大残留限量(MRL)(吡嘧磺隆0.1 mg/kg;苯噻酰草胺0.05 mg/kg)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号