首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ginger bagasse from supercritical extraction was hydrolyzed using subcritical water and CO(2) to produce reducing sugars and other low molecular mass substances. Response surface methodology was used to find the best hydrolysis conditions; the degree of hydrolysis and the yield were the two response variables selected for maximization. The kinetic studies of the hydrolysis were performed at 150 bar and temperatures of 176, 188, and 200 degrees C. The higher degree of hydrolysis (97.1% after 15 min of reaction) and higher reducing sugars yield (18.1% after 11 min of reaction) were established for the higher process temperature (200 degrees C). Different mixtures of oligosaccharides with different molecular mass distributions were obtained, depending on the temperature and on the reaction time. The ginger bagasse hydrolysis was treated as a heterogeneous reaction with a first-order global chemical kinetic, in relation to the starch concentration, which resulted in an activation energy of 180.2 kJ/mol and a preexponential factor of 5.79 x 10(17)/s.  相似文献   

2.
The objective was to examine the effect of the additives acetic acid, lactic acid, sodium bicarbonate, sodium chloride, and sodium hydroxide on the hydrolysis of whey protein isolate with subcritical water. A screening experimental design was used to study the effect of temperature, time, and additives. The most influential additive, sodium bicarbonate, along with temperature and time was used in a second experimental design to predict the treatment conditions to maximize the degree of hydrolysis and production of free amino acids. The maximum degree of hydrolysis achieved was 50% at a concentration of 1.24 M sodium bicarbonate, 291 °C, and 28 min. The highest concentration of total amino acids was 83.0 mg/g of whey protein isolate with 0.83 M sodium bicarbonate at 264 °C for 29 min. Compared to water alone, sodium bicarbonate increased the degree of hydrolysis 4-fold and the production of amino acids by 44% and decreased peptides' molecular weight.  相似文献   

3.
Procedures were developed for the simultaneous determination of glyphosate [N-(phosphonomethyl)glycine] and glufosinate [dl-homoalanin-4-yl-(methyl)phosphinic acid] and their major metabolites, aminomethylphosphonic acid (AMPA) and 3-(methylphosphinico)propionic acid (3-MPPA), in rice and soybean sprouts by gas chromatography (GC) equipped with a pulsed flame photometric detector (PFPD). Herbicides and their major metabolites were previously derivatized with TMOA (trimethyl orthoacetate (TMOA) in the presence of acetic acid, and their GC responses versus heating temperature (70-90 degrees C) and heating time (30-120 min) were optimized. It was found that increases in heating temperature and heating time were unfavorable for the derivatization of glyphosate or glufosinate, whereas high temperature and extended reaction time remarkably facilitated that of AMPA and 3-MPPA except at 90 degrees C for an extended reaction time (120 min). Combination of AG1-X8 anion-exchange chromatography with a Florisil cartridge cleanup process was favorable for the GC-PFPD analysis. Four types of derivatives spiked in rice and soybean sprout matrices were eluted, reaching a baseline separation, in a sequence of 3-MPPA, AMPA, glyphosate, and glufosinate within 14 min using a DB-608 capillary column. Recoveries of glyphosate, AMPA, glufosinate, and 3-MPPA (0.5 ppm) spiked in both sample matrices were determined to be 72-81, 71-86, 101-119, and 83-90%, respectively, whereas the coefficient of variation was determined to be <10% in three repeated determinations. The instrumental limits of detection for glyphosate, AMPA, glufosinate, and 3-MPPA in sample matrices were 0.02, 0.03, 0.02, and 0.01 ppm, respectively. The limits of quantification for glyphosate, AMPA, glufosinate, and 3-MPPA in sample matrices were 0.06, 0.10, 0.06, and 0.04 ppm, respectively.  相似文献   

4.
Optimization of conditions for anthocyanin hydrolysis from red wine was investigated using response surface methodology. The aglycon forms of the anthocyanins were quantified by high-performance liquid chromatography with diode array detection. The combined effects of three independent variables, HCl amount, heating temperature, and hydrolysis time, were studied using a 2(3) full-factorial central composite design. Anthocyanin hydrolysis yield depended mainly on the heating temperature and time of hydrolysis. HCl amount was the factor that least influenced the hydrolysis of anthocyanins. From experimental results, the maximum yield of anthocyanidins was reached with 9.8 mL of HCl (32% v/v), a heating temperature of 166.2 °C, and a hydrolysis time of 46.6 min. Five anthocyanidins, namely, delphinidin, cyanidin, petunidin, peonidin, and malvidin, were quantified in red wine. The reliability of the method was confirmed by recovery experiments, performed under optimal conditions. Recoveries indicated that anthocyanidins resisted the hydrolysis conditions.  相似文献   

5.
Human milk fat substitutes (HMFSs) were synthesized by lipozyme RM IM-catalyzed acidolysis of chemically interesterified palm stearin (mp = 58 °C) with mixed FAs from rapeseed oil, sunflower oil, palm kernel oil, stearic acid, and myristic acid in a solvent-free system. Response surface methodology (RSM) was used to model and optimize the reactions, and the factors chosen were reaction time, temperature, substrate molar ratio, and enzyme load. The optimal conditions generated from the models were as follows: reaction time, 3.4 h; temperature, 57 °C; substrate molar ratio, 14.6 mol/mol; and enzyme load, 10.7 wt % (by the weight of total substrates). Under these conditions, the contents of palmitic acid (PA) and PA at sn-2 position (sn-2 PA) were 29.7 and 62.8%, respectively, and other observed FAs were all within the range of FAs of HMF. The product was evaluated by the cited model, and a high score (85.8) was obtained, which indicated a high degree of similarity of the product to HMF.  相似文献   

6.
两步法高效水解水稻秸秆制取木糖和葡萄糖   总被引:1,自引:0,他引:1  
在序批式高压反应釜反应器中,采用两步法研究了水稻秸秆在稀硫酸水溶液中水解为木糖和葡萄糖,系统考察了反应温度、反应时间、水稻秸秆用量和稀酸浓度对水稻秸秆水解反应的影响。实验结果表明:与传统一步法酸水解相比,采用两步法酸水解水稻秸秆,既可以得到很高的木糖产率,又可以得到较高的葡萄糖产率;反应温度、反应时间和酸浓度对水稻秸秆酸水解产物的分布和产率有着重要影响。第一步水解反应中,当底物用量为1.5 g,酸浓度为0.5%wt时,140℃反应120 min,木糖产率高达162.6 g·kg-1;第二步水解反应中,当底物用量为0.5 g,酸浓度为1.0%wt时,180℃反应120 min,葡萄糖产率高达216.5 g·kg-1。本研究为农业废弃物水稻秸秆的高效和高值资源化利用提供了新的策略。  相似文献   

7.
The effects of temperature (116 °C, 150 °C, and 183 °C) and flow rate (66, 150, and 234 mL/min) on the fractionation of triticale straw into different products was determined using a flow-through pressurized low polarity water reactor. The greatest concentration of biomass was hydrolyzed and extracted in the first two of eight 600 mL fractions (1.2 L), after which dry matter yield decreased. Carbohydrate, lignin, acetyl group, and uronic acid yield increased with temperature, but there was no effect due to flow rate. Most dry matter extracted at 116 °C was probably associated with the extractives. Xylan yields decrease slightly at the highest flow rate due to a decrease in the residence time of the acids produced in situ. Carbohydrates were extracted mostly as oligosaccharides, and the highest processing temperature resulted in the production of furans from the xylose and arabinose in the liquid extracts.  相似文献   

8.
乙二醇-氯化铁预处理对棉秆酶水解效率的影响   总被引:1,自引:1,他引:0  
董倩  唐松  徐禄江  方真 《农业工程学报》2021,37(14):213-220
为提高棉秆的纤维素酶水解效率,该研究以乙二醇为预处理溶剂,氯化铁为催化剂对棉秆进行预处理,实现了棉秆木质素和半纤维素的有效去除,提高了酶水解效率。以木质素和半纤维素的去除率为指标,运用正交试验方法优化乙二醇-氯化铁预处理条件。结果表明,棉秆在90%乙二醇水溶液,0.1 mol/L氯化铁,固液比1∶15,160 ℃条件下处理20 min,木质素和半纤维素去除率分别为85.7%和88.9%。相较原料,预处理后棉秆酶解率提高了7.6倍,葡萄糖产率达到100%(基质浓度5%,酶载量8.3 FPU/g,水解72 h条件下)。通过结构表征发现乙二醇-氯化铁预处理使棉秆的比表面积增大,致密结构被破坏,有效提高了棉秆的纤维素酶可及性。  相似文献   

9.
Structured triacylglycerols (ST) from canola oil were produced by enzymatic acidolysis in a packed bed bioreactor. A commercially immobilized 1,3-specific lipase, Lipozyme IM, from Rhizomucormiehei, was the biocatalyst and caprylic acid the acyl donor. Parameters such as substrate flow rate, substrate molar ratio, reaction temperature, and substrate water content were examined. High-performance liquid chromatography was used to monitor the reaction and product yields. The study showed that all of the parameters had effects on the yields of the expected di-incorporated (dicaprylic) ST products. Flow rates below 1 mL/min led to reaction equilibrium, and lower flow rates did not raise the incorporation of caprylic acid and the product yield. Incorporation of caprylic acid and the targeted di-incorporated ST was increased by approximately 20% with temperature increase from 40 to 70 degrees C. Increasing the substrate molar ratio from 1:1 to 7:1 increased the incorporation of caprylic acid and the product yield slightly. Water content in the substrate also had a mild influence on the reaction. Water content at 0.08% added to the substrate gave the lowest incorporation and product yield. The use of solvent in the medium was also studied, and results demonstrated that it did not increase the reaction rate at 55 degrees C when 33% hexane (v/v) was added. The main fatty acids at the sn-2 position of the ST were C(18:1), 54. 7 mol %; C(18:2), 30.7 mol %; and C(18:3), 11.0 mol %.  相似文献   

10.
Degradation parameters of purified anthocyanins from purple-fleshed potato (cv. Purple Majesty) heated at high temperatures (100-150 °C) were determined. Purified anthocyanins, prepared by removing salts, sugars, and colorless nonanthocyanin phenolics from the crude extract, were monitored and quantified using HPLC and spectrophotometry for heat-induced degradation products. Separation of colorless phenolics from the anthocyanins was confirmed using HPLC at two wavelengths, 280 and 520 nm. The degradation kinetics of purified anthocyanins followed a first-order reaction with reaction rate constants (k values) of 0.0262-0.2855 min(-1), an activation energy of 72.89 kJ/mol, thermal death times (D values) of 8.06-8789 min, and a z value of 47.84 °C over the temperature range of 100-150 °C. The enthalpy and entropy of activation were 59.97 kJ/mol and -116.46 J/mol·K, respectively. The antioxidant capacity in the purified anthocyanins, measured by DPPH and ABTS assays, was increased after the thermal treatment, indicating antioxidant activities of degradation products in the samples.  相似文献   

11.
废弃食用油脂两相厌氧发酵酸化条件优化   总被引:2,自引:1,他引:2  
油脂的水解和长链脂肪酸的降解是油脂厌氧发酵过程中的限速步骤,提高水解酸化阶段挥发性脂肪酸(volatile fatty acid,VFA)的产率,有助于后续甲烷化反应的进行。利用响应面方法(response surface methodology,RSM)对废弃食用油脂两相厌氧发酵水解产挥发酸条件进行优化,考察了初始p H值、原料负荷、反应时间和接种量对产生挥发酸浓度的影响,提出采用该工艺的数学模型及优化后的工艺参数。结果表明,各影响因子对挥发酸的影响顺序为:接种量反应时间原料负荷初始p H值,方程的F值为15.65,相关系数为0.9359,调整相关系数为0.8761,说明数学模型可以较好地模拟真实的反应曲面。优化得到最佳的工艺参数为初始p H值6.2、负荷300 g/L、反应时间8 d、接种量40%,在该条件下,实际产挥发酸7 221.0 mg/L,与预测值7 224.0 mg/L吻合且重现性较好。厌氧产甲烷试验表明,酸化后废弃油脂较未酸化油脂在甲烷产量、甲烷含量、总化学需氧量(chemical oxygen demand,COD)去除率及挥发性固体(volatile solid,VS)去除率方面分别提高了44%、11%、28%和51%,经酸化处理比未酸化油脂的厌氧发酵时间(完成一个厌氧发酵周期内总产气量的80%的时间)缩短了28%。该研究结果为废弃食用油脂的两相厌氧发酵中试提供了参考。  相似文献   

12.
The effects of heat-induced denaturation and subsequent aggregation of whey protein isolate (WPI) solutions on the rate of enzymatic hydrolysis was investigated. Both heated (60 °C, 15 min; 65 °C, 5 and 15 min; 70 °C, 5 and 15 min, 75 °C, 5 and 15 min; 80 °C, 10 min) and unheated WPI solutions (100 g L(-1) protein) were incubated with a commercial proteolytic enzyme preparation, Corolase PP, until they reached a target degree of hydrolysis (DH) of 5%. WPI solutions on heating were characterized by large aggregate formation, higher viscosity, and surface hydrophobicity and hydrolyzed more rapidly (P < 0.001) than the unheated. The whey proteins exhibited differences in their susceptibility to hydrolysis. Both viscosity and surface hydrophobicity along with insolubility declined as hydrolysis progressed. However, microstructural changes observed by light and confocal laser scanning microscopy (CLSM) provided insights to suggest that aggregate size and porosity may be complementary to denaturation in promoting faster enzymatic hydrolysis. This could be clearly observed in the course of aggregate disintegration, gel network breakdown, and improved solution clarification.  相似文献   

13.
Sugar cane bagasse, a renewable and cheap bioresource, was hydrolyzed at 100 degrees C using phosphoric acid at different concentrations (2, 4, or 6%) and reaction times (0-300 min) to obtain fermentable sugar solutions, which have a high concentration of sugars (carbon source for microorganism growth) and a low concentration of growth inhibitors (acetic acid and furfural). Xylose, glucose, arabinose, acetic acid, and furfural were determined following the hydrolysis. Kinetic parameters of mathematical models for predicting these compounds in the hydrolysates were obtained. Derived parameters such as efficiency of hydrolysis or purity of hydrolysates were considered to select as optimal conditions 6% phosphoric acid at 100 degrees C for 300 min. Using these conditions, 21.4 g of sugars L(-)(1) and <4 g of inhibitors L(-)(1) were obtained from the hydrolysis with a water/solid ratio of 8 g of water g(-)(1) of sugar cane bagasse on a dry basis.  相似文献   

14.
响应面法优化酸水解稻秆制木糖的工艺参数   总被引:8,自引:4,他引:4  
为了提高稀硫酸水解稻秆制木糖的收率,采用响应面法对稀硫酸水解稻秆制木糖的关键参数进行了优化研究,建立了木糖收率的二次多项式数学模型,并分析模型的有效性与因子间的交互作用。结果表明,3个因素对木糖收率的影响大小依次为酸浓度(质量分数)>温度>时间;稀硫酸水解稻秆制木糖的最佳工艺参数为:酸质量分数1.52%、温度121℃和时间为56 min。在此条件下,木糖的最高收率为78.12%。在最佳工艺条件下得到实验结果与模型预测值很吻合,说明所建立的模型是切实可行的。  相似文献   

15.
Lauroylation of wheat straw hemicelluloses in the N, N-dimethylformamide/lithium chloride system under microwave irradiation was studied. The parameters optimized included lauroyl chloride concentration as the molar ratio of xylose unit in hemicelluloses/lauroyl chloride (1:1-1:4), 4-dimethylaminopyridine concentration (2-10%), reaction time (1-8 min), molar ratio of xylose unit in hemicelluloses/triethylamine (1:2), and reaction temperature (78 degrees C). The reaction efficiency was measured by the yield and degree of substitution (DS). Under an optimum reaction condition (molar ratio of xylose unit in hemicelluloses/lauroyl chloride 1:3, molar ratio of xylose unit in hemicelluloses/triethylamine 1:2, 5% 4-dimethylaminopyridine, 78 degrees C, 5 min), a DS of 1.63 was obtained. Changes in the structure of hemicelluloses were verified by FT-IR and 1H and 13C NMR spectroscopy. The results showed that the lauroylation occurred preferentially at the C-3 position of the xylose unit in hemicelluloses. The behavior of the lauroylated hemicelluloses was monitored by means of thermogravimetric (TG) and differential thermogravimetric (DTG) analysis. It was found that the product with low DS had a lower thermal stability than the native hemicelluloses, whereas the lauroylated polymers with high DS showed a higher thermal stability than the unmodified hemicelluloses.  相似文献   

16.
Copper biosorption onto chemically modified biomass of marine alga Sargassum filipendula was investigated in a batch reactor and a fixed bed column. Experiments were carried out in the batch reactor to obtain kinetic and equilibrium data and to assess the copper desorption efficiency of different eluent solutions. The pseudo-first-order, pseudo-second-order, and Langmuir kinetic models were used to correlate kinetic data. The experimental data fitted well to the pseudo first order and Langmuir kinetic models. Langmuir and Freundlich models were applied to describe the equilibrium data obtained at a fixed temperature of 30°C and at pH values of 3.0, 4.0, 5.0, and 6.0. The maximum capacities of copper biosorption onto the algal biomass were 1.43, 1.59, 2.40, and 2.36 mequiv./g at pH 3.0, 4.0, 5.0, and 6.0, respectively. The efficiencies of two eluent solutions (calcium chloride and hydrochloric acid) for copper removal from the biomass were evaluated at different concentrations (0.1, 0.2, 0.5, and 1.0 mol/L). The efficiencies of the calcium chloride solutions varied from 1% to 14%, while efficiencies varying from 95% to 99% were obtained when hydrochloric acid solutions were applied. Three adsorption/desorption cycles were carried out in a fixed bed column using 0.1 mol/L hydrochloric acid as eluent solution. The results showed that an increase in the number of cycles led to a reduction in the adsorption capacity of the alga. The desorbed copper fraction presented no significant variation, remaining around 63% in the three adsorption/desorption cycles.  相似文献   

17.
The kinetics of the thermal hydrolysis of the fructans of Agave salmiana were determined during the cooking step of mezcal production in a pilot autoclave. Thermal hydrolysis was achieved at different temperatures and cooking times, ranging from 96 to 116 °C and from 20 to 80 h. A simple kinetic model of the depolymerization of fructans to monomers and other reducing sugars and of the degradation of reducing sugars to furans [principally 5-(hydroxymethyl)furfural, HMF] was developed. From this model, the rate constants of the reactions were calculated, as well as the pre-exponential factors and activation energies of the Arrhenius equation. The model was found to fit the experimental data well. The tradeoff between a maximum fructan hydrolysis and a critical furan concentration in allowing for the best ethanol yield during fermentation was investigated. The results indicated that the thermal hydrolysis of agave was optimal, from the point of view of ethanol yield in the ensuing fermentation, in the temperature range of 106-116 °C and the cooking range time of 6-14 h. The optimal conditions corresponded to a fructan hydrolysis of 80%, producing syrups with furan and reducing sugar concentrations of 1 ± 0.1 and 110 ± 10 g/L, respectively.  相似文献   

18.
The behavior of glyphosate, extracted from four soils using aqueous triethylamine, was investigated at two temperatures. For each soil, and at both temperatures, there was a marked loss in the amount of extractable glyphosate immediately after addition of the herbicide to soil. This rapid loss of glyphosate was ascribed to adsorption of the herbicide into a nonextractable form. For three of the four soils used when incubated at 25 degrees C, the rates of loss of extractable glyphosate were similar to previously measured rates of degradation of this herbicide in these soils. However, loss of extractable glyphosate from the Culgoa clay loam was due not only to substrate degradation but also to slow sorption of glyphosate into the nonextractable form in this soil over the experimental period. For the Rutherglen and Walpeup soils, when incubated at 10 degrees C, the rates of loss of extractable glyphosate were half of the previously measured rate of degradation of this herbicide in these soils. However, there was no measured loss of extractable glyphosate from the Wimmera clay. As previous work has shown glyphosate to decompose readily in these soils at this temperature, these findings suggest that desorption of glyphosate may occur at a rate greater than degradation at this temperature and, hence, that temperature may play a pivotal role in sorption processes. Investigations with these soils when sterilized by gamma-irradiation showed that for the Walpeup, Wimmera, and Rutherglen soils, sorption was complete soon after the addition of the herbicide; however, for the Culgoa soil, further adsorption occurred over the entire experimental period.  相似文献   

19.
2,4-D丁酯的水解与光解特性研究   总被引:1,自引:0,他引:1  
通过室内模拟试验,研究2,4-D丁酯在不同pH值和温度下的水解动态和在有机溶剂中的光解特性。结果表明,2,4-D丁酯的水解与光解均符合一级动力学方程。在pH7以下的缓冲溶液中,2,4-D丁酯的水解反应十分缓慢,但在碱性溶液中其水解速率加快。25℃下2,4-D丁酯在pH5、7和9的缓冲溶液中的水解半衰期分别为23.5、5.8d和10.7min。2,4-D丁酯的水解速率随温度升高而增加,在温度为15、25℃和35℃的pH7缓冲溶液中的水解半衰期分别为21.5、5.8、3.9d,平均温度效应系数为2.57。2,4-D丁酯水解反应的活化能与温度之间无明显相关性,而活化熵与温度呈显著相关性。2,4-D丁酯的水解主要由活化熵所驱动。采用GC-MS技术对2,4-D丁酯水解产物进行鉴定,确定水解产物主要是2,4-二氯苯氧乙酸和2,4-二氯苯酚。2,4-D丁酯在正己烷中光解速率比在甲醇中快,在丙酮中几乎不发生光解,其光解速率随浓度的升高而减慢。  相似文献   

20.
The microbial degradation of etofenprox, an ether pyrethroid, was characterized under anaerobic (flooded) and aerobic (nonflooded) California rice field soil conditions by determination of its half-life (t1/2) and dissipation rate constant (k) and identification and quantification of degradation products at both 22 and 40 °C using LC-MS/MS. The overall anaerobic t1/2 at 22 °C ranged from 49.1 to 100 days (k=-0.0141 to -0.0069 days(-1)) compared to 27.0 days (k=-0.0257 days(-1)) at 40 °C, whereas under aerobic conditions the overall t1/2 was 27.5 days (k=-0.0252 days(-1)) at 22 °C compared to 10.1-26.5 days (k=-0.0686 to -0.0262 days(-1)) at 40 °C. The biphasic dissipation profiles were also fit to a first-order model to determine the t1/2 and k for both the fast and slow kinetic regions of the dissipation curves. Hydroxylation at the 4'-position of the phenoxy phenyl ring was the major metabolic process under anaerobic conditions for both 22 °C (maximum% yield of applied etofenprox mass=1.3±0.7%) and 40 °C (max % yield=1.2±0.8%). Oxidation of the ether moiety to the ester was the major metabolite under aerobic conditions at 22 °C (max% yield=0.5±0.1%), but at 40 °C increased amounts of the hydroxylated form were produced (max% yield=0.7±0.2%, compared to 0.3±0.1% for the ester). The hydrolytic product of the ester, 3-phenoxybenzoic acid (3-PBA), was not detected in any samples. Sterilized control soils showed little etofenprox degradation over the 56-day incubation period. Thus, the microbial population in a flooded soil was able to transform and contribute to the overall dissipation of etofenprox. The simulated summer temperature extreme (40 °C) increased the overall degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号