首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gamma and delta rings have by far the largest radial perturbations of any of the nine known Uranian rings. These two rings deviate from Keplerian orbits, having typical root-mean-square residuals of about 3 kilometers (compared to a few hundred meters for the other seven known rings). Possible causes for the perturbations include nearby shepherd satellites and Lindblad resonances. If shepherd satellites are responsible, they could be as large as several tens of kilometers in diameter. The perturbation patterns of the gamma and delta rings have been examined for evidence of Lindblad resonances of azimuthal wave number m = 0, 1, 2, 3, and 4. The beta ring radial residuals are well matched by a 2:1 Lindblad resonance. If this represents a real physical phenomenon and is not an artifact of undersampling, then the most plausible interpretation is that there is an undiscovered satellite orbiting 76,522 +/- 8 kilometers from Uranus, with an orbital period of 15.3595 +/- 0.0001 hours and a radius of 75 to 100 kilometers. Such a satellite would be easily detected by the Voyager spacecraft when it encounters Uranus. The 2:1 resonance location is 41 +/- 9 kilometers inside the delta ring, which makes it unlikely that the resonance is due to a viscous instability within the ring. In contrast, no low-order Lindblad resonance matches the gamma ring perturbations, which are probably caused by one or more shepherd satellites large enough to be clearly visible in Voyager images.  相似文献   

2.
The Voyager 2 photopolarimeter was reprogrammed prior to the August 1981 Saturn encounter to perform orthogonal-polarization, two-color measurements on Saturn, Titan, and the rings. Saturn's atmosphere has ultraviolet limb brightening in the mid-latitudes and pronounced polar darkening north of 65 degrees N. Titan's opaque atmosphere shows strong positive polarization at all phase angles (2.7 degrees to 154 degrees ), and no single-size spherical particle model appears to fit the data. A single radial stellar occultation of the darkened, shadowed rings indicated a ring thickness of less than 200 meters at several locations and clear evidence for density waves caused by satellite resonances. Multiple, very narrow strands of material were found in the Encke division and within the brightest single strand of the F ring.  相似文献   

3.
Careful reprocessing of the Voyager images reveals that the Uranìan lambda ring has marked longitudinal variations in brightness comparable in magnitude to those in Saturn's F ring and Neptune's Adams ring. The ring's variations show a dominant five-cycle (72-degree) periodicity, although additional structure down to scales of about 0.5 degree is also present. The ring's shape is defined by a small overall eccentricity plus a six-cycle (60-degree) sinusoidal variation of radial amplitude around 4 kilometers. Both of these properties can be explained by the resonant perturbations of a moon at a semimajor axis of 56,479 kilometers, but no known moon orbits at this location. Unfortunately, the mass required suggests that such a body should have been imaged by Voyager.  相似文献   

4.
During detailed analysis of Voyager 2 pictures of the Jupiter ring, a starlike object was identified in the plane of the ring. The same object was subsequently found on a higher-resolution frame and proved to be a satellite of Jupiter. This satellite has a circular orbit whose radius is 1.8 Jupiter radii, a period of 7 hours and 8 minutes, and a diameter of less than 40 kilometers. It is located at the outer edge of the Jupiter ring.  相似文献   

5.
Radio emissions from Uranus were detected by the Voyager 2 plasma wave instrument about 5 days before closest approach at frequencies of 31.1 and 56.2 kilohertz. About 10 hours before closest approach the bow shock was identified by an abrupt broadband burst of electrostatic turbulence at a radial distance of 23.5 Uranus radii. Once Voyager was inside the magnetosphere, strong whistler-mode hiss and chorus emissions were observed at radial distances less than about 8 Uranus radii, in the same region where the energetic particle instruments detected intense fluxes of energetic electrons. Various other plasma waves were also observed in this same region. At the ring plane crossing, the plasma wave instrument detected a large number of impulsive events that are interpreted as impacts of micrometer-sized dust particles on the spacecraft. The maximum impact rate was about 30 to 50 impacts per second, and the north-south thickness of the impact region was about 4000 kilometers.  相似文献   

6.
During a detailed search of Voyager 1 frames for additional observations of the satellite 1979J1, two small dark spots were observed in transit in several consecutive wide-angle frames of the Jovian atmosphere. The size, spacing, and motion of these pairs of dark spots indicated that they were the images of 1979J1 and its shadow. Subsequent analysis of images spanning 6 days, however, proved that the satellite observed in these Voyager 1 frames would have been occulted by Jupiter at the times of the Voyager 2 images of 1979J1 and was, therefore, a new satellite. It was subsequently found in transit on Voyager 2 images within 13 degrees of the Voyager 1 prediction. Its period is 7 hours 4 minutes 30 seconds +/- 3 seconds, and its mean distance is 1.793 Jupiter radii (Jupiter radius = 71,400 kilometers). The observable profile appears to be roughly circular with a diameter of 40 kilometers, and the albedo is approximately 0.05, similar to Amalthea's.  相似文献   

7.
H Salo  J Hanninen 《Science (New York, N.Y.)》1998,282(5391):1102-1104
Numerical simulations of Neptune's arcs show that self-gravity between macroscopic arc particles can prevent interparticle impacts and thereby stabilize their resonant confinement by Galatea, a satellite of Neptune. Stable subkilometer arc particles provide a source for replenishing the observed dust and explain the clumpy substructure seen in arcs. A few confining kilometer-sized particles between the major arc components can account for the observed arc widths spanning several resonance sites. The modeled distribution of dust is consistent with observations and helps to explain how embedded satellites may affect the structure and evolution of planetary ring systems.  相似文献   

8.
During a detailed examination of imaging data taken by the Voyager 1 spacecraft within 4.5 hours of its closest approach to Jupiter, a shadow-like image was observed on the bright disk of the planet in two consecutive wide-angle frames. Analysis of the motion of the image on the Jovian disk proved that it was not an atmospheric feature, showed that it could not have been a shadow of any satellite known at the time, and allowed prediction of its reappearance in other Voyager 1 frames. The satellite subsequently has been observed in transit in both Voyager 1 and Voyager 2 frames; its period is 16 hours 11 minutes 21.25 seconds +/- 0.5 second and its semimajor axis is 3.1054 Jupiter radii (Jupiter radius = 7.14 x 10(4) kilometers). The profile observed when the satellite is in transit is roughly circular with a diameter of 80 kilometers. It appears to have an albedo of approximately 0.05, similar to Amalthea's.  相似文献   

9.
The Voyager spacecraft observed a narrow, eccentric ringlet in the Maxwell gap (1.45 Saturn radii) in Saturn's rings. Intercomparison of the Voyager imaging, photopolarimeter, ultraviolet spectrometer, and radio science observations yields results not available from individual observations. The width of the ringlet varies from about 30 to about 100 kilometers, its edges are sharp on a radial scale < 1 kilometer, and its opacity exhibits a double peak near the center. The shape and width of the ringlet are consistent with a set of uniformly precessing, confocal ellipses with foci at Saturn's center of mass. The ringlet precesses as a unit at a rate consistent with the known dynamical oblateness of Saturn; the lack of differential precession across the ringlet yields a ringlet mass of about 5 x 10(18) grams. The ratio of surface mass density to particle cross-sectional area is about five times smaller than values obtained elsewhere in the Saturn ring system, indicating a relatively larger fraction of small particles. Also, comparison of the measured transmission of the ringlet at radio, visible, and ultraviolet wavelengths indicates that about half of the total extinction is due to particles smaller than 1 centimeter in radius, in contrast even with nearby regions of the C ring. However, the color and brightness of the ringlet material are not measurably different from those of nearby C ring particles. We find this ringlet is similar to several of the rings of Uranus.  相似文献   

10.
The spokes are intermittently appearing radial markings in Saturn's B ring that are believed to form when micrometer-sized dust particles are levitated above the ring by electrostatic forces. First observed by the Voyagers, the spokes disappeared from October 1998 until September 2005, when the Cassini spacecraft saw them reappear. The trajectories of the charged dust particles comprising the spokes depend critically on the background plasma density above the rings, which is a function of the solar elevation angle. Because the rings are more open to the Sun now than when Voyager flew by, the charging environment above the rings has prevented the formation of spokes until very recently. We show that this notable effect is capable of stopping spoke formation entirely and restricting the size of the particles in the spokes.  相似文献   

11.
The cameras aboard Voyager 1 have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto.  相似文献   

12.
The Voyager 2 photopolarimeter successfully completed the Uranus encounter, acquiring new data on the planet's atmosphere, its principal satellites, and its ring system. Spatially resolved photometry of the atmosphere at 0.27 micrometer shows no enhancement in absorption toward the pole, unlike the case for Jupiter and Saturn. Stellar occultation measurements indicate the temperature at the 1-millibar level over the north pole is near 90 kelvins. The geometric albedos of the five large satellites of Uranus were measured at 0.27 and 0.75 micrometer and indicate the presence of low albedo, spetrally flat absorbing material. Titania seems to have a fluffy surface, as indicated by its phase curve. The nine ground-based rings were detected, and their internal structure, optical depths, and positions were determined. The sharp edges of the in ring made it possible to measure its edge thickness (less than 150 meters) and particle sizes (less than 30 meters); little or no dust was detcted. New narrow rings and partial rings (arcs) were measured, and the narrow component of the eta ring was found to be discontinuous.  相似文献   

13.
Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the approximately 100-microm scale as might be expected given the active renewal processes which appear to dominate Triton's surface.  相似文献   

14.
We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.  相似文献   

15.
The first of at least nine bow shock crossings observed on the inbound pass of Voyager 2 occurred at 98.8 Jupiter radii (R(J)) with final entry into the magnetosphere at 62 R(J). On both the inbound and outbound passes the plasma showed a tendency to move in the direction of corotation, as was observed on the inbound pass of Voyager 1. Positive ion densities and electron intensities observed by Voyager 2 are comparable within a factor of 2 to those seen by Voyager 1 at the same radial distance from Jupiter; the composition of the magnetospheric plasma is again dominated by heavy ions with a ratio of mass density relative to hydrogen of about 100/1. A series of dropouts of plasma intensity near Ganymede may be related to a complex interaction between Ganymede and the magnetospheric plasma. From the planetary spin modulation of the intensity of plasma electrons it is inferred that the plasma sheet is centered at the dipole magnetic equator out to a distance of 40 to 50 R(J) and deviates from it toward the rotational equator at larger distances. The longitudinal excursion of the plasma sheet lags behind the rotating dipole by a phase angle that increases with increasing radial distance.  相似文献   

16.
Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.  相似文献   

17.
As Voyager 1 flew through the Saturn system it returned photographs revealing many new and surprising characteristics of this complicated community of bodies. Saturn's atmosphere has numerous, low-contrast, discrete cloud features and a pattern of circulation significantly different from that of Jupiter. Titan is shrouded in a haze layer that varies in thickness and appearance. Among the icy satellites there is considerable variety in density, albedo, and surface morphology and substantial evidence for endogenic surface modification. Trends in density and crater characteristics are quite unlike those of the Galilean satellites. Small inner satellites, three of which were discovered in Voyager images, interact gravitationally with one another and with the ring particles in ways not observed elsewhere in the solar system. Saturn's broad A, B, and C rings contain hundreds of "ringlets," and in the densest portion of the B ring there are numerous nonaxisymmetric features. The narrow F ring has three components which, in at least one instance, are kinked and crisscrossed. Two rings are observed beyond the F ring, and material is seen between the C ring and the planet.  相似文献   

18.
Melting of io by tidal dissipation   总被引:1,自引:0,他引:1  
The dissipation of tidal energy in Jupiter's satellite Io is likely to have melted a major fraction of the mass. Consequences of a largely molten interior may be evident in pictures of Io's surface returned by Voyager I.  相似文献   

19.
Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites.  相似文献   

20.
Earth-based telescopic observations indicate that Saturn's rings are about 1 kilometer thick, while spacecraft measurements and theoretical considerations give an upper bound of about 100 meters. Analysis of a shielding effect present in radio occultation provides a sensitive new measure of the ring thickness. On the basis of this effect, Voyager 1 microwave measurements of near-forward scatter imply a thickness ranging from less than 10 meters in ring C to about 20 and 50 meters in the Cassini division and ring A, respectively. Monolayer models do not fit the observations in the latter two regions. The discrepancy between the Earth-based and spacecraft measurements may be due to warps in the ring plane or effects of tenuous material outside the primary ring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号