首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Refraction measurements made in the deep ocean between the Marshall and Hawaiian islands reveal a layer of seismic velocity 7.3 kilometers per second between the 6.8 kilometer per second oceanic crustal layer and the mantle. This layer, normally masked as a second arrival, is revealed by continuous air gun refraction data. The layer may be widespread in the deep oceans.  相似文献   

2.
The Voyager observation of high zonal flow speeds (about 400 meters per second) in the atmosphere of Saturn has raised fundamental questions about the flow on both Jupiter and Saturn. One possibility is that the flow is extremely deep, perhaps extending through the planet. Another is that the flow is confined near the cloud tops and is associated with very strong buoyancy contrasts. It is demonstrated that the heat of conversion from parahydrogen to orthohydrogen can provide buoyancy contrasts of the required magnitude, and a feedback mechanism is proposed to couple the heat of conversion to the flow dynamics.  相似文献   

3.
Historical temperature data suggest that the deep circulation of the eastern Indian Ocean is a system separate from that in the west, with its water being supplied directly from the south. If so, then circulation theory would require that the northward flow take the form of a narrow western boundary current along the Ninetyeast Ridge. Recent observations demonstrate, the existence of this current, and indicate a volume transport for it of about 4 x 10(6) cubic meters per second.  相似文献   

4.
A set of subsurface temperature measurements in the trade wind region northeast of Hawaii reveals large perturbations about the mean state, with zonal wavelengths of 480 kilometers. The perturbations are identified as mesoscale baroclinic eddies, and they appear to drift westward at a rate of 4.7 +/- 2.0 centimeters per second. The large-scale ( 1000 kilometers) baroclinic flow at a depth of 200 meters is 1.5 +/- 0.7 centimeters per second, also toward the west, and comparable in magnitude with the eddy drift velocity; this finding suggests that the eddy drift is strongly influenced by the large-scale flow. Mesoscale eddies have been discovered in the tropical and subtropical Atlantic Ocean. Their existence in the Pacific Ocean is now confirmed.  相似文献   

5.
The Atlantic meridional overturning circulation (MOC), which provides one-quarter of the global meridional heat transport, is composed of a number of separate flow components. How changes in the strength of each of those components may affect that of the others has been unclear because of a lack of adequate data. We continuously observed the MOC at 26.5 degrees N for 1 year using end-point measurements of density, bottom pressure, and ocean currents; cable measurements across the Straits of Florida; and wind stress. The different transport components largely compensate for each other, thus confirming the validity of our monitoring approach. The MOC varied over the period of observation by +/-5.7 x 10(6) cubic meters per second, with density-inferred and wind-driven transports contributing equally to it. We find evidence for depth-independent compensation for the wind-driven surface flow.  相似文献   

6.
In-place measurements of the bottom currents in the Hudson Canyon reveal that the current regime is characterized by a pronounced reversal of flow up and down the canyon. Velocities are commonly of the order of 8 to 15 centimeters per second, reaching 27 centimeters per second on occasion in the upper and central portion of the canyon. Although alpha 2.5-day recording of currents showed a net transport upcanyon, a combination of 66 current measurements from the submersible Alvin, the analysis of sediment texture and organic carbon, and the determination of the benthic fauna-nutrient relationship indicate that over the long term there is a net transport of fine material through the canyon to the outer continenital rise.  相似文献   

7.
F-actin and microtubule suspensions as indeterminate fluids   总被引:12,自引:0,他引:12  
The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.  相似文献   

8.
Ice-edge eddies in the fram strait marginal ice zone   总被引:1,自引:0,他引:1  
Five prominent ice-edge eddies in Fram Strait on the scale of 30 to 40 kilometers were observed over deep water within 77 degrees N to 79 degrees N and 5 degrees W to 3 degrees E. The use of remote sensing, a satellite-tracked buoy, and in situ oceanographic measurements showed the presence of eddies with orbital speeds of 30 to 40 centimeters per second and lifetimes of at least 20 days. Ice ablation measurements made within one of these ice-ocean eddies indicated that melting, which proceeded at rates of 20 to 40 centimeters per day, is an important process in determining the ice-edge position. These studies give new insight on the formation, propagation, and dissipation of ice-edge eddies.  相似文献   

9.
Voyager 2 radio occultation measurements of the Uranian atmosphere were obtained between 2 and 7 degrees south latitude. Initial atmospheric temperature profiles extend from pressures of 10 to 900 millibars over a height range of about 100 kilometers. Comparison of radio and infrared results yields mole fractions near the tropopause of 0.85 and 0.15 +/- 0.05 for molecular hydrogen and helium, respectively, if no other components are present; for this composition the tropopause is at about 52 kelvins and 110 millibars. Distinctive features in the signal intensity measurements for pressures above 900 millibars strongly favor model atmospheres that include a cloud deck of methane ice. Modeling of the intensity measurements for the cloud region and below indicates that the cloud base is near 1,300 millibars and 81 kelvins and yields an initial methane mole fraction of about 0.02 for the deep atmosphere. Scintillations in signal intensity indicate small-scale stucture throughout the stratosphere and upper troposphere. As judged from data obtained during occultation ingress, the ionosphere consists of a multilayer structure that includes two distinct layers at 2,000 and 3,500 kilometers above the 100-millibar level and an extended topside that may reach altitudes of 10,000 kilometers or more. Occultation measurements of the nine previously known rings at wavelengths of 3.6 and 13 centimeters show characteristic values of optical depth between about 0.8 and 8; the maxim value occurs in the outer region of the in ring, near its periapsis. Forward-scattered signals from this ring have properties that differ from those of any of Saturn's rings, and they are inconsistent with a discrete scattering object or local (three-dimensional) assemblies of orbiting objects. These signals suggest a new kdnd of planetary ring feature characterized by highly ordered cylindrical substructures of radial scale on the order of meters and azimuthal scale of kilometers or more. From radio data alone the mass of the Uranian system is GM(sys) = 5,794,547- 60 cubic kilometers per square second; from a combination of radio and optical navigation data the mass of Uranus alone is GM(u) = 5,793,939+/- 60 cubic kilometers per square second. From all available Voyager data, induding imaging radii, the mean uncompressed density of the five major satellites is 1.40+/- 0.07 grams per cubic centimeter; this value is consistent with a solar mix of material and apparently rules out a cometary origin of the satellites.  相似文献   

10.
[目的]研究垂直流人工湿地内部曝气对出水水质的影响。[方法]以迎龙污水处理厂中第二级湿地为试验场地,研究了垂直流人工湿地在不同曝气压力、曝气深度下对生活污水CODCr、氨氮、总磷去除效果的影响。[结果]湿地内部曝气可以提高CODCr的去除率;在深层(50 cm)曝气能够提高氨氮去除率,在浅层(25 cm)曝气不利于氨氮的去除;总磷的去除受溶解氧的影响较小。[结论]该研究为垂直流人工湿地内部曝气的实际应用提供了参考。  相似文献   

11.
Measurements of radon-222 in seawater suggest the following. The radium-226 content of surface water in both the Atlantic and Pacific oceans is uniformly close to about 4 x 10(-14) gram per liter. The deep Pacific has a concentration of radium-226 that is four times higher and the deep Atlantic a concentration twice as high as that of the surface. These distribution profiles can be explained by the same particle-settling rate for radium-226 from surface to depth for the two oceans and by a threefold longer residence time of water in the deep Pacific than in the deep Atlantic. The vertical distribution of the deficiency of radon-222 in the surface water of the northwest Pacific Ocean suggests a coefficient of vertical eddy diffusion as high as 120 square centimeters per second and a gas-exchange rate for carbon dioxide in surface water between 14 and 60 moles per square meter per year. Vertical profiles of the excess of radon-222 in near-bottom water of the South Atlantic give coefficients of vertical eddy diffusion ranging from 1.5 to more than 50 square centimeters per second.  相似文献   

12.
Using the new Argo array of profiling floats that gives unprecedented space-time coverage of the upper 2000 meters of the global ocean, we present definitive evidence of a deep tropical ocean component of the Madden-Julian Oscillation (MJO). The surface wind stress anomalies associated with the MJO force eastward-propagating oceanic equatorial Kelvin waves that extend downward to 1500 meters. The amplitude of the deep ocean anomalies is up to six times the amplitude of the observed annual cycle. This deep ocean sink of energy input from the wind is potentially important for understanding phenomena such as El Ni?o-Southern Oscillation and for interpreting deep ocean measurements made from ships.  相似文献   

13.
The vigor of Atlantic meridional overturning circulation (MOC) is thought to be vulnerable to global warming, but its short-term temporal variability is unknown so changes inferred from sparse observations on the decadal time scale of recent climate change are uncertain. We combine continuous measurements of the MOC (beginning in 2004) using the purposefully designed transatlantic Rapid Climate Change array of moored instruments deployed along 26.5 degrees N, with time series of Gulf Stream transport and surface-layer Ekman transport to quantify its intra-annual variability. The year-long average overturning is 18.7 +/- 5.6 sverdrups (Sv) (range: 4.0 to 34.9 Sv, where 1 Sv = a flow of ocean water of 10(6) cubic meters per second). Interannual changes in the overturning can be monitored with a resolution of 1.5 Sv.  相似文献   

14.
By providing cold, dense water that sinks and mixes to fill the abyssal world ocean, high-latitude air-sea-ice interaction is the main conduit through which the deep ocean communicates with the rest of the climate system. A key element in modeling and predicting oceanic impact on climate is understanding the processes that control the near surface exchange of heat, salt, and momentum. In 1992, the United States-Russian Ice Station Weddell-1 traversed the western Weddell Sea during the onset of winter, providing a platform for direct measurement of turbulent heat flux and Reynolds stress in the upper ocean. Data from a storm early in the drift indicated (i) well-formed Ekman spirals (in both velocity and turbulent stress); (ii) high correlation between mixed layer heat flux and temperature gradients; (iii) that eddy viscosity and eddy thermal diffusivity were similar, about 0.02 square meters per second; and (iv) that the significant turbulent length scale (2 to 3 meters through most of the boundary layer) was proportional to the wavelength at the peak in the weighted vertical velocity spectrum. The measurements were consistent with a simple model in which the bulk eddy viscosity in the neutrally buoyant mixed layer is proportional to kinematic boundary stress divided by the Coriolis parameter.  相似文献   

15.
Strombolian-type eruptive activity, common at many volcanoes, consists of regular explosions driven by the bursting of gas slugs that rise faster than surrounding magma. Explosion quakes associated with this activity are usually localized at shallow depth; however, where and how slugs actually form remain poorly constrained. We used spectroscopic measurements performed during both quiescent degassing and explosions on Stromboli volcano (Italy) to demonstrate that gas slugs originate from as deep as the volcano-crust interface (approximately 3 kilometers), where both structural discontinuities and differential bubble-rise speed can promote slug coalescence. The observed decoupling between deep slug genesis and shallow (approximately 250-meter) explosion quakes may be a common feature of strombolian activity, determined by the geometry of plumbing systems.  相似文献   

16.
Pioneer Venus orbiter dual-frequency radio occultation measurements have produced many electron density profiles of the nightside ionosphere of Venus. Thirty-six of these profiles, measured at solar zenith angles (chi) from 90.60 degrees to 163.5 degrees , are discussed here. In the "deep" nightside ionosphere (chi > 110 degrees ), the structure and magnitude of the ionization peak are highly variable; the mean peak electron density is 16,700 +/- 7,200 (standard deviation) per cubic centimeter. In contrast, the altitude of the peak remains fairly constant with a mean of 142.2 +/- 4.1 kilometers, virtually identical to the altitude of the main peak of the dayside terminator ionosphere. The variations in the peak ionization are not directly related to contemporal variations in the solar wind speed. It is shown that electron density distributions similar to those observed in both magnitude and structure can be produced by the precipitation on the nightside of Venus of electron fluxes of about 108 per square centimeter per second with energies less than 100 electron volts. This mechanism could very likely be responsible for the maintenance of the persistent nightside ionosphere of Venus, although transport processes may also be important.  相似文献   

17.
Several observations of Jupiter's atmosphere made by instruments on the New Horizons spacecraft have implications for the stability and dynamics of Jupiter's weather layer. Mesoscale waves, first seen by Voyager, have been observed at a spatial resolution of 11 to 45 kilometers. These waves have a 300-kilometer wavelength and phase velocities greater than the local zonal flow by 100 meters per second, much higher than predicted by models. Additionally, infrared spectral measurements over five successive Jupiter rotations at spatial resolutions of 200 to 140 kilometers have shown the development of transient ammonia ice clouds (lifetimes of 40 hours or less) in regions of strong atmospheric upwelling. Both of these phenomena serve as probes of atmospheric dynamics below the visible cloud tops.  相似文献   

18.
Airborne measurements of the effluents from the St. Augustine volcano obtained during a 10-day period of activity showed that aerosol was ejected at the rate of about 10(5) kilograms per second during brief eruptions (3 to 8 minutes). Steadier emissions contained much more water vapor and gaseous sulfur but less aerosol mass. A nuée ardente (glowing avalanche) produced by one eruption reached a maximum average speed of about 50 meters per second.  相似文献   

19.
Hydrographic observations and measurements of the concentrations of chlorofluorocarbons (CFCs) have suggested that the formation of Greenland Sea Deep Water (GSDW) slowed down considerably during the 1980s. Such a decrease is related to weakened convection in the Greenland Sea and thus could have significant impact on the properties of the waters flowing over the Scotland-Iceland-Greenland ridge system into the deep Atlantic. Study of the variability of GSDW formation is relevant for understanding the impact of the circulation in the European Polar seas on regional and global deep water characteristics. New long-term multitracer observations from the Greenland Sea show that GSDW formation indeed was greatly reduced during the 1980s. A box model of deepwater formation and exchange in the European Polar seas tuned by the tracer data indicates that the reduction rate of GSDW formation was about 80 percent and that the start date of the reduction was between 1978 and 1982.  相似文献   

20.
Magnitude of the 2010 Gulf of Mexico oil leak   总被引:1,自引:0,他引:1  
To fully understand the environmental and ecological impacts of the Deepwater Horizon disaster, an accurate estimate of the total oil released is required. We used optical plume velocimetry to estimate the velocity of fluids issuing from the damaged well both before and after the collapsed riser pipe was removed. We then calculated the volumetric flow rate under a range of assumptions. With a liquid oil fraction of 0.4, we estimated that the average flow rate from 22 April 2010 to 3 June 2010 was 5.6 × 10(4) ± 21% barrels/day (1.0 × 10(-1) meter(3)/second), excluding secondary leaks. After the riser was removed, the flow was 6.8 × 10(4) ± 19% barrels/day (1.2 × 10(-1) meters(3)/second). Taking into account the oil collected at the seafloor, this suggests that 4.4 × 10(6) ± 20% barrels of oil (7.0 × 10(5) meters(3)) was released into the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号