首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term variations in Northern Hemisphere summer insolation are generally thought to control glaciation. But the intensity of summer insolation is primarily controlled by 20,000-year cycles in the precession of the equinoxes, whereas early Pleistocene glacial cycles occur at 40,000-year intervals, matching the period of changes in Earth's obliquity. The resolution of this 40,000-year problem is that glaciers are sensitive to insolation integrated over the duration of the summer. The integrated summer insolation is primarily controlled by obliquity and not precession because, by Kepler's second law, the duration of the summer is inversely proportional to Earth's distance from the Sun.  相似文献   

2.
The Shallow Radar (SHARAD) on the Mars Reconnaissance Orbiter has imaged the internal stratigraphy of the north polar layered deposits of Mars. Radar reflections within the deposits reveal a laterally continuous deposition of layers, which typically consist of four packets of finely spaced reflectors separated by homogeneous interpacket regions of nearly pure ice. The packet/interpacket structure can be explained by approximately million-year periodicities in Mars' obliquity or orbital eccentricity. The observed approximately 100-meter maximum deflection of the underlying substrate in response to the ice load implies that the present-day thickness of an equilibrium elastic lithosphere is greater than 300 kilometers. Alternatively, the response to the load may be in a transient state controlled by mantle viscosity. Both scenarios probably require that Mars has a subchondritic abundance of heat-producing elements.  相似文献   

3.
Climate control of nutricline depth in the equatorial Atlantic can be monitored by variations in the abundance of the phytoplankton species Florisphaera profunda. A conceptual model, based on in situ evidence, associates high abundances of F. profunda with a deep nutricline and low abundances with a shallow nutricline. A 200,000-year record of F. profunda relative abundances, obtained from a deep-sea core sited beneath the region of maximum equatorial divergence at 10 degrees W, has 52 percent of its variance centered on the 23,000-year precessional band. Cross-spectral analysis between the signals of F. profunda and sea-surface temperature, independently derived from zooplankton species, shows their 23,000-year cycles to be coherent and nearly in phase. Abundance minima of F. profunda coincide with times of December perihelion, whereas abundance maxima coincide with June perihelion. These relations indicate that nutricline dynamics in the divergence region of the equatorial Atlantic are controlled by variations in the tropical easterlies, forced by the precessional component of orbital insolation, on time scales greater than 10,000 years.  相似文献   

4.
The chaotic obliquity of Mars   总被引:1,自引:0,他引:1  
Touma J  Wisdom J 《Science (New York, N.Y.)》1993,259(5099):1294-1297
Numerical integration of the rotation of Mars shows that the obliquity of Mars undergoes large chaotic variations. These variations occur as the system evolves in the chaotic zone associated with a secular spin-orbit resonance.  相似文献   

5.
Systematic variations in annual growth increments, formed over a 16-year period in shells of the marine bivalve mollusc Spisula solidissima, reveal more growth in some years than others. Favorable years are indicated by larger than expected annual growth increments and successful recruitment of juveniles. Variations in the size of growth increments correlate negatively with sea surface temperatures. The results suggest that the annual growth increments in the shells of certain molluscs record changes in the marine environment and may be useful monitors of pollution and indicators of paleotemperatures.  相似文献   

6.
A methane record from the GISP2 ice core reveals that millennial-scale variations in atmospheric methane concentration characterized much of the past 110,00 years. As previously observed in a shorter record from central Greenland, abrupt concentration shifts of about 50 to 300 parts per billion by volume were coeval with most of the interstadial warming events (better known as Dansgaard-Oeschger events) recorded in the GISP2 ice core throughout the last glacial period. The magnitude of the rapid concentration shifts varied on a longer time scale in a manner consistent with variations in Northern Hemisphere summer insolation, which suggests that insolation may have modulated the effects of interstadial climate change on the terrestrial biosphere.  相似文献   

7.
Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south.  相似文献   

8.
Oxygen-18 (delta(18)O) variations in a 36-centimeter-long core (DH-11) of vein calcite from Devils Hole, Nevada, yield an uninterrupted 500,000-year paleotemperature record that closely mimics all major features in the Vostok (Antarctica) paleotemperature and marine delta(18)O ice-volume records. The chronology for this continental record is based on 21 replicated mass-spectrometric uranium-series dates. Between the middle and latest Pleistocene, the duration of the last four glacial cycles recorded in the calcite increased from 80,000 to 130,000 years; this variation suggests that major climate changes were aperiodic. The timing of specific climatic events indicates that orbitally controlled variations in solar insolation were not a major factor in triggering deglaciations. Interglacial climates lasted about 20,000 years. Collectively, these observations are inconsistent with the Milankovitch hypothesis for the origin of the Pleistocene glacial cycles but they are consistent with the thesis that these cycles originated from internal nonlinear feedbacks within the atmosphere-ice sheet-ocean system.  相似文献   

9.
We propose that from approximately 3 to 1 million years ago, ice volume changes occurred in both the Northern and Southern Hemispheres, each controlled by local summer insolation. Because Earth's orbital precession is out of phase between hemispheres, 23,000-year changes in ice volume in each hemisphere cancel out in globally integrated proxies such as ocean delta18O or sea level, leaving the in-phase obliquity (41,000 years) component of insolation to dominate those records. Only a modest ice mass change in Antarctica is required to effectively cancel out a much larger northern ice volume signal. At the mid-Pleistocene transition, we propose that marine-based ice sheet margins replaced terrestrial ice margins around the perimeter of East Antarctica, resulting in a shift to in-phase behavior of northern and southern ice sheets as well as the strengthening of 23,000-year cyclicity in the marine delta18O record.  相似文献   

10.
Mongolian Tree Rings and 20th-Century Warming   总被引:3,自引:0,他引:3  
A 450-year tree-ring width chronology of Siberian pine (Pinus sibirica Du Tour) growing at timberline (2450 meters) in the Tarvagatay Mountains in west central Mongolia shows wide annual growth rings for the recent century. Ecological site observations and comparisons with instrumental temperature records indicate that the ring widths of these trees are sensitive to annual temperature variations. Low-frequency variations in the Tarvagatay tree-ring record are similar to those in a reconstruction of Arctic annual temperatures, which is based on 20 tree-ring width series from northern North America, Scandinavia, and western Russia. The results indicate that recent warming is unusual relative to temperatures of the past 450 years.  相似文献   

11.
The residual frost caps of Mars are probably water-ice. They may be the source of the water vapor associated with seasonal polar hoods. A permanent reservoir of solid CO(2) is also probably present within the north residual cap and may comprise a mass of CO(2) some two to five times that of the present atmosphere of Mars. The martian atmospheric pressure is probably regulated by the temperature of the reservoir and not by the annual heat balance of exposed solid CO(2) (37). The present reservoir temperature presumably reflects a long-term average of the polar heat balance. The question of a large permanent north polar cap is reexamined in light of the Mariner 9 data. The lower general elevation of the north polar region compared to the south and the resulting occurrence in the north of a permanent CO(2) deposit are probably responsible for the differences in size and shape of the two residual caps. The details of the processes involved are less apparent, however. It might be argued that the stability of water-ice deposits depends on both insolation and altitude. The present north and south residual caps should be symmetrically located with respect to such a hypothetical stability field. However, the offset of the south cap from the geometrical pole, the non-symmetrical outline of the north cap, and the apparently uniform thickness of the thin, widespread water-ice all argue against control by simple solid-vapor equilibrium of water under present environmental conditions. We think that the present location of the water-ice may reflect, in part, the past location of the permanent CO(2) reservoir. The extreme stability of polar water-ice deposits increases the likelihood that past environmental conditions may be recorded there. Detailed information on elevations in the vicinity of the residual caps is needed before we can further elucidate the nature and history of the residual caps. This, along with measurements of polar infrared emission, should be given high priority in future missions to Mars. Two conclusions follow from the limitation of the mass of solid CO(2) on Mars at present to two to five times the mass of CO(2) in the atmosphere. If all of this CO(2) was entirely sublimated into the atmosphere as a result of hypothetical astronomical or geophysical effects, the average surface pressure would increase to 15 to 30 mbar. Although such a change would have considerable significance for eolian erosion and transportation, there seems to be little possibility that a sufficiently earthlike atmosphere could result for liquid water to become an active erosional agent, as postulated by Milton (38). The pressure broadening required for a green-house effect requires at least 10 to 20 times more pressure (39). If liquid water was ever active in modifying the martian surface, it must have been at an earlier epoch, before the present, very stable CO(2)/H(2)O system developed. There can be no intermittent earthlike episodes now. Furthermore, the present abundance of CO(2) on Mars may be an indicator of the cumulative evolution of volatiles to the surface of the planet (40). Thus, even the possibility of an earlier earth-like episode is dimmed. On Mars, the total CO(2) definitely outgassed has evidently been about 60 +/- 20 g/cm(2). On the earth, about 70 +/- 30 kg/cm(2) of CO(2) have been released to the surface (41). Hence, the total CO(2) devolved by Mars per unit area is about 0.1 percent of that evolved by the earth. Thus, the observational limits we place on solid CO(2) presently located under the north residual cap also may constitute considerable constraints on the total differentiation and devolatilization of the planet. If they are valid, it would seem unlikely that Mars has devolatilized at all like the earth, or ever experienced an earthlike environment on its surface.  相似文献   

12.
The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified.  相似文献   

13.
Lawler A 《Science (New York, N.Y.)》2000,290(5493):915a-916a
Twice burned by mission failures last year, NASA managers last week unveiled a new 15-year blueprint for Mars exploration. The revamped strategy allows for doing more science, but at a slower pace, while delaying a sample return until well into the next decade.  相似文献   

14.
A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation for the periods from 10.3 to 2.7 and 1.4 to 0.4 thousand years before the present (ky B.P.). Between 10.3 and 8 ky B.P., decadal to centennial variations in monsoon precipitation are in phase with temperature fluctuations recorded in Greenland ice cores, indicating that early Holocene monsoon intensity is largely controlled by glacial boundary conditions. After approximately 8 ky B.P., monsoon precipitation decreases gradually in response to changing Northern Hemisphere summer solar insolation, with decadal to multidecadal variations in monsoon precipitation being linked to solar activity.  相似文献   

15.
The fluctuating insulin requirements of an unstable diabetic over an 8-year period have been subjected to spectral analysis. There is evidence of cyclic changes of several different period lengths in addition to red noise. The periodicities indicate that social causes play no major role but suggest that a weathermediated effect may exist.  相似文献   

16.
High-resolution analyses of lake sediment from southwestern Alaska reveal cyclic variations in climate and ecosystems during the Holocene. These variations occurred with periodicities similar to those of solar activity and appear to be coherent with time series of the cosmogenic nuclides 14C and 10Be as well as North Atlantic drift ice. Our results imply that small variations in solar irradiance induced pronounced cyclic changes in northern high-latitude environments. They also provide evidence that centennial-scale shifts in the Holocene climate were similar between the subpolar regions of the North Atlantic and North Pacific, possibly because of Sun-ocean-climate linkages.  相似文献   

17.
对乌兰察布地区1971—2010年的降水与气温进行了分析。趋势分析表明,近40年来乌兰察布地区年降水量呈减少趋势,其中春、秋季降水量为增加趋势,夏、冬季节降水为减少趋势;年平均气温表现出明显的增加趋势,并在1987年以及1997年发生了明显的跃变;小波分析发现年降水量存在着5年、10年、20年以及28年左右的周期,年平均气温存在着6年、15年、20年以及28年左右的周期;旋转主因子分析发现乌兰察布地区夏秋季降水、气温的区域划分具有一致性,南部地区降水多,气温高;北部地区降水少,气温低,但北部地区气温波动较大。  相似文献   

18.
Mars' north pole is covered by a dome of layered ice deposits. Detailed ( approximately 30 centimeters per pixel) images of this region were obtained with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter (MRO). Planum Boreum basal unit scarps reveal cross-bedding and show evidence for recent mass wasting, flow, and debris accumulation. The north polar layers themselves are as thin as 10 centimeters but appear to be covered by a dusty veneer in places, which may obscure thinner layers. Repetition of particular layer types implies that quasi-periodic climate changes influenced the stratigraphic sequence in the polar layered deposits, informing models for recent climate variations on Mars.  相似文献   

19.
Kerr RA 《Science (New York, N.Y.)》2000,290(5500):2239-2242
Last month, the Geological Society of America held their annual meeting here. Offerings included claims for the oldest known examples in a class: the oldest scrap of ocean crust, the oldest sample of Earth, and the oldest trace of life--which happens to come from Mars.  相似文献   

20.
The astronomical theory of climatic change provides an alternative to the traditional chronology for Holocene climatic change, which calls for one thermal maximum about 6000 years ago. The theory predicts a series of maxima during the Holocene, one for each season. Because the relation of the perihelion to the spring equinox changes with a 22,000-year period, late summer insolation would have been greatest 5000 years ago, whereas early summer insolation would have been greatest 13,000 years ago. Climatic reconstructions based on the response of ecosystems to late summer climate indicate a later Holocene thermal maximum than paleoclimatic data sensitive to early summer climate. In southern Idaho, three different vegetation types indicate thermal maxima at different times during the Holocene, depending on the climatic variable controlling each type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号