首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulysses spacecraft radio and plasma wave observations indicate that some variations in the intensity and occurrence rate of electric and magnetic wave events are functions of heliographic latitude, distance from the sun, and phase of the solar cycle. At high heliographic latitudes, solartype Ill radio emissions did not descend to the local plasma frequency, in contrast to the emission frequencies of some bursts observed in the ecliptic. Short-duration bursts of electrostatic and electromagnetic waves were often found in association with depressions in magnetic field amplitude, known as magnetic holes. Extensive wave activity observed in magnetic clouds may exist because of unusually large electron-ion temperature ratios. The lower number of intense in situ wave events at high latitudes was likely due to the decreased variability of the high- latitude solar wind.  相似文献   

2.
Initial results of observations of the solar wind interaction with Venus indicate that Venus has a well-defined, strong, standing bow shock wave. Downstream from the shock, an ionosheath is observed in which the compressed and heated postshock plasma evidently interacts directly with the Venus ionosphere. Plasma ion velocity deflections observed within the ionosheath are consistent with flow around the blunt shape of the ionopause. The ionopause boundary is observed and defined by this experiment as the location where the ionosheath ion flow is first excluded. The positions of the bow shock and ionopause are variable and appear to respond to changes in the external solar wind pressure. Near the terminator the bow shock was observed at altitudes of approximately 4600 to approximately 12,000 kilometers. The ionopause altitutde ranged fromn as low as approximately 450 to approximately 1950 kilometers. Within the Venus ionosphere low-energy ions (energy per untit charge < 30 volts) were detected and have been tentatively idtentified as nonflowing ionospheric ions incident from a direction along the spacecraft velocity vector.  相似文献   

3.
The Unified Radio and Plasma Wave (URAP) experiment has produced new observations of the Jupiter environment, owing to the unique capabilities of the instrument and the traversal of high Jovian latitudes. Broad-band continuum radio emission from Jupiter and in situ plasma waves have proved valuable in delineating the magnetospheric boundaries. Simultaneous measurements of electric and magnetic wave fields have yielded new evidence of whistler-mode radiation within the magnetosphere. Observations of aurorallike hiss provided evidence of a Jovian cusp. The source direction and polarization capabilities of URAP have demonstrated that the outer region of the lo plasma torus supported at least five separate radio sources that reoccurred during successive rotations with a measurable corotation lag. Thermal noise measurements of the lo torus densities yielded values in the densest portion that are similar to models suggested on the basis of Voyager observations of 13 years ago. The URAP measurements also suggest complex beaming and polarization characteristics of Jovian radio components. In addition, a new class of kilometer-wavelength striated Jovian bursts has been observed.  相似文献   

4.
Along Ulysses' path from Jupiter to the south ecliptic pole, the onboard dust detector measured a dust impact rate that varied slowly from 0.2 to 0.5 impacts per day. The dominant component of the dust flux arrived from an ecliptic latitude and longitude of 100 + 10 degrees and 280 degrees +/- 30 degrees which indicates an interstellar origin. An additional flux of small particles, which do not come from the interstellar direction and are unlikely to be zodiacal dust grains, appeared south of -45 degrees latitude. One explanation is that these particles are beta-meteoroids accelerated away from the sun by radiation pressure and electromagnetic forces.  相似文献   

5.
At latitudes north of the Arctic Circle the diel range of sun altitude declines progressively, reducing the frequency of temperature inversions over level, unshaded ground in summer and extending the frost-free season. North of about 70 degrees north, the potential number of inversion-free days increases rapidly with latitude; this ameliorates the microclimate close to the ground-the zone to which terrestrial organisms are increasingly restricted in higher latitudes. The relation between screen and ground-surface temperatures differs north and south of about 70 degrees north; north of that latitude there are progressively more frost-free days than would be inferred from screen temperatures, were no allowance made for this latitude-dependent change.  相似文献   

6.
A new technique has made it possible to measure the velocity of portions of the solar wind during its flow outward from the sun. This analysis utilizes spacecraft (ISEE-3) observations of radio emission generated in regions of the solar wind associated with solar active regions. By tracking the source of these radio waves over periods of days, it is possible to measure the motion of the emission regions. Evidence of solar wind acceleration during this outward flow, consistent with theoretical models, has also been obtained.  相似文献   

7.
Electron plasma oscillations have been detected upstream of the solar wind termination shock by the plasma wave instrument on the Voyager 1 spacecraft. These waves were first observed on 11 February 2004, at a heliocentric radial distance of 91.0 astronomical units, and continued sporadically with a gradually increasing occurrence rate for nearly a year. The last event occurred on 15 December 2004, at 94.1 astronomical units, just before the spacecraft crossed the termination shock. Since then, no further electron plasma oscillations have been observed, consistent with the spacecraft having crossed the termination shock into the heliosheath.  相似文献   

8.
Radio emissions from Uranus were detected by the Voyager 2 plasma wave instrument about 5 days before closest approach at frequencies of 31.1 and 56.2 kilohertz. About 10 hours before closest approach the bow shock was identified by an abrupt broadband burst of electrostatic turbulence at a radial distance of 23.5 Uranus radii. Once Voyager was inside the magnetosphere, strong whistler-mode hiss and chorus emissions were observed at radial distances less than about 8 Uranus radii, in the same region where the energetic particle instruments detected intense fluxes of energetic electrons. Various other plasma waves were also observed in this same region. At the ring plane crossing, the plasma wave instrument detected a large number of impulsive events that are interpreted as impacts of micrometer-sized dust particles on the spacecraft. The maximum impact rate was about 30 to 50 impacts per second, and the north-south thickness of the impact region was about 4000 kilometers.  相似文献   

9.
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.  相似文献   

10.
The first inbound Voyager 2 crossing of Saturn's bow shock [at 31.7 Saturn radii (RS), near local noon] and the last outbound crossing (at 87.4 RS, near local dawn) had similar plasma wave signatures. However, many other aspects of the plasma wave measurements differed considerably during the inbound and outbound passes, suggesting the presence of effects associated with significant north-south or noon-dawn asymmetries, or temporal variations. Within Saturn's magnetosphere, the plasma wave instrument detected electron plasma oscillations, upper hybrid resonance emissions, half-gyrofrequency harmonics, hiss and chorus, narrowband electromagnetic emissions and broadband Saturn radio noise, and noise bursts with characteristics of static. At the ring plane crossing, the plasma wave instrument also detected a large number of intense impulses that we interpret in terms of ring particle impacts on Voyager 2.  相似文献   

11.
近几年,随着人们生活质量的大幅度提高,尤其是对"反季节"蔬菜品种、品质、数量等多样化的需求,北方日光温室高效利用就显得尤为重要。经过2003~2006年的探索和实践,总结出了高纬度地区日光温室  相似文献   

12.
The Sun continuously expels a huge amount of ionized material into interplanetary space as the solar wind. Despite its influence on the heliospheric environment, the origin of the solar wind has yet to be well identified. In this paper, we report Hinode X-ray Telescope observations of a solar active region. At the edge of the active region, located adjacent to a coronal hole, a pattern of continuous outflow of soft-x-ray-emitting plasmas was identified emanating along apparently open magnetic field lines and into the upper corona. Estimates of temperature and density for the outflowing plasmas suggest a mass loss rate that amounts to approximately 1/4 of the total mass loss rate of the solar wind. These outflows may be indicative of one of the solar wind sources at the Sun.  相似文献   

13.
The absolute radiometer on Spacelab 1 was used to obtain solar irradiance observations from space. A number of effects must be taken into account in the data reduction. A provisional value was obtained for the mean solar constant during the observation period (6 to 8 December 1983).  相似文献   

14.
The High Resolution Telescope and Spectrograph was flown on the Spacelab-2 shuttle mission to perform extended observations of the solar chromosphere and transition zone at high spatial and temporal resolution. Ultraviolet spectroheliograms show the temporal development of macrospicules at the solar limb. The C IV transition zone emission is produced in discrete emission elements that must be composed of exceedingly fine (less than 70 kilometers) subresolution structures.  相似文献   

15.
In February 1992, the Ulysses spacecraft flew through the giant magnetosphere of Jupiter. The primary objective of the encounter was to use the gravity field of Jupiter to redirect the spacecraft to the sun's polar regions, which will now be traversed in 1994 and 1995. However, the Ulysses scientific investigations were well suited to observations of the Jovian magnetosphere, and the encounter has resulted in a major contribution to our understanding of this complex and dynamic plasma environment. Among the more exciting results are (i) possible entry into the polar cap, (ii) the identification of magnetospheric ions originating from Jupiter's ionosphere, lo, and the solar wind, (iii) observation of longitudinal asymmetries in density and discrete wave-emitting regions of the lo plasma torus, (iv) the presence of counter-streaming ions and electrons, field-aligned currents, and energetic electron and radio bursts in the dusk sector on high-latitude magnetic field lines, and (v) the identification of the direction of the magnetic field in the dusk sector, which is indicative of tailward convection. This overview serves as an introduction to the accompanying reports that present the preliminary scientific findings. Aspects of the encounter that are common to all of the investigations, such as spacecraft capabilities, the flight path past Jupiter, and unique aspects of the encounter, are presented herein.  相似文献   

16.
High-resolution microwave observations are providing new insights into the nature of active regions and eruptions on the sun and nearby stars. The strength, evolution, and structure of magnetic fields in coronal loops can be determined by multiple-wavelength observations with the Very Large Array. Flare models can be tested with Very Large Array snapshot maps, which have angular resolutions of better than 1 second of arc in time periods as short as 10 seconds. Magnetic changes that precede solar eruptions on time scales of tens of minutes involve primarily emerging coronal loops and the interactions of two or more loops. Magnetic reconnection at the interface of two closed loops may accelerate electrons and trigger the release of microwave energy in the coronal parts of the magnetic loops. Nearby main-sequence stars of late spectral type emit slowly varying microwave radiation and stellar microwave bursts that show striking similarities to those of the sun.  相似文献   

17.
Two isolated solar wind disturbances about 5 minutes in duration were detected aboard the Russian spacecraft Phobos-2 upon its crossing the wake of the martian moon Deimos about 15,000 kilometers downstream from the moon on 1 February 1989. These plasma and magnetic events are interpreted as the inbound and outbound crossings of a Mach cone that is formed as a result of an effective interaction of the solar wind with Deimos. Possible mechanisms such as remanent magnetization, cometary type interaction caused by heavy ion or charged dust production, and unipolar induction resulting from the finite conductivity of the body are discussed. Although none of the present models is fully satisfactory, neutral gas emission through water loss by Deimos at a rate of about 10(23) molecules per second, combined with a charged dust coma, is favored.  相似文献   

18.
19.
We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 +/- 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.  相似文献   

20.
The population of heavy ions in lo's torus is ultimately derived from lo volcanism. Groundbased infrared observations of lo between October 1991 and March 1992, contemporaneous with the 8 February 1992 Ulysses observations of the lo torus, show that volcanic thermal emission was at the low end of the normal range at all lo longitudes during this period. In particular, the dominant hot spot Loki was quiescent. Resolved images show that there were at least four hot spots on lo's Jupiter-facing hemisphere, including Loki and a long-lived spot on the leading hemisphere (Kanehekili), of comparable 3.5-micrometer brightness but higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号