首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three groups of veal carcasses were selected on the basis of their pH in the longissimus lumborum muscle at 3 h postmortem (pH3) to study the effects and interaction with time of deboning on quality characteristics of veal. The following groups of 10 calves each were selected: 1) fast pH fall, pH3 < 6.2; 2) intermediate pH fall, 6.2 < pH3 < 6.7; and 3) slow pH fall, pH3 > 6.7. Longissimus thoracis et lumborum (LTL) muscles of sides of the selected carcasses were randomly assigned to be excised at either 24 or 48 h postmortem. Color, water-holding capacity, and shear force measurements were determined after an aging period of 2, 3, 4, 7, and 14 d, respectively. Color of longissimus muscle samples from veal calves with similar preslaughter blood hemoglobin values becomes significantly lighter with a faster pH fall. Muscle color was not affected by time of deboning and overall color of all longissimus samples remained stable during storage and was not affected by rate of pH fall and time of deboning. Cooking losses increased with both a faster rate of pH fall and by deboning at 24 h postmortem. Drip losses during vacuum storage were higher for muscles excised at 24 rather than 48 h postmortem. Both when deboned at 24 and 48 h, postmortem veal carcasses with a lower rate of pH fall had higher shear force (SF) values than did carcasses with a higher rate of pH fall. Deboning at 24 h postmortem resulted in higher SF values than deboning at 48 h postmortem. Differences in SF between 24- and 48-h deboning were larger in slower glycolyzing carcasses. Aging improved tenderness but did not fully reduce the difference in SF values between 24- and 48-h deboning. The results suggest that deboning of veal carcasses before the ultimate pH has been reached may result in muscle contraction, which may exert negative effects on tenderness and water-holding capacity of veal. Effects of time of deboning can, at least partly, be explained by differential effects on shortening of the muscle fibers.  相似文献   

2.
The objective of this study was to investigate the role of calpain isotypes, especially poultry‐specific μ/m‐calpain in the proteolysis and meat quality changes of chicken breast muscle during postmortem storage. Calpain activity was detected by casein zymography, while the degradation of titin, desmin and Troponin‐T was analyzed by sodium dodecyl sulfate – polyacrylamide gel electrophoresis and western blot. Meat quality indicators such as water holding capacity and tenderness were also studied. The correlation analysis between calpain activity, proteolysis and the changes in meat quality indicators indicated that there were strong correlations for μ‐calpain during the first 12 h of storage, while such strong correlations for μ/m‐calpain were only found in samples stored from 12 h to 7 days. Our study suggested that μ‐calpain played a major role in meat quality changes while μ/m‐calpain could also be involved but played a limited role in the proteolysis and meat quality changes during 12 h to 7 days postmortem storage of chicken breast muscle.  相似文献   

3.
Calpain 3/p94 is not involved in postmortem proteolysis   总被引:1,自引:0,他引:1  
Studies on the correlation between expression and/or autolysis of calpain and postmortem proteolysis in muscle have provided conflicting evidence regarding the possible role of calpain 3 in postmortem tenderization of meat. Thus, the objective of this research was to test the effect of postmortem storage on proteolysis and structural changes in muscle from normal and calpain 3 knockout mice. Knockout mice (n = 6) were sacrificed along with control mice (n = 6). Hind limbs were removed and stored at 4 degrees C; muscles were dissected at 0, 1, and 3 d postmortem and subsequently analyzed individually for degradation of desmin. Pooled samples for each storage time and mouse type were analyzed for degradation of nebulin, dystrophin, vinculin, and troponin-T. In a separate experiment, hind-limb muscles from knockout (n = 4) and control mice (n = 4) were analyzed for structural changes at 0 and 7 d postmortem using light microscopy. As an index of structural changes, fiber detachment, cracked or broken fibers, and the appearance of space between sarcomeres were quantified. Cumulatively, the results of the first experiment indicated that postmortem proteolysis of muscle occurred similarly in control and in calpain 3 knockout mice. Desmin degradation did not differ (P > 0.99), and there were no indications that degradation of nebulin, dystrophin, vinculin, and troponin-T were affected by the absence of calpain 3 in postmortem muscle. Structural changes were affected by time postmortem (P < 0.05), but not by the absence of calpain 3 from the muscles. In conclusion, these results indicate that calpain 3 plays a minor role, if any, in postmortem proteolysis in muscle.  相似文献   

4.
Micro-calpain is essential for postmortem proteolysis of muscle proteins   总被引:1,自引:0,他引:1  
The objective of this investigation was to test the hypothesis that -calpain is largely responsible for postmortem proteolysis of muscle proteins. To accomplish this objective, we compared proteolysis of known muscle proteins in muscles of wild type and micro-calpain knockout mice during postmortem storage. Knockout mice (n = 6) were killed along with control mice (n = 6). Hind limbs were removed and stored at 4 degrees C. Muscles were dissected at 0, 1, and 3d postmortem and subsequently analyzed for degradation of nebulin, dystrophin, metavinculin, vinculin, desmin, and troponin T. In a separate experiment, hind limb muscles from knockout (n = 4) and control mice (n = 4) were analyzed at 0, 1, and 3 d postmortem using casein zymography to confirm that mu-calpain activity was knocked out in muscle and to determine whether or not m-calpain is activated in murine postmortem muscle. Cumulatively, the results of the first experiment indicated that postmortem proteolysis was largely inhibited in micro-calpain knockout mice. The results of the second experiment established the absence of micro-calpain in the muscle tissue of knockout mice and confirmed the results of an earlier study that m-calpain is active in postmortem murine muscle. The results of the current study show that even in a species in which m-calpain is activated to some extent postmortem, micro-calpain is largely responsible for postmortem proteolysis. This observation excludes a major role for any of the other members of the calpain family or any other proteolytic system in postmortem proteolysis of muscle proteins. Therefore, understanding the regulation of micro-calpain in postmortem muscle should be the focus of further research on postmortem proteolysis and tenderization of meat.  相似文献   

5.
The objective of this study was to determine whether differences in pork tenderness and water-holding capacity could be explained by factors influencing calpain activity and proteolysis. Halothane-negative (HAL-1843 normal) Duroc pigs (n = 16) were slaughtered, and temperature and pH of the longissimus dorsi (LD), semimembranosus (SM), and psoas major (PM) were measured at 30 and 45 min and 1, 6, 12, and 24 h postmortem. Calpastatin activity; mu-calpain activity; and autolysis and proteolysis of titin, nebulin, desmin, and troponin-T were determined on muscle samples from the LD, SM, and PM at early times postmortem. Myofibrils from each muscle were purified to assess myofibril-bound (mu-calpain. Percentage drip loss was determined, and Warner-Bratzler shear (WBS) force was analyzed. Myosin heavy-chain (MHC) isoforms were examined using SDS-PAGE. The pH of PM was lower (P < 0.01) than the pH of LD and SM at 30 and 45 min and 1 h postmortem. The PM had a higher (P < 0.01) percentage of the MHC type IIa/IIx isoforms than the LD. The-LD had the greatest proportion of (P < 0.01) MHC IIb isoforms of any of the muscles. The PM had the lowest (P < 0.01) percentage of MHC IIb isoforms and a greater (P < 0.05) percentage of type I MHC isoforms than the LD and SM. The PM had less (P < 0.01) drip loss after 96 h of storage than the SM and LD. The PM had more desmin degradation (P < 0.01) than the LD and SM at 45 min and 6 h postmortem. Degradation of titin occurred earlier in the PM than the LD and SM. At 45 min postmortem, the PM consistently had some autolysis of mu-calpain, whereas the LD and SM did not. At 6 h postmortem, some autolysis of mu-calpain (80-kDa subunit) was observed in all three muscles. The rapid pH decline and increased rate of autolysis in the PM paralleled an earlier appearance of myofibril-bound mu-calpain. The SM had higher calpastatin activity (P < 0.05) at 45 min, 6 h, and 24 h and had higher WBS values at 48 h (P < 0.01) and 120 h (P < 0.05) postmortem than the LD. At 48 and 120 h postmortem, more degradation of desmin, titin, and nebulin were observed in the LD than in the SM. These results show that mu-calpain activity, mu-calpain autolysis, and protein degradation are associated with differences in pork tenderness and water-holding capacity observed in different muscles.  相似文献   

6.
The use of vitamin D3 to improve beef tenderness   总被引:7,自引:0,他引:7  
An experiment was designed to test the hypothesis that short-term oral administration of dietary vitamin D3 to beef cattle before slaughter would increase beef tenderness through greater calcium-activated calpain activity in postmortem aged skeletal muscle. Thirty continental crossbred steers were allotted randomly to three treatment groups housed in one pen. One group served as a control; two other groups were administered boluses with either 5 x 10(6) or 7.5 x 10(6) IU of vitamin D3 daily for 9 d. Cattle were slaughtered 1 d later. The longissimus lumborum was excised from each carcass 72 h postmortem and steaks removed at 3, 7, 14, and 21 d postmortem. The semimembranosus muscle (top round) was excised from each carcass 72 h postmortem and steaks removed at 7, 14, and 21 d postmortem. Blood plasma calcium concentration of cattle treated with 5 or 7.5 x 10(6) IU of vitamin D3 was higher (P < .05) than that of controls. Strip loin and top loin steaks from cattle fed supplemental doses of vitamin D3 had lower (P < .05) Warner-Bratzler (W-B) shear values at 14 d postmortem but were not significantly different from controls at 3, 7, or 21 d (strip loins) or 7 or 21 d (top rounds). No significant difference in strip loin steak tenderness was observed by sensory panel at 14 d postmortem (P < .17) between steaks from control and vitamin D3-treated steers. At 14 d postmortem, strip loin and top round steaks from cattle fed 5 x 10(6) IU of vitamin D3, but not from those given 7.5 x 10(6) IU, showed more proteolysis (P < .05) than did steaks from control cattle, based on Western blotting analysis. Therefore, the use of supplemental dietary vitamin D3 given daily for 9 d before slaughter did improve tenderness (lower W-B shear values) of 14-d postmortem aged beef. Increased proteolysis seems to be the mechanism of tenderization.  相似文献   

7.
Meat tenderness is considered as the most important criterion for meat quality by consumers and can be improved by the actions of endogenous proteases, mainly calpains, during postmortem storage at 0–5°C. The purpose of this study, therefore, was to examine the postmortem calpain activation and proteolysis in breast (BM) and leg and thigh (LM) muscles of White Roman goose. BM and LM were taken from goose carcasses (n = 15) at 0 (10–15 min postmortem), 1, 3, and 7 days of storage at 5°C. The decrease in postmortem pH, calpain‐1 and ‐11 activities, and contents of the calpain‐1 80 kDa subunit and desmin was more rapid (p < .05) in BM than in LM. Our results show that postmortem proteolysis was more extensive in BM than in LM of White Roman goose, not only because the difference in fiber type composition between two muscles, but because the rate and extent of calpain activation were greater in BM as well. These results may provide useful information to optimize meat processing for different muscles in goose industry.  相似文献   

8.
钙蛋白酶系统在肌肉生长和肉品嫩化方面的研究   总被引:1,自引:0,他引:1  
钙蛋白酶系统主要由钙蛋白酶(calpain)及钙蛋白酶抑制蛋白(calpastatin)组成,calpain是存在于细胞质中的依赖于Ca2+的中性蛋白酶,calpastatin是钙蛋白酶的内源抑制蛋白。近年的研究表明,calpain是细胞质中主要的蛋白水解酶,在肌原纤维蛋白降解中起着重要的作用。肌肉增长和宰后嫩度的变化与蛋白质水解程度密切相关。因此,钙蛋白酶系统的活性会影响畜禽肌肉增长和肉的嫩度。文中综述了钙蛋白酶系统各种酶的结构及其如何在肌肉生长和肉的嫩化中起作用。  相似文献   

9.
The objective of the study was to improve the understanding of the relationship between the effect of epinephrine plus exercise and meat tenderness. The calpain, calpastatin, and cathepsin B + L activities and postmortem proteolysis in porcine longissimus muscle were studied. The muscle glycogen stores were depleted in five pigs by s.c. injection of epinephrine (.3 mg/kg) at 15 h antemortem and exercise on a treadmill (5 min, 3.8 km/h) immediately before slaughter. Antemortem injection of epinephrine and treadmill exercise resulted in higher ultimate pH (6.32 vs 5.66 in control) and decreased (P < .05) thaw loss, cooking loss, and shear force values. The muscle energy depletion treatment increased (P < .05) the muscle mu-calpain activity measured 42 min postmortem, and at 24 h mu-calpain activity was still approximately 50% greater in the high ultimate pH group. Also, as the ratio of mu-calpain to calpastatin increased (P < .01), the overall proteolytic potential of the calpain system were greater. These observations suggest that the muscle energy level may influence the activity of the calpain system in the living animal. The high ultimate pH group showed lower (P < .001) cathepsin B + L activity in the myofibrillar and the soluble fractions after 8 d of storage, suggesting that the increased ultimate pH increased the stability of the lysosomal membrane and thereby reduced the release of cathepsins from the lysosomes during storage. The SDS-PAGE showed increased (P < .001) degradation of a 39-kDa band in the epinephrine and exercise-treated samples. Degradation products at 30, 31, and 32 kDa were labeled by troponin-T antibody in western blot. An appearing 24-kDa band was identified as a troponin-I degradation product in western blot. The proteolytic degradation pattern of myofibrillar proteins during storage differed in control and treated samples, supporting the hypothesis that calpain-mediated proteolysis was affected after treatment, resulting in meat with high ultimate pH.  相似文献   

10.
An in situ system involving incubation of 60- to 80-g pieces of muscle at 4 degrees C under different conditions was used to determine the effects of time of postmortem storage, of pH, and of temperature on activities of mu- and m-calpain activity in bovine skeletal muscle. Casein zymograms were used to allow measurement of calpain activity with a minimum of sample preparation and to ensure that the calpains were not exposed to ionic strengths of 100 or greater before assay of their activities. In 4 of the 5 muscles (longissimus dorsi, lumbar; longissimus dorsi, thoracic; psoas major; semimembranosus; and triceps brachii) studied, mu-calpain activity decreased nearly to zero within 48 h postmortem. Activity of m-calpain also decreased in the in situ system used but at a much slower rate. Activities of both mu- and m-calpain decreased more slowly in the triceps brachii muscle than in the other 4 muscles during postmortem storage. Although previous studies have indicated that mu-calpain but not m-calpain is proteolytically active at pH 5.8, these studies have used calpains obtained from muscle at death. Both mu- and m-calpain are proteolytically inactive if their activities are measured at pH 5.8 and after incubating the muscle pieces for 24 h at pH 5.8. Western analysis suggested that neither the large 80-kDa subunit nor the small 28-kDa subunit of m-calpain was autolyzed during postmortem storage of the muscle pieces. As has been reported previously, the 80-kDa subunit of mu-calpain was autolyzed to 78- and then to a 76-kDa polypeptide after 7 d postmortem, but the 28-kDa small subunit was not autolyzed; hence, the autolyzed mu-calpain molecule in postmortem muscle is a 76-/28-kDa molecule and not a 76-/18-kDa molecule as previously assumed. Because both subunits were present in the postmortem calpains, loss of mu-calpain activity during postmortem storage is not due to dissociation of the 2 subunits and inactivation. Although previous studies have shown that the 76-/18-kDa mu-calpain molecule is completely active proteolytically, it is possible that the 76-/28-kDa mu-calpain molecule in postmortem muscle is proteolytically inactive and that this accounts for the loss of mu-calpain activity during postmortem storage. Because neither mu- nor m-calpain is proteolytically active at pH 5.8 after being incubated at pH 5.8 for 24 h, other proteolytic systems such as the caspases may contribute to postmortem proteolysis in addition to the calpains.  相似文献   

11.
The effects of dietary conjugated linoleic acid (CLA) on fatty acid composition, lipid oxidation, and pork quality were investigated. Pigs (n = 20) were fed a diet containing 0, 1, 2.5, or 5% CLA for 4 wk and slaughtered at 105 kg. The longissimus thoracis et lumborum muscle was collected at 24 h postmortem. Pork loin chops (3 cm thick) were packaged aerobically and stored at 4 degrees C for 7 d. Samples were analyzed for ultimate pH, intramuscular fat content, fatty acid composition, thiobarbituric acid-reactive substances, color (L*, a*, b*), and water-holding capacity. Dietary CLA reduced the concentration of linoleic acid and increased CLA concentration in intramuscular fat of pork loin (P < 0.05). The concentration of CLA in muscle was increased with dietary CLA level and did not change during storage. Thiobarbituric acid-reactive substance value of control was higher than that of the CLA-fed groups (P < 0.05). Intramuscular fat content was increased by dietary CLA, and less purge loss was observed with samples from CLA-fed pigs (P < 0.05). Dietary CLA improved the color stability of pork loin during cold storage. After 7 d, lightness (L*) and yellowness (b*) of the 5% CLA-fed group were significantly lower than those of control (P < 0.05). The results indicated that the water-holding capacity of pork loin was increased with increased intramuscular fat content apparently caused by dietary CLA. Also, the data indicated that color stability of pork was improved with inhibition of lipid oxidation and changing of fatty acid composition by dietary CLA.  相似文献   

12.
The present experiment was conducted to determine whether calpastatin inhibits only the rate, or both the rate and extent, of calpain-induced postmortem proteolysis. Biceps femoris from normal (n = 6) and callipyge (n = 6) lamb was stored for 56 d at 4 degrees C. Calpastatin activity was higher (P < .05) in the callipyge muscle at 0 and 14 d postmortem, but not at 56 d postmortem. The activity of mu-calpain did not differ between normal and callipyge biceps femoris at 0 and 56 d postmortem (P > .05), but was higher at 14 d postmortem in the callipyge muscle (P < 0.05). The activity of m-calpain was higher in the callipyge muscle (P < 0.05). Western blot analyses of titin, nebulin, dystrophin, myosin heavy chain, vinculin, alpha-actinin, desmin, and troponin-T indicated that postmortem proteolysis was less extensive in callipyge than in normal biceps femoris at all postmortem times. The results of this experiment indicate that calpastatin inhibits both the rate and extent of postmortem proteolysis.  相似文献   

13.
A negative correlation exists between calpastatin activity and meat tenderness. Therefore, it is important to determine the mechanism of calpastatin inactivation in postmortem skeletal muscle. Western immunoblot analysis was performed to determine the protease(s) responsible for degradation of muscle calpastatin during postmortem storage. To accomplish this, purified calpastatin was digested with different proteases in vitro, and their pattern of calpastatin degradation was compared with that of calpastatin degradation in postmortem muscle. Polyclonal antibodies raised in mice against recombinant bovine skeletal muscle calpastatin were used to monitor calpastatin degradation. Lamb longissimus was stored at 4 degrees C and sampled at 0, 6, 12, 24, 72, 168, and 336 h postmortem. Postmortem storage produced a discrete pattern of calpastatin degradation products that included immunoreactive bands at approximately 100, 80, 65, 54, 32, and 29 kDa. Undegraded calpastatin (130 kDa) was barely detectable after 72 h of postmortem storage at 4 degrees C, and no immunoreactive calpastatin was observed by 336 h postmortem. For in vitro proteolysis, lamb longissimus calpastatin (0 h postmortem) was purified using Affi-Gel Blue chromatography. Calpastatin was digested with m-calpain, mu-calpain, cathepsin B, proteasome, trypsin, or chymotrypsin. Each of these enzymes degraded calpastatin. Immunoreactive fragments resulting from digestion of calpastatin with m- and mu-calpain were similar to each other and closely resembled those observed during postmortem aging of lamb longissimus at 4 degrees C. Digestion of calpastatin with mu-calpain reduced calpastatin activity. Degradation of calpastatin by other proteases resulted in unique patterns of immunoreactive fragments, distinct from that observed in longissimus. Thus, m- and(or) mu-calpain seem to be responsible for calpastatin degradation during postmortem storage of meat.  相似文献   

14.
The objective of this experiment was to determine the effect of sarcomere length on postmortem proteolysis and meat tenderness. Eighteen Dorset market-weight sheep were slaughtered conventionally. The longissimus thoracis et lumborum and psoas major from each carcass were either left intact on the carcass (control), which was chilled at 0 degrees C, or excised from the carcass and chilled in an ice slurry (0 degrees C). At 24 h, control muscles were excised, and all muscles were cut into sections and assigned to 1 or 10 d of postmortem storage at 2 degrees C. Sarcomere length was shorter (P < .01), as intended, in the shortened relative to the control treatment and in longissimus relative to psoas major (1.36 vs 1.69 microm, raw longissimus; 1.45 vs 3.03 microm, raw psoas major). Sarcomere length was not affected (P > .05) by aging time. Western blot analysis of troponin-T and desmin indicated no effect (P > .05) of the shortened treatment compared to the control on the extent of proteolysis. Regardless of aging time or treatment, troponin-T was more degraded (P < .01) in longissimus than in psoas major (38.1 vs 23.5%) and desmin tended to be more degraded (P = .08) in longissimus than in psoas major (50.4 vs 35.1%). Regardless of muscle or treatment, aging 10 d compared to 1 d increased degradation of troponin-T (46.3 vs 15.3%) and desmin (69.3 vs 16.1%). Warner-Bratzler shear force was greater (P < .01) in the shortened treatment than in control (6.9 vs 3.8 kg), greater (P < .01) in longissimus than in the psoas major (6.5 vs 4.2 kg), and greater (P < .01) with 1 d than with 10 d of aging time (6.1 vs 4.6 kg). A muscle x aging time interaction (P < .05) indicated shear force declined more in longissimus than in psoas major during aging. We conclude that sarcomere length did not affect the extent of proteolysis. However, sarcomere length may have an indirect effect on tenderization during aging due to its effect on initial tenderness.  相似文献   

15.
To improve our understanding of the regulation of mu-calpain activity in situ during postmortem storage of muscle, the effect of different calpastatin levels on proteolysis of myofibrillar proteins by mu-calpain in a system closely mimicking postmortem conditions was studied. Increasing the amount of calpastatin in the incubations limited both the rate and extent of proteolysis of myofibrillar proteins and autolysis of mu-calpain. Excess calpastatin (i.e., a mu-calpain:calpastatin ratio of 1:4) did not inhibit proteolysis completely. Western blot analysis revealed that proteolysis of myofibrillar proteins virtually ceased after 7 d of incubation, despite the presence of partly autolyzed, therefore seemingly active, mu-calpain. A series of incubations of autolyzed mu-calpain revealed that the autolyzed form of this enzyme is unstable at an ionic strength observed in postmortem muscle. The possible significance of these results in terms of the regulation of mu-calpain activity in postmortem muscle is discussed.  相似文献   

16.
Properties of the calpain bound to myofibrils in longissimus muscle from callipyge or noncallipyge sheep were examined after 0, 1, 3, and 10 d of postmortem storage at 4 degrees C. Western analysis has shown that most of this calpain is mu-calpain, although the sensitivity of the antibodies used in the earlier studies could not eliminate the possibility that up to 10% of the calpain was m-calpain. The calpain is bound tightly, and very little is removed by washing with the detergent Triton X-100; hence, it is not bound to phospholipids in the myofibril. Over 25% of total mu-calpain was bound to myofibrils from at-death muscle, and this increased to approximately 40% after 1 d postmortem. The amount of myofibril-bound mu-calpain increased only slightly between 1 and 10 d of postmortem storage. The percentage of autolyzed mu-calpain increases with time postmortem until after 10 d postmortem, when all myofibril-bound mu-calpain is autolyzed. The specific activity of the myofibril-bound calpain is very low and is only 6 to 13% as high as the specific activity of extractable mu-calpain from the same muscle. It is unclear whether this low specific activity is the result of unavailability of the active site of the myofibril-bound calpain to exogenous substrate. The myofibril-bound calpain degrades desmin, nebulin, titin, and troponin T in the myofibrils, and also releases undegraded alpha-actinin and undergoes additional autolysis when incubated with Ca2+; all these activities occurred slowly considering the amount of myofibril-bound calpain. Activity of the myofibril-bound calpain was partly (58 to 67%) inhibited by the calpain inhibitors, E-64 and iodoacetate; was more effectively inhibited by a broader-based protease inhibitor, leupeptin (84 to 89%); and was poorly inhibited (43 to 45%) by calpastatin. Release of undegraded alpha-actinin and autolysis are properties specific to the calpains, and it is unclear whether some of the myofibril-bound proteolytic activity originates from proteases other than the calpains or whether the active site of myofibril-bound calpain is shielded from the inhibitors. Activities and properties of the myofibril-bound calpain were identical in longissimus muscle from callipyge and normal sheep, although previous studies had indicated that the "normal" longissimus was much more tender than the callipyge longissimus. Hence, it seems unlikely that the myofibril-bound calpain has a significant role in postmortem tenderization of ovine longissimus.  相似文献   

17.
The effect of pH, temperature and structural damage of muscle early postmortem on the quality of beef, particularly tenderness, was examined in a randomized complete block design with a 2 x 2 x 2 factorial. Semitendinosus muscles were excised from the right sides of 64 Charolais crossbred steer carcasses, placed in a restraint device in a controlled environment and subjected to high (31 degrees C) or low (20 degrees C) temperature, high (control) or low (electrically stimulated) pH and restraint at excised length or restraint at 125% of excised length for 15 min early postmortem. Temperature, pH, shrink, drip loss, cooking loss, sarcomere length, fragmentation index, shear force, color reflectance and collagen and protein solubilities of the muscles were measured after 7 d of aging at 2 degree C. High-temperature aging increased fragmentation index and color reflectance and decreased protein solubility (P less than .05). Decreasing pH via electrical stimulation increased sarcomere length of the muscles aged at the high temperature only (P less than .05). Extension of muscles prior to aging lowered shear force values of the low-temperature muscles compared with the high-temperature muscles (6.12 vs 7.84 kg, SE .38). Stimulation of the muscles also decreased collagen solubility in the high-temperature, extended muscles. Although postmortem temperature and pH were the factors that influenced meat quality most, early postmortem extension should be considered as a modulating variable of meat tenderness.  相似文献   

18.
Our objectives were to examine the effects of prerigor excision and rapid chilling vs. conventional carcass chilling of two muscles on proteolysis and tenderness during the postmortem storage, as well as the effects of fast and slow rates of cooking on myofibrillar characteristics and tenderness. The longissimus thoracis (LT) and triceps brachii (TB), long head muscles were removed 45 min after exsanguination from the left side of 12 carcasses and chilled in an ice bath to induce cold shortening (excised, rapidly chilled). At 24 h postmortem, the corresponding muscles were removed from the right side (conventionally chilled). All muscles were cut into 2.54-cm-thick steaks and assigned to one of two postmortem times (1 or 14 d), and to raw and cooking treatments. Steaks were cooked at 260 degrees C (FAST) or 93 degrees C (SLOW) in a forced-air convection oven to an internal temperature of 70 degrees C. Cooking loss, cooking time, and Warner-Bratzler shear force (WBSF) were measured on cooked steaks. Sarcomere length (SL) and the extent of proteolysis of desmin were measured on raw and cooked steaks. As expected, the excised, rapidly chilled muscles had a much more rapid (P < 0.05) temperature decline than those that were conventionally chilled. The excised, rapidly chilled treatment resulted in shorter (P < 0.05) SL, and SL was shorter (P < 0.05) in LT than in TB steaks. Raw steaks had longer (P < 0.05) SL than cooked steaks, regardless of chilling treatment. The FAST cooking resulted in shorter (P < 0.05) SL than SLOW cooking in conventionally chilled steaks, but cooking rate had no effect (P > 0.05) on SL of rapidly chilled steaks. Generally, TB steaks required longer (P < 0.05) cooking times and had higher (P < 0.05) cooking losses than LT steaks, and FAST-cooked steaks had greater (P < 0.05) cooking losses than SLOW-cooked steaks. Rapidly chilled steaks had less (P < 0.05) degradation of desmin than conventionally chilled steaks (31 vs. 41%). Aging for 14 d increased (P < 0.05) desmin degradation. Rapid chilling of muscles resulted in much higher (P < 0.05) WBSF values, whereas aging resulted in lower (P < 0.05) WBSF values. The SLOW-cooked TB steaks were more tender (P < 0.05) than FAST-cooked TB steaks and LT steaks cooked at either rate. Excised, rapidly chilled muscles underwent proteolysis, but it occurred at a slower rate during the first 24 h postmortem than it did in conventionally chilled muscles. Cooking rate did not affect tenderness of LT steaks, but SLOW cooking resulted in more tender TB steaks.  相似文献   

19.
Fresh meat color is a major factor influencing the purchase of meat products by consumers, whereas tenderness is the primary trait determining overall eating satisfaction of consumers. The objectives of this research were to determine the effects of packaging atmosphere on fresh beef color stability, cooked color, and tenderness. Longissimus lumborum muscles (n = 14 pairs) from USDA Select, A-maturity carcasses were assigned to either 14-d tenderness measurement or to display and then to 18-d [80% O(2), 20% CO(2) (HiO(2)) modified atmosphere packaging (MAP)] or 28-d [vacuum package (VP) and ultra low (ULO(2)) plus CO MAP blends] tenderness measurement. Loins were then fabricated on d 7 postmortem into 2.54-cm-thick steaks. Steaks 8 to 10 caudal to the first 7 steaks were bisected, assigned to a packaging treatment, and used for internal cooked color. One full steak was used for initial tenderness. Packaging treatments were as follows: vacuum-packaging (VP); 80% O(2), 20% CO(2) (HiO(2)); 0.4% CO, 35% CO(2), 64.6%N(2) (ULO(2)CO); 0.4% CO, 99.6% CO(2) (ULO(2)COCO(2)); 0.4% CO, 99.6% N(2) (ULO(2)CON(2)); or 0.4% CO, 99.6% Ar (ULO(2)COAr). Steaks packaged in HiO(2) MAP were in dark storage (2 degrees C) for 4 d, and all other steaks were in dark storage for 14 d. Steaks were displayed under fluorescent lighting (2,153 lx; 3,000 K) for 7 d, with instrumental color measured on d 0 and 7 of display. Trained color panelists (n = 10) assigned color scores. Steaks for Warner-Bratzler shear force and cooked color were cooked to 70 degrees C. Steaks packaged in the 4 ULO(2) MAP blends with CO had no change (P > 0.05) or increased (P < 0.05) a* values for fresh color. Steaks packaged in VP or the 4 ULO(2) MAP blends with CO had little or no surface discoloration. Steaks packaged in HiO(2) MAP discolored faster (P < 0.05) and 56% more (P < 0.05) than those in any other packaging treatment. There were no differences (P > 0.05) in Warner-Bratzler shear force on d 14 postmortem. Steaks packaged in HiO(2) MAP were less tender (P < 0.05) than the other treatments at the end of display but had 10 d less aging due to a shorter dark storage period. Steaks packaged in HiO(2) had the lowest (P < 0.05) a* values for internal cooked color of all packaging treatments. Steaks packaged in ULO(2)COCO(2) and VP had intermediate a* values, whereas those packaged in ULO(2)COAr, ULO(2)CO, and ULO(2)CON(2) had the greatest (P < 0.05) a* values for internal cooked color. Ultra-low oxygen packaging treatments had longer fresh color stability than steaks packaged in HiO(2) MAP and equal or better tenderness. Packaging atmospheres altered the internal cooked color, with steaks packaged in HiO(2) MAP exhibiting premature browning.  相似文献   

20.
The objective of this study was to compare carcass characteristics of a newly introduced breed, the Waguli (Wagyu x Tuli), with the carcass characteristics of the Brahman breed. Brahman cattle are used extensively in the Southwest of the United States because of their tolerance to adverse environmental conditions. However, Brahman carcasses are discounted according to the height of their humps because of meat tenderness issues. The Waguli was developed in an attempt to obtain a breed that retained the heat tolerance of the Brahman but had meat quality attributes similar to the Wagyu. Twenty-four animals were used. Six steers from each breed were fed a 94% concentrate diet and 6 steers from each breed were fed an 86% concentrate diet. Eight steers, 2 from each group, were harvested after 128 d, after 142 d, and after 156 d on feed. Waguli steers had larger LM, greater backfat thickness, greater marbling scores, and greater quality grades than the Brahman steers (P < 0.05). The Japanese Wagyu breed is well known for its highly marbled and tender meat, and these traits are also present in the Waguli. The Waguli had significantly lower Warner-Bratzler shear force values than the Brahman steers after 7 and 10 d of postmortem aging (P < 0.05); this difference decreased after 14 d postmortem (P = 0.2), when tenderness of the slower aging Brahman had increased to acceptable levels. Toughness of the Brahman has been associated with high levels of calpastatin in Brahman muscle, and the Waguli LM had significantly less calpastatin activity (P = 0.02) at 0 h postmortem than the Brahman LM. At 0-h postmortem, the total LM calpain activity did not differ between the Brahman and Waguli (P = 0.57). Neither diet nor days on feed had any significant effect on the 0-h postmortem calpain or at 0-h postmortem calpastatin activity, nor an effect on Warner-Bratzler shear-force values. In conclusion, LM muscle from the Waguli steers had a high degree of marbling, lower shear force values, and low calpastatin activity, all of which are related to more tender meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号