首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Permian-Triassic boundary records the most severe mass extinctions in Earth's history. Siberian flood volcanism, the most profuse known such subaerial event, produced 2 million to 3 million cubic kilometers of volcanic ejecta in approximately 1 million years or less. Analysis of (40)Ar/(39)Ar data from two tuffs in southern China yielded a date of 250.0 +/- 0.2 million years ago for the Permian-Triassic boundary, which is comparable to the inception of main stage Siberian flood volcanism at 250.0 +/- 0.3 million years ago. Volcanogenic sulfate aerosols and the dynamic effects of the Siberian plume likely contributed to environmental extrema that led to the mass extinctions.  相似文献   

2.
Widespread basaltic volcanism occurred in the region of the West Siberian Basin in central Russia during Permo-Triassic times. New 40Ar/39Ar age determinations on plagioclase grains from deep boreholes in the basin reveal that the basalts were erupted 249.4 +/- 0.5 million years ago. This is synchronous with the bulk of the Siberian Traps, erupted further east on the Siberian Platform. The age and geochemical data confirm that the West Siberian Basin basalts are part of the Siberian Traps and at least double the confirmed area of the volcanic province as a whole. The larger area of volcanism strengthens the link between the volcanism and the end-Permian mass extinction.  相似文献   

3.
The Paraná-Etendeka flood volcanic event produced approximately 1.5 x 10(6) cubic kilometers of volcanic rocks, ranging from basalts to rhyolites, before the separation of South America and Africa during the Cretaceous period. New (40)Ar/(39)Ar data combined with earlier paleomagnetic results indicate that Paraná flood volcanism in southern Brazil began at 133 +/- 1 million years ago and lasted less than 1 million years. The implied mean eruption rate on the order of 1.5 cubic kilometers per year is consistent with a mantle plume origin for the event and is comparable to eruption rates determined for other well-documented continental flood volcanic events. Paraná flood volcanism occurred before the initiation of sea floor spreading in the South Atlantic and was probably precipitated by uplift and weakening of the lithosphere by the Tristan da Cunha plume. The Parana event postdates most current estimates for the age of the faunal mass extinction associated with the Jurassic-Cretaceous boundary.  相似文献   

4.
The Siberian Traps represent one of the most voluminous flood basalt provinces on Earth. Laser-heating (40)Ar/(39)Ar data indicate that the bulk of these basalts was erupted over an extremely short time interval (900,000 +/- 800,000 years) beginning at about 248 million years ago at mean eruption rates of greater than 1.3 cubic kilometers per year. Such rates are consistent with a mantle plume origin. Magmatism was not associated with significant lithospheric rifting; thus, mantle decompression resulting from rifting was probably not the primary cause of widespread melting. Inception of Siberian Traps volcanism coincided (within uncertainty) with a profound faunal mass extinction at the Permo-Triassic boundary 249 +/- 4 million years ago; these data thus leave open the question of a genetic relation between the two events.  相似文献   

5.
Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.  相似文献   

6.
(40)Ar/(39)Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 +/- 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a (40)Ar/(39)Ar age of 64.6 +/- 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.  相似文献   

7.
The (40)Ar/(39)Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, Iowa, impact structure (MIS) indicate that the MIS formed 73.8 +/- 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 +/- 0.05 Ma). The MIS sanidine is 9 million years older than (40)Ar/(39)Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the (40)Ar/(39)Ar age of 73.8 +/- 0.3 Ma for MIS reported herein.  相似文献   

8.
(40)Ar/(39)Ar dating of drill core samples of a glassy melt rock recovered from beneath a massive impact breccia contained within the 180-kilometer subsurface Chicxulub crater in Yucatán, Mexico, has yielded well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from (40)Ar/(39)Ar ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The (40)Ar/(39)Ar ages, in conjunction with geochemical and petrological similarities, strengthen the recent suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.  相似文献   

9.
Widespread basalts and rhyolites were erupted in Madagascar during the Late Cretaceous. These are considered to be related to the Marion hot spot and the breakup of Madagascar and Greater India. Seventeen argon-40/argon-39 age determinations reveal that volcanic rocks and dikes from the 1500-kilometer-long rifted eastern margin of Madagascar were emplaced rapidly (mean age = 87.6 +/- 0.6 million years ago) and that the entire duration of Cretaceous volcanism on the island was no more than 6 million years. The evidence suggests that the thick lava pile at Volcan de l'Androy in the south of the island marks the focal point of the Marion hot spot at approximately 88 million years ago and that this mantle plume was instrumental in causing continental breakup.  相似文献   

10.
An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa   总被引:1,自引:0,他引:1  
The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.  相似文献   

11.
The Paleocene-Eocene Thermal Maximum (PETM, approximately 55 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.  相似文献   

12.
Synchronizing rock clocks of Earth history   总被引:8,自引:0,他引:8  
Calibration of the geological time scale is achieved by independent radioisotopic and astronomical dating, but these techniques yield discrepancies of approximately 1.0% or more, limiting our ability to reconstruct Earth history. To overcome this fundamental setback, we compared astronomical and 40Ar/39Ar ages of tephras in marine deposits in Morocco to calibrate the age of Fish Canyon sanidine, the most widely used standard in 40Ar/39Ar geochronology. This calibration results in a more precise older age of 28.201 +/- 0.046 million years ago (Ma) and reduces the 40Ar/39Ar method's absolute uncertainty from approximately 2.5 to 0.25%. In addition, this calibration provides tight constraints for the astronomical tuning of pre-Neogene successions, resulting in a mutually consistent age of approximately 65.95 Ma for the Cretaceous/Tertiary boundary.  相似文献   

13.
Sixty-five million years ago, massive volcanism produced on the India-Seychelles landmass the largest continental lava deposit (Deccan Traps) of the past 200 million years. Using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we show that multiple lineages of frogs survived Deccan Traps volcanism after millions of years of isolation on drifting India. The collision between the Indian and Eurasian plates was followed by wide dispersal of several of these lineages. This "out-of-India" scenario reveals a zoogeographical pattern that might reconcile paleontological and molecular data in other vertebrate groups.  相似文献   

14.
(40)Ar/(39)Ar dating of sanidine from a bentonite interbedded in the Ischigualasto Formation of northwestern Argentina yielded a plateau age of 227.8 +/- 0.3 million years ago. This middle Carnian age is a direct calibration of the Ischigualasto tetrapod assemblage, which includes some of the best known early dinosaurs. This age shifts last appearances of Ischigualasto taxa back into the middle Carnian, diminishing the magnitude of the proposed late Carnian tetrapod extinction event. By 228 million years ago, the major dinosaurian lineages were established, and theropods were already important constituents of the carnivorous tetrapod guild in the Ischigualasto-Villa Unión Basin. Dinosaurs as a whole remained minor components of tetrapod faunas for at least another 10 million years.  相似文献   

15.
Lunar spherules are small glass beads that are formed mainly as a result of small impacts on the lunar surface; the ages of these impacts can be determined by the (40)Ar/(39)Ar isochron technique. Here, 155 spherules separated from 1 gram of Apollo 14 soil were analyzed using this technique. The data show that over the last approximately 3.5 billion years, the cratering rate decreased by a factor of 2 to 3 to a low about 500 to 600 million years ago, then increased by a factor of 3.7 +/- 1.2 in the last 400 million years. This latter period coincided with rapid biotic evolutionary radiation on Earth.  相似文献   

16.
Supergene cryptomelane [K(1-2)(Mn(3+)Mn(4+))(8)O(16). chiH(2)O] samples from deeply weathered pegmatites in southeastern Brazil subjected to (40)K-(40)Ar and (40)Ar/(39)Ar analysis yielded (40)K-(40)Ar dates ranging from 10.1 +/- 0.5 to 5.6 +/- 0.2 Ma (million years ago). Laser-probe (40)Ar/(39)Ar step-heating of the two most disparate samples yielded plateau dates of 9.94 +/- 0.05 and 5.59 +/- 0.10 Ma, corresponding, within 2 sigma, to the (40)K-(40)Ar dates. The results imply that deep weathering profiles along the eastern Brazilian margin do not reflect present climatic conditions but are the result of a long-term process that was already advanced by the late Miocene. Weathering ages predate pulses of continental sedimentation along the eastern Brazilian margin and suggest that there was a time lag between weathering and erosion processes and sedimentation processes.  相似文献   

17.
Paleomagnetic and (40)Ar/(39)Ar analyses from the Lathrop Wells volcanic center, Nevada, indicate that two eruptive events have occurred there. The ages (136 +/- 8 and 141 +/- 9 thousand years ago) for these two events are analytically indistinguishable. The small angular difference (4.7 degrees ) between the paleomagnetic directions from these two events suggests they differ in age by only about 100 years. These ages are consistent with the chronology of the surficial geological units in the Yucca Mountain area. These results contradict earlier interpretations of the cinder-cone geomorphology and soil-profile data that suggest that at least five temporally discrete eruptive events occurred at Lathrop Wells approximately 20,000 years ago.  相似文献   

18.
Rhyolitic volcanic rock in the northern Black Hills has a potassium-argon isotopic age of 10.5 +/- 1.5 million years. This is considerably younger than any previously reported igneous activity in this or adjacent areas and indicates that the renewed uplift of the Black Hills, which occurred after the Oligocene epoch, was also accompanied by some volcanism.  相似文献   

19.
We reexamined the Late Cretaceous-early Tertiary apparent polar wander path for the Pacific plate using 27 paleomagnetic poles from seamounts dated by (40)Ar/(39)Ar geochronology. The path shows little motion from 120 to 90 million years ago (Ma), northward motion from 79 to 39 Ma, and two groups of poles separated by 16 to 21 degrees with indistinguishable mean ages of 84 +/- 2 Ma. The latter phenomenon may represent a rapid polar wander episode (3 to 10 degrees per million years) whose timing is not adequately resolved with existing data. Similar features in other polar wander paths imply that the event was a rapid shift of the spin axis relative to the mantle (true polar wander), which may have been related to global changes in plate motion, large igneous province eruptions, and a shift in magnetic field polarity state.  相似文献   

20.
The lead-lead isochron age of chondrules in the CR chondrite Acfer 059 is 4564.7 +/- 0.6 million years ago (Ma), whereas the lead isotopic age of calcium-aluminum-rich inclusions (CAIs) in the CV chondrite Efremovka is 4567.2 +/- 0.6 Ma. This gives an interval of 2.5 +/- 1.2 million years (My) between formation of the CV CAIs and the CR chondrules and indicates that CAI- and chondrule-forming events lasted for at least 1.3 My. This time interval is consistent with a 2- to 3-My age difference between CR CAIs and chondrules inferred from the differences in their initial 26Al/27Al ratios and supports the chronological significance of the 26Al-26Mg systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号