首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field experiments were conducted to determine the direct and residual contributions of legumes to the yield and nitrogen (N) uptake of maize during the wet seasons of 1994 and 1995 at the University Farm, Abubakar Tafawa Balewa University, Bauchi, Nigeria, located in the Northern Guinea savannah of Nigeria. Nodulating soybean, lablab, green gram and black gram contributed to the yield and N uptake of maize either intercropped with the legumes or grown after legumes as a sole crop. Direct transfer of N from the nodulating soybean, lablab, green gram and black gram to the intercropped maize was 24.9–28.1, 23.8–29.2, 19.7–22.1 and 18.4–18.6 kg N ha–1, respectively. However, the transfer of residual N from these legumes to the succeeding maize crop was 18.4–20.0, 19.5–29.9, 12.0–13.7 and 9.3–10.3 kg N ha–1, respectively. Four years of continuous lablab cropping resulted in yields and N uptake of the succeeding maize crop grown without fertilizer N that were comparable to the yields and N uptake of the succeeding maize crop supplied with 40–45 kg N ha–1 and grown after 4 years of continuous sorghum cropping. It may therefore be concluded that nodulating soybean, lablab, green gram and black gram may be either intercropped or grown in rotation with cereals in order to economize the use of fertilizer N for maize production in the Nigerian savannah.  相似文献   

2.
When one of the crops is a legume, intercropping has potential to reduce fertilizer nitrogen (N) needs and increase food quality. Total dry matter (DM) and grain yields of different plant populations of intercropped maize ( Zea mays L.) and climbing beans ( Phaseolus vulgaris L.), cowpeas ( Vigna unguiculata [L.] Walp.), or velvet beans ( Mucuna pruriens [L.] DC. var utilis [Wight] Bruck.) were compared in two experiments. Maize populations were 40,400 and 50,500 plants ha−1 in combination with climbing bean populations of 0, 20,200, 40,400 and 80,800 plants ha−1 in Experiment 1. In the second experiment, climbing beans, cowpeas and velvet beans at 215,200 plants ha−1 were intercropped with maize at 64,600 plants ha−1. Climbing beans contributed up to 5% to total DM yields in the first experiment. In the second experiment legume contributions to total DM were 20% for climbing beans, 12% for cowpeas and 8% for velvet beans. Increasing populations of maize and climbing beans increased grain and DM yields. Dry matter yield of maize was lowered by intercropping. However, DM yields of the intercrop were not different to maize sole cropped. Maize/cowpeas produced more total DM than maize/climbing beans. Cowpeas increased the total yield of crude protein by over 15% without lowering total DM yield of the intercrop compared to maize alone and are promising as a legume for intercropping with maize. Climbing beans show little promise as a possible legume for intercropping with maize.  相似文献   

3.
Intercropping of corn with legumes is an alternative to corn monocropping and has a number of advantages, for example, lower levels of inputs, lower cost of production and better silage quality than monocrop systems. An experiment was carried out at two sites in 1993 and 1994 to investigate the effects of seeding soybean or lupin alone or in combination with one of three forages (annual ryegrass, Lolium multiflorum Lam.; perennial ryegrass, Lolium perenne L.; red clover, Trifolium pratense L.) on silage yield and quality. The intercrop plots received 90 kg ha−1 less nitrogen fertilizer than monocrop plots, which received 180 kg ha−1. Corn biomass yield had a variable response to the treatments, but showed no change at most site-years. Soybean and lupin biomass yields were decreased by intercropping (80–98 % for soybean, and 94–100 % for lupin). However, when corn growth was limited due to poor establishment at one site in 1994, soybean was able to grow well and produce yields similar to those of monocropped soybean. The three underseeded forages did not grow well during the period examined (up to silage harvest) and had no effect on the yield of any crop. Total silage yields were similar to corn monocrop biomass yields even during 1994 at the site with low corn population densities because soybean was able to compensate for reduced corn growth.  相似文献   

4.
Rice–wheat cropping system to which graded levels of NPK fertilizers had been applied for 20 years were compared for yield trends, and changes in response function, soil organic-C and available N, P, K and S status. This study of system in which only chemical fertilizers had been used over a long period enabled long-term yield declines of rice and wheat at different levels and combinations of NPK fertilizers to be evaluated. The highest rate of yield decline in both rice and wheat was found when 120 kg ha−1 N was applied alone. The lowest rate of decline was observed when all three nutrients (N, P and K) were applied, at 40, 35 and 33 kg ha−1 for N, P and K, respectively, followed by 120, 35 and 33 kg ha−1 (currently recommended levels). The yield response of rice and wheat to N fertilizer declined over the 20 years, with a higher rate of decline in wheat. In contrast, the response to applied P and K increased with time in both crops, with a higher response rate in wheat. With continuous application of N and P fertilizers, there was a marginal change in available N and K in the soil over time, but an approximately 3-fold increase in available P and an approximately 2-fold increase in available S were obtained by regular dressing of P fertilizer (SSP: 7 % P, 12 % S) over 20 years. The results revealed that balanced, high doses of NPK fertilizers are required to maintain soil fertility and raise grain yields.  相似文献   

5.
Climate change will alter temperature and rainfall patterns over North American agricultural regions and there will be a need to adapt crop production systems to the altered conditions. A set of field experiments were conducted in south-western Quebec, Canada, with soybean ( Glycine max L.), corn ( Zea mays L.), sorghum ( Sorghum bicolor L.) × sudangrass ( Sorghum sudanense Piper) hybrid and switchgrass ( Panicum virgatum L.) under two tillage and three nitrogen fertility regimes, to study their performance in three successive growing seasons (2001–2003), two of them with unusually warm and dry conditions. The annual crops were established in two tillage systems: conventional and no-till (NT). All crops except soybean were fertilized with three levels of nitrogen: corn – 0, 90 and 180 kg N ha−1, sorghum-sudangrass – 0, 75 and 150 kg N ha−1, switchgrass – 0, 30 and 60 kg N ha−1. The 2001 and 2002 seasons were hotter and drier than the 2003 season, which was the most favourable for crop growth. The capacity of the crops to yield in dry seasons was as follow: switchgrass > sorghum-sudangrass > corn > soybean. The corn and sorghum-sudangrass responses to nitrogen fertilizer were low in 2001 due to the combined effect of dry growing season and coarse soil texture. Soybean did not perform well under NT. Corn yielded better at the highest nitrogen fertilizer rate under NT when the early season was warmer than the normal. Our results show that switchgrass and sorghum-sudangrass could be an option in south-western Quebec if the frequency of hot and dry seasons increase in the future, because of climate change.  相似文献   

6.
Results reported in the literature with regard to productivity of intercropping systems in comparison to sole cropping are very inconsistent. A field experiment was therefore conducted in the northern part of the Guinea Savanna in Ghana to compare the productivity of maize/cowpea mixed cropping, maize/cowpea relay intercropping with maize/cowpea rotation and maize monocropping over a 4-year period. The treatments included two levels of nitrogen (0 and 80 kg of N ha−1 y −1 as urea) and two levels of phosphorus application (0 and 60 kg of P ha−1 y−1 as Volta phosphate rock). At all levels of N and P application, maize yields of the intercropping systems, especially of maize/cowpea mixed cropping, were significantly lower than in sole cropping. Highest maize yields were obtained in maize/cowpea rotation, which in contrast to the other cropping systems did not show any reductions in yields over years. Cowpea yields were generally less affected by the cropping system, but were notably depressed when cowpea was relay-intercropped with maize. In treatments without fertilizer application (N and P) Land Equivalent Ratios (LER) and Area x Time Equivalency Ratios (ATER) generally indicated lower productivity of the intercropping systems as compared to sole cropping, with the maize/cowpea rotation showing the highest productivity. Conversely, fertilizer application resulted in higher productivity of the intercropping systems over the 4-year period. Productivity on the basis of ATER was generally lowest in maize/cowpea relay-intercropping as a consequence of the long time of land occupation. All of the parameters indicate low productivity of maize monocropping, clearly demonstrating that crop sequence as well as fertilizer application must be considered as important for maintaining high production levels at this site.  相似文献   

7.
This study was conducted at the University of Jordan Research Station in the central Jordan Valley during 1988 and 1989 summer growing seasons, to determine the potential and response of summer crops to intercropping system and to poultry manure addition. Corn, soybean and watermelon were grown as sole crops and as intercrops in three paired combinations (corn: watermelon, corn: soybean, watermelon: soybean) with three levels of poultry manure (0, 20, 40 t/ha). The crop yields and land equivalent ratios (LERs) were determined for all treatments. The highest yields for the two cropping systems were obtained in response to the highest poultry manure addition. Corn gave the highest yield when intercropped with soybean, where increases in yield of 45 % and 66 % were obtained over those of corn sole crop at the same level of poultry manure (40 t/ha), in 1988 and 1989 seasons, respectively. Soybean gave the highest yield when grown with corn leading to an increase of 35 % and 34 % over soybean sole crop grown at the same level of poultry manure (40 t/ha) in 1988 and 1989, respectively. Watermelon gave the highest yield when grown with soybean, giving an increase which ranged from 390 to 920 kg ha−1 over the yield of sole cropping system under the same level of poultry manure (40 t/ha). The LER values for all intercrop treatments were greater than 1.0 which gave clearly an indication for the superiority of the intercropping over the sole cropping system especially when 40 t ha−1 poultry manure was added.  相似文献   

8.
Legume cover crops can be successfully used as intercrop or relay crops in low-input farming systems. To select appropriate species for intercropping, experiments were conducted in the savannah zone of Côte d'Ivoire during the wet seasons of 1997 and 1998 to determine the growth and nitrogen (N) accumulation of six cover legumes as well as the characteristics indicative of competitive ability. The species included the erect growing Crotalaria juncea and Cajanus cajan , the creeping species Mucuna pruriens var. cochinchinensis and Calopogonium mucunoides and the bushy herbaceous species Aeschynomene histrix and Stylosanthes hamata . Marked differences in phenology were observed as S. hamata and C. juncea flowered around 45–55 days after sowing (DAS) and the other species around 80–95 DAS. C. juncea and C. cajan produced close to 9 ton dry matter ha–1, whereas the other species produced less than half this amount. The average estimated amount of accumulated N, based on leaf material, was around 70 kg ha–1 for all species except S. hamata and A. histrix , which only produced around 25 kg ha–1. Based on morphological characteristics, C. juncea , C. cajan and the short-lived M. pruriens were identified as potentially most competitive, indicating that productivity and competitive ability are strongly linked. The implications of these findings for intercropping systems in upland rice production are discussed.  相似文献   

9.
Maize dominated cassava irrespective of cassava or maize growth habit and the optimum maize population giving the highest production based on relative yield total or land equivalent ratio varied with maize variety in a tropical Alfisol at Ibadan, transition humid/subhumid zone in West Africa. The sparsely vegetative, early maize supported higher intercrop maize population (up to 80,000 ha−1) than the late maturing, highly vegetative TZSRW. Because there is a compensatory relationship in the yields of the two crop components, the choice of an appropriate crop type and maize population in cassava + maize intercrop system will depend on the relative economic importance of each crop component.  相似文献   

10.
Eleven upland rice genotypes of varying growth duration and plant stature were evaluated in two cropping systems: monocrop and intercrop, with pigeon pea cv. U pas 120, in order to study the effects of intercropping on rice grain yield and its contributing characteristics during 1990 to 1992 wet seasons. Cropping system and cropping system × genotype interaction effects were significant for yield ha−1, panicle weight, panicles m−2 and spikelet fertility suggesting the need for evaluating and selecting genotypes suitable for intercropping. Rice grain yield reduction in the intercrop ranged from 24.5 % in genotype RR 203-16 to 54.5 % in genotype Aditya. Panicle weight, total dry matter at flowering as well as at harvest, and harvest index were also reduced. Plant height and panicle weight were positively associated with yield in both systems, however, the yield was positively and significantly correlated with spikelets per panicle and spikelet fertility with the intercropping system. The correlation between cropping systems indicated the possibility of simultaneous improvement for these characteristics in monocropping and intercropping.  相似文献   

11.
A field experiment was conducted during the winter season of 1992–93 and 1993–94 at Agricultural Experimental Farm, Giridih, Bihar to evaluate the intercropping systems of legumes, gram ( Cicer arietinum L.), pea ( Pisum sativum ) and lentil ( Lens culinaris ) with wheat ( Triticum aestivum ) in 1:1 and 2:1 'row replacement series'. Intercropping systems were assessed on the basis of new indices termed as actual yield loss (AYL) and intercropping advantage (IA). This paper highlights the comparative effectiveness of evaluating the intercropping systems through the existing intercropping indices like LER, RCC, aggressivity. The indices AYL and IA seem to be more appropriate particularly when per plant yield is considered. Intercropping reduced the yield of component crops compared with respective pure stands. Wheat + pea in 1:1 row replacement series gave the highest wheat yield equivalent value (3.02 t ha−1) followed by wheat + lentil (2.91 tha−1). When the actual sown proportion was considered wheat + lentil (1:1) resulted in maximum AYL (+0.610) and IA (+0.279) values. This treatment also gave the maximum monetary advantage (Rs 5985.45 ha−1).  相似文献   

12.
Irrigation is a management option available to farmers in the subhumid zones of Sri Lanka to increase mung bean yields during the dry Yala season. The objective of this study was to quantify the yield gain in response to irrigation at different stages of the crop and thereby determine the most suitable stage/s of irrigation. Four field experiments were conducted during Yala in 1995 and 1996 at two sites, Maha-Illuppallama (MI) and Kundasale (KS). Eight irrigation regimes consisting of all possible combinations of irrigation at three growth stages of the crop were defined. The respective growth stages were vegetative (from germination to appearance of first flower), flowering (from appearance of first flower to 75 % pod initiation) and pod-filling (from 75 % pod initiation to maturity). The treatments which received irrigation during two or more stages had significantly higher yields (793–1396 kg ha−1) than those which received irrigation during only one stage (401–756 kg ha−1) with the lowest yield being shown by the rain-fed treatment (227–396 kg ha−1). When at least two stages can be irrigated, irrigation during the flowering and pod-filling stages was most effective. Irrigation during flowering produced the highest yield gain when only one stage could be irrigated. Seed yield showed a strong positive correlation with number of pods m−2. Fifity per cent de-podding caused yield reductions at both sites, indicating sink limitation. In contrast, 50 % defoliation reduced the yields only at MI where the number of pods m−2 was greater than at KS. Hence, source limitation was present only when the number of pods was higher.  相似文献   

13.
An experiment was conducted during rainy season (April-August) of 1994 and 1995 to assess the performance of rice, maize, sesame, greengram and blackgram grown in sole and intercropping system on Gangetic alluvial upland (Entisol) in West Bengal. India. All intercropping systems except sesame + rice had higher total productivity in terms of rice equivalent yield and net returns than all the sole crops. However, maximum advantage was obtained from paired row planted maize blackgram system followed by maize + sesame, maize + blackgram and paired row planted rice + blackgram. Paired row planted maize + blackgram increased land use efficiency (42%), rice equivalent yield (2955 kg ha−1), monetary return (Rs. 7294 ha−1), income equivalent ratio (1.22), monetary advantage (Rs. 3701 ha−1) compared with other cropping systems, which proved to be the most efficient system. The same treatment also indicated a modest competitive ratio (4.65:0.21) and gave a good value for the product of crowding coefficient (8.28).  相似文献   

14.
A 1-year study was conducted in 1983/84 at 2 experimental sites in Brazil to determine the effect of Azolla green-manure (AO), A. intercrop (OA) and their combination (AA) on rice yield in comparison to mineral fertilization with urea. Nitrogen sources were combined with 4 rice sowing/planting systems.
On terraced terra-roxa soil (Paleudalf) in subtropical northern Paraná State, transplanted rice (T) yielded 8.66 t · ha−1 compared to pregerminated (P), direct-sown (D) and conventionally sown (C) rice with 7.92; 7.73 and 7.48 t · ha−1, respectively. N-source treatments yielded 9.33; 8.54 and 7.34 t · ha−1 for AA, OA and AO compared to 8.46; 7.98 and 6.05 for 100, 50 and 0 kg N · ha−1, respectively. Fertilizer-nitrogen equivalence (FNE) of Azolla treatments compared to urea broadcast in 3 applications ranged between 0 and more than 100 kg N · ha−1.
On hydromorphic latosol (Ustic Dystropept) in tropical Goiás State, rice yields were 4.07; 2.52; 1.46 and. 1.33 t · ha−1 for systems T, P, C and D, respectively. N-source treatments yielded 2.79; 1.98 and 1.78 t · ha−1 for AA, AO and OA compared to 3.43; 2.63 and 1.46 t · ha−1 for 60; 30 and 0 kg N · ha−1 as urea broadcast in 2 applications, respectively. FNE of Azolla was between 0 and 56 kg N · ha−1.  相似文献   

15.
Pulses such as chickpea, faba bean and lentil have hypogeal emergence and their cotyledons remain where the seed is sown, while only the shoot emerges from the soil surface. The effect of three sowing depths (2.5, 5 and 10 cm) on the growth and yield of these pulses was studied at three locations across three seasons in the cropping regions of south-western Australia, with a Mediterranean-type environment. There was no effect of sowing depth on crop phenology, nodulation or dry matter production for any species. Mean seed yields across sites ranged from 810 to 2073 kg ha−1 for chickpea, 817–3381 kg ha−1 for faba bean, and 1173–2024 kg ha−1 for lentil. In general, deep sowing did not reduce seed yields, and in some instances, seed yield was greater at the deeper sowings for chickpea and faba bean. We conclude that the optimum sowing depth for chickpea and faba bean is 5–8 cm, and for lentil 4–6 cm. Sowing at depth may also improve crop establishment where moisture from summer and autumn rainfall is stored in the subsoil below 5 cm, by reducing damage from herbicides applied immediately before or after sowing, and by improving the survival of Rhizobium inoculated on the seed due to more favourable soil conditions at depth.  相似文献   

16.
In a field experiment conducted during 1992–95 at Lucknow, India, sugarcane was planted in rows 60 and 90 cm apart in three crop rotations (rice-sugarcane-ratoon, Sesbania aculeata for green manure-sugarcane-ratoon, and cowpea-sugarcane-ratoon) with 0, 150 and 300 kg N ha−1 as urea either with or without farmyard manure (FYM) at 10 t ha−1. Sugarcane yields were significantly greater in the Sesbania rotation than in the other because of a larger N uptake. N uptake of the crop was significantly affected by soil organic carbon, and available N and K contents. Ratoon yields, however, were largest in the cowpea sequence followed by the rice rotation, probably due to a prolonged residual effect of cowpea and rice root residues. The residual effect of a Sesbania green manure was negligible as demonstrated by the low NO3-N content of the soil profile after sugarcane harvest compared to the other two crop sequences. The total cane productivity (main sugarcane plus ratoon) was greater (156 t ha−1) in the cowpea rotation than the Sesbania (152 t ha−1) and rice (140 t ha−1) rotations.  相似文献   

17.
Tomato ( Lycopersicon esculentum mill. cv. Petopride ) is the most important vegetable crop in Jordan; its production is characterized by inadequate irrigation and fertilization practices, especially under open field conditions. A field study was carried out to determine the effect of different irrigation intervals and different N-fertilizer doses on water use, tomato yields and residual soil nitrogen.
Results indicated significant differences in water use and tomato yields between irrigation treatments. Highest yield (51.4 ton ha−1) was obtained under three irrigations per week with 504 mm total water supply, whereas under irrigation once a week 35.3 ton ha−1were produced with 353 mm total water supply. There were no significant differences in yield between fertigation with ten equal time intervals and fertigations with intervals as per crop requirements, the yields were 47.1 ton ha−1 and 44.5 ton ha−1, respectively. However, yield was significantly lower with three fertigations at equal intervals and equal doses (35.8 ton ha−1) throughout the season. There were no significant differences between mineral nitrogen forms in terms of yield effects. Significant irrigation effects were observed on total soil nitrogen. Residual soil N was 0.052% in the surface layer (0–30 cm), and 0.030% in the subsurface layer (30–60 cm).  相似文献   

18.
A field experiment was conducted during 1994 and 1995 at Lucknow (26.5°N, 80.5°E, 120 m above mean sea level) to optimize planting density and fertilizer-N application for high essential oil yield of late transplanted mint ( Mentha arvensis ). The treatments studied were 2.5, 2.0 and 1.66 × 105 mint seedlings ha−1 and 0, 80, 160 and 240 kg N ha−1. Under 3 months delayed planting conditions using 2-month-old seedlings, the high planting density of 2.5 × 105 plants ha−1combined with 160 kg N ha−1 gave significantly higher herb and essential oil yields compared with those of lower planting densities (2 and 1.66 × 105 plants ha−1) and all other rates of N application. It is demonstrated that a transplanted mini crop, yielding essential oil at a level of 164 kg ha−1, is feasible after the harvest of rabi cereal, oil seed or legume crops in the north Indian plains.  相似文献   

19.
Determination of optimal N-fertilization rates, NOR , for crop production that minimize risk of environmental degradation require accurate application of a response model. Several models are available to describe crop yield response to N fertilization. The objective of this work was to compare the relative accuracy of a quadratic, f(N Q), a modified Mitscherlich, and tanh( N ) models on 48 data sets. Data were collected from a Tara silt loam (fine-silty, mixed, frigid Pachic Udic Haploboroll) over a 6-year period using two maize ( Zea mays L.) hybrids and four tillage treatments, mouldboard plough, chisel plough, ridge tillage and no-tillage. In about one-third of the cases, all models performed about equally well. Generally, the tanh( N ) and modified Mitscherlich models gave better fit between N rate and grain yield data. The NOR, ranged from about 140 to 170 kg ha−1 for the modified Mitscherlich model, 136 to 184 kg ha−1 for the tanh( N) function, and 124 to 173 kg ha−1 using the f(N Q) model. Estimated grain yields at these rates ranged between 6.58 ± 1.30 to 7.59 ± 1.69 Mg ha−1 for the 90-day Minnesota maturity rated (MR) hybrid and between 7.52 ± 2.40 to 8.72 ± 1.70 Mg ha−1 for the 95-day MR hybrid.  相似文献   

20.
An experiment was conducted over the period 1995–96 in a warm-temperate environment in Nepal to investigate the effect of cutting frequency on forage yields of three temperate legume species, grown during the winter season, and the residual treatment effects on a subsequent upland rice crop. The three species, Persian clover ( Trifolium resupinatum ), white clover ( Trifolium repens ) and vetch ( Vicia benghalensis ), proved to be well adapted to the winter growing conditions and produced cumulative forage yields between 6.8 t DM ha−1 (vetch) and 9.2 t DM ha−1 (Persian clover). Vetch grew vigorously throughout the winter months and provided reasonable forage yields between December and February, whereas the clovers provided green fodder up to July. These species may therefore make a substantial contribution to alleviating the severe shortage of quality feed during the winter months. Grain yields of the subsequent rice crop ranged from 3.6 to 7.3 t ha−1. Rice yields were greatly affected by the previous legume species and forage management practices. In general, the removal of legume forage greatly reduced the residual effect, and farmers will have to seek a compromise between maximizing green fodder production and the immediate beneficial residual effect of the legume crop on rice yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号